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GEOMETRODYNAMICS OF WORMHOLES 

L. Szabó 

The original concept of wormhole arised in geometrodynamics founded 

by J.A. Wheeler and CW. Misner Cl3. 

Geometrodynamics regards general relativity as a dynamical theory 

of space-like 3-geometries. The description of space-time is nothing 

else but the description of the evolution of space-like hypersurfaces. 

Let O* be a space-like hypersurf ace in space-time. On this 3-dimen-
C0~) 

sional manifold the metric g is positive definite. If we want to 
iff) 

examine the evolution of this 3-geometry, the metric g and the 
speed of i t s change along the normal vector field, i . e . , the Lie-

L<r) <a~) C<h) 
- derivative L g = -B must be given at t=0, where B denotes the 

second fundamental form. Now, the following question arises: what 
<*•) <<r~) 

conditions should be satisfied by g and B , so that a space-time 

metric should exist, which at t=0 reduces to 

CĆS = - <*C + Q 

D-k д 

We can make use £2.7 of the Codazzi equation 

to-) <» v C^> ">*> v <*) 

V B (Xc, Xc) -Vy& (Xc, Y)- **c (Y,AJ) 
Y At 

v Ye r(т<>-) 
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and the Gauss é q u a t i o n 

'l'(v, %'a, Y)z) = f(v, %'(x, Y)Z) f 

+ B (X,V)B(YJZ)-B(YJV)8 (X,z) 

v x, stzt Ye r(r+)m 

(o-) 

Here V denotes the covariant derivative on the hypersurface O , 
(M ) 

{ X. }. __ ~ o is basis in T*(7*0*) and /̂  is the curvature of space-

-time. From the Einstein equations we obtain the constraint equations 

ĉ ; (o), s w (*-) 
VYB(Xc,Xc)- Vfi.BCXitY) = JrTfaY) 

V Ye P(T^) , 
,«>*) <*) (O) (O) £ * . 

d (R + Z Trace Sag - (/race & ) J = <f7T T(N,h))f 

and the evolution equation 

L<h) tO-) (O) (O) c<r») to*) 

LN B = Rtc + Jl B6& - (Trace £ )S - <?7T T 

- *TT(^^)f\ 
The motivations of geometrodynamies are the followings: 

i. Constraint equations are more simple than the Einstein equations, 

ii. Canonical quantization of space-time. 

iii. The structure of space-like hypersurfaces may have a fancy 

physical meaning. 

2. 

Since H is assumed to be initially at rest, the constraint 

equations reduce to 

C3) 

R - 0. 
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Misner £ 4*] has shown that this constraint equation does have a 

:ion 1 2 solution in the S x S topology: 

where 

<Ł&Z
 в

 p*(«i/t + *Cl> ŕ*«лŕ*<9>z) 

фm ã (cЛO****/")- c**i>Г'л 

л*-*# 

is a /*o -periodic solution of the Brill's wave-equations. This 

solution is asymptotically flat, and it looks like the Schwarzschild's 

one around the mouths of the "wormhole" /Fig. 1./. We can realize 

Fïj. 4. 

this solution as a topologycally "closed" Einstein-Rosen bridge 

/Fig. 2./. has been also shown that there is an initial solution 

in wormhole topology of the Einstein-Maxwell equations. In that 

case the electromagnetic flux-lines are trapped by the wormhole, 

and the mouths look like a pair of charges, although we have a 

solution of the source-free field equations /Fig. 3./. 
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*iS. 3. 

It has been shown that the space-like hypersurfaces may have more 

complicated topology, namely the knot wormholes: 

vS' л K 

,z where *\ is 2-dimensional knot, and the links of wormholes: 

^ ' . ^ Cвл) л 
where -_бsV; /• s 2-dimensional link CзJ. 

3. 

It has been shown that one can construct a Yang-Mills-charged 

wormhole within the framework of generalized Kaluza-Klein theory. 

The Kaluza-Klein model is a unified geometrical description 

of gravitation and a Yang-Mills field in an /r+4/ - dimensional 

space-time assumed to be a principal fibre bundle: H/M,G,37*/ CfSJ, 

where 

*,Г) ( 

(t,T) 

is the space-time, 

is a compact semi-simple Lie-group with 
CG-) a ^ 

OUA 'art //_•> 
an invariant metric: __ 

2*6 "" 'act *Cjt> 

A connection i s given on the bundle H, and the coef f ic ients of i t 

are i d e n t i f i e d with Yang-Mills p o n t e n t i a l s . There i s a lso given a 

pseudo-Riemannian metric on H which s a t i s f i e s the following 

compactibi l i ty condi t ions : 
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?Uт*'-(Г> 
ІІІ. 

'Â.TH 

+ TH м 4.TH 

where Pin and &~Tn are the v e r t i c a l and the hor izonta l distributions, 

JT: //—?// i s the bundle pro ject ion, r i s the. t r i v i a l i z a t i o n map. 

Further the indexes A , B , . . . run from 1 to r+4, a , b , . . . from 5 to 

r+4, and /*>, >*,... from 1 to 4. The connection coeff ic ients are 

defined as 
iґ Ê ^ - A^. e A 

where &£* is the vertical part of the basis vector fi^c* . If we 

choose the basis which is the natural one on the basis manifold and 

which is the left-invariant one on the fibre, the matrix of the 

metric ą i s 

/ */*•» + 2*6 Af As 
<*> „ 

<*) 

<*> 

KéK 
C(ř) 

OлЬ 

The scalar curvature is 

LH) (H) CG-) . (S) fH)
 0

^ . 

The unified action integral has the form: 

-J^ 
It has been shown £4 J that beyond the usual constraint equations a 

third constraint equation should be satisfied: 

<*> * . Lz a (v,w)s0, 
for any vector fields V and W and for any fundamental field Z 

on the /r+3/-dimensional "space-like" hypersurface 23 • 
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It has been shown that these constraint equations do have solutions 

in the case when the topology of jQ is the Kaluza-Klein gsneraliza-
r* 1 9 

t ion of the wormhole, i . e . , i t i s a f ibre bundle: I SL^S x S . A pos
s ib le general izat ion of the "wormhole" concept in mathematical-physics 
i s the following: Let Q be a p-form on a manifold M. Q i s a 
conversation law for an ex te r io r d i f f e r en t i a l system £ / i . e . , for 
a co l lec t ion of d i f f e r e n t i a l forms, which i s closed under the ex te 
r i o r product and ex t e r io r der ivat ion/ i f the following condition i s 
s a t i s f i e d : 

If we have in t eg ra l submanifold of the system <Z , such that i t s 
Betti-number Rp afs Q , than J Q can be d i f fe ren t from zero, 
and th i s s i t ua t ion looks l ike as i f there were "sources" of 
t h i s conserved quant i ty . 

4 . 

There are several ways to quantize general r e l a t i v i t y . The most 
important of them i s the "superspace" quantizat ion of geometrcxtynamics. 
The superspace i s the space where the 3-geometries are moving. 
Mathematically i t i s the following coset-space: 

6 0 0 - - Ri^CH)/oíff(M) 

where Riem /M/ is the set of Riemannian metrics of the 3-dimensional 

manifold M and Diff/M/ is the set of diffeomorfizms M —p M. 

The superspace is not a manifold but A.E. Fischer £6J has shown 

a partition into manifolds of geometries which have the same type 

of symmetries. Geometries with lower symmetries lie in the boundary 

of submanifold of more symmetric geometries. The metrizeability 

of the superspace has been also shown and it can be extended to be 

a manifold. A submanifold of homogeneous geometries of a given 

symmetry-type has finite dimension. The metric of the superspace 

introduced by Peres /1962/ £7]] is 
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The dynamics can be summed up in the Hamilton-Jacobi equation: 

^ <P 9 <P S '/z Z3)c 

°'At ^7Zm' 

ъ(Ą-) = 
v 

Thus we have the Einstein-Schrödinger equation f,8j : 

% Ъ V *** 
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