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TENSOR PRODUCTS OF LINEAR OPERATORS IN LOCALLY CONVEX SPACES

Volker Wrobel

Given continuous linear operators Ti:Ei——-) Ei on locally convex spa-
ces Ei (i = 1,2) and a polynomial P in two variables, spectral pro-
perties of polynomial operators

P(T1® I,/1, ®T2) :E,®E,
are studied in dependence of the spectral properties of their com-

e E1® E2

ponents T1 and '1‘2. Here E1<§ E2 denotes the completion of the tensor
product. 13210E2 with respect to a suitable teéensor product topology

lying between the e€- and the m-topology, and I, denotes the identity

i
map on Ei.
One of the main problems is to establish spectral mapping theo-

rems of the form

(i) P(G(TT;...),G‘(TZ;...)) C G'(P(T1®I2,I10T2);...)
and .
(ii) P(G(T1;---),G(T2;...)) b G‘(P(T1®IZ,I1®T2);.-.)

where G(S;...) :={A€C : A ~ S has no inverse in ...} for SeL(F)
denote suitable spectra depending on subsets ... from the algebra
L(F). ]

In [3] A. Brown and C. Pearcy established (i) and (ii) for
P(z1,z2) ='z1z2 in the Hilbert space setting, and M. Schechter [23]
proved both for bounded linear operators on Banach spaces and gene-
ral'polynomials P. The case of unbounded, closed operators on Ba-
nach spaces, which arises from problems in evQlution equations (cf.
{2]), differential equations with operator coefficients (cf. [4]),
and N-body problems in quantum mechanics, has been investigated by
T. Ichinose [13] - [17] and M. Reed and B. Simon [21]. It turns
out that (i) is always true, whereas (ii) in general fails even if
the left hand side of (ii) is replaced by its closure in C.

Since many problems for unbounded, closed operators on Banach .
spaces admit a reformulation in a locally convex setting with con-
.tinuous linear opérators, this may draw some attention to the situ-
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ation studied in this paper, too.
This article is based on a part of the author's Habilitations-
schrift [28].

O. Preliminaries. We start with some basic algebraic notions. Let
A denote an algebra with unit element-e over the complex numbers €,
.and let M be a subset of A. For aieAv(i =1,2,...,n) denote by
p(a1,a2,...,an;M) the set of all those (A1,)\2,...,>\n)é¢n such that
there exist bieM (i=1,2,...,n) with
e = b1()\1e - a1) + bz(Aze - a2) + ee. + bn()\ne - an).
The set
(0.1) G’(a1,a2,...,an;M) = ™\ /,)(a.l,az,...,an;M)

is called joint spectrum of (a1,a2{...,an) with respect to M.
If M = A this notion is well known from Banach algebra theory, but
it turns out that for purposes of locally convex algebra theory one
has to choose smaller sets M (cf. [28]). Throughout this paper we
will restrict our attention to commutative subalgebras of the local-
ly convex algebra LS(E) of all continuous linear operators on a lo-
cally convex space E equipped with the topology of pointwise conver-
gence.

1f [T denotes a fundamental system of continuous semi-norms E,
let

(0.2) G(E;lM) := {TeL(E) :J c >0 s.t. peT ¢ cp for all pe[1}.

If E is Mackey-complete, then G(E,[") is a Banach algebra, when
equipped with the norm

(0.3) HTHP := sup{sup{p(Tx) : x€E, p(x) = 1} : pe["} (cf. [19]).

Lateron, we shall deal with a decomposition of @G(T;G(E;l")) for
TEL(E). For that purpose let

A (r;r) := {xec :3 c>0 s.t. pe(T - A) 2 cp for all pel'}
and

(0.4) T(T;7) = e\ (r; )
(0.5  WT:T) := {geA; ™) : T = DE# E).
Moreover let ‘

A ) ==LPJ-L(T;P)

where the union runs over all fundamental systems of contintious

semi-norms on E, and let

(0.6) TC(T) := ¢ \A(T)
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(0.7)  Y(T) := {zeM(T) : T ~DE" # E}

O0.1. Remarks.

(1) The sets TC(T; ), TC(T) and Y(T;lM), Y(T) are very similar to
Halmos' notions of approximate point spectrum and compression spec—
trum (c£. [13], [18])..

(2) For every TEL(E) we have p (T;G(E; ™ ))C_A.(T;I—‘) and hence

P (T;G(E))C —A(T), where

0.8) G() :=UGEr),
r'

the union taken over all fundamental systems of continuous semi-
norms on E,

(3) Let TEL(E), and let
of T onto the completion

(T M) = M), WE) = % (1)
Y@ =y@:r), @ = YT (cf. [28]).
(4) If E is a complete locally convex space, and TE€ L(E), then

denote the (unique) continuous extension

~
T
~
E of E. Then

G(T;G(E;[")) =T(T;M) W y(T; M)
G(T;G(E)) =T((T) W y(T) (cf. [28)).

If A is a subset of L(E), let

(0.9) Ab := AN G(E).

The elements of Ab‘will be called Allan-bounded operators in order
to distinguish them from bounded operators (cf. [1], [19], [29]).
The following lemma can be proved by means of Gelfand theory

(see [28] for a more general result).

O.2. LEMMA. Let E denote a Mackey-complete locally convex space,
and let A € L(E) be a commutative subalgebra containing Ig. Let
7,T,€4, let P be a polynomial in two variables, and suppose that
neither G(TI;G(E;F) N A) nor G’(T2;G(E;f‘ ) n A) covers the whole
plane €. Then

P(G'(TJ,TZ;A n G(E;P))) ¢ G’(P(TJ,TZ);A N G(E;DP)).

In general this inclusion is strict, but there is equality, if Tl"
T,€G(E;).

1. Tensor products and admissible topologies. Let E1 and E2 be lo-
cally convex spaces, and let E1®E2 denote their algebraic tensor
product. A semi-norm p on E1®E2 is called cross-semi-norm, provided

there exist continuous semi-norms p; on Ei (i = 1,2) such that

(1.1) p(x1® x2) = P, (x1)p2(x2') for} every x1® x2e E1®E2.
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If (1.1) holds t':rue, we shall abbreviate this by writing p = p1®p2.
By E1 ®a E2 we denote E1®E2 equipped with a locally convex topology
a. If M is a fundamental system of continuous semi-norms on E1 ®a E2
we call " a D-fundamental system, provided [* consists of cross-semi-

norms only, and if there exists a constant k(I’) > O such that
(1.2) p = p,®p, implies p 2 k(f‘)p1 @ p, for all pel ,

where Py ®€ P, denotes a canonical semi-norm of the e-tensor: product
(cf. [22]). More specially we shall consider only those locally con-

vex topologies o on E1®E2“fulfilling the following conditions:

(1) There exists a D-fundamental system on E, ®aE2'
(1.3) (iz) If Ai 4 L(Ei) (i = 1,2) are equicontinuous subsets, then
A1®A2 c L(El ®a E,) is equicontinuous.

1.1. Remarks.

(1) The letter "D" in D-fundamental system is to suggest "dualizable"
since in the normed case (1.2) with k(") = 1 implies, that the dual
norm is a cross-norm, too.

(2) If " is a D-fundamentalsystem, and if p1®p2 = pe.P, then

o o -1. 0
(1.4) ®Up2 < k(M Up .

Up1
(3) For o« = €, a = 7 or more general for locally convex tensornorm-
topologies as studied by Harksen [10], condition (1.2) is automati-
cally fulfilled with constant k(") = 1.

(4) For every cross-semi-norm p = p1® p, one has p ¢ P, ®“'p2.
(5) Condition (1.3) (ii) especially implies E1'®E2' c (E1 ®u E

2

By T.Ié T2 we denote the extension of T1®T2 onto the completion
o
E; ®, E, of E, ® E,. »
In order to avoid technical difficulties, we make the following
general as'sumption :
E1,E

2 and El éa E2 are barrelled locally convex spaces, and

E,,E, are complete.
As we have announced in the introduction, we have to establish re-
lations between spectra of operators on tensor products and spectra

of their components. In order to do so, we start with a simple

1.2. LEMMA. Let T1€L(E1), and let o demote a tensor product topo-
logy fulfilling (1.3) on E,@FE,. Then we have

(Z) G’(TI?IZ;L(E'J ®uAE2)) = G’(TI;L(EI))

(i2) d(T1®I2;.(L8(E1 ®y Eglly) = G‘(Tl;iLa(El))b),
and consequently the sets d(TléIz;L(E'l ®a E2)) and
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G'(Tl éIz; (Ls(El aa Ez))b) are independent of the special topology o.

One of the main difficulties when dealing with operators on
tensor products of locally convex spaces originates from the fact,
that not every Allan-bognded operator CeLs(E.I éa EZ) is already
contained in some G(E, & Ez;r1 ), where I" is a D-fundamental system
(cf. [28], p. 35 for an example). Therefore we consider the follow-
ing subclasses of operators:

1.3. DEFINITION. For a subset A € L_(E, éa E,) let
Ay = aneE & 5,

where the union is taken over all D-fundamental system I on }E:1 éu E
The elements of A, are calledACrOSs—semi-norm bounded operators.
Moreover, .an operator CE.L(E.l ®a Ez) is said to be cross-semi-norm
stable, provided the following condition is fulfilled:

For every R €.-({C’;L(E1 éot EZ)}GC)

2

cb ({...3°% denoting the bicommutant
of {...} in L(El éa EZ)) there exists a D-fundamental system [ such
that C,R€G(E, éa Eg;l"‘).

Let
A = {CceA : C is cross-semi-norm stable}.
- < )
For every subset A C Ls (E1 ®OL Ez) we have Acs Acb < Ab If A is a

commutative algebra, then so is Ab, but we do not know whether Acs

or Acb are. For our purposes the following result will be sufficient

1.4. LEMMA. Let A C Ls(El éa E'2) denote a commutative subalgebra.
Then the following hold true:

(Z) Acs + Aas < Acb

(22) A,e° Acs 4 Acb

(3ii) 12 e T3®5; ¢ T, (L (E)))), 5 ell (E)))y, 0,85 eabed,,
Proof. Since (i) and (ii) follow immediately from the definitions,
only (iii) needs a proof. So let Tié Sie A, Ti and Si Allan-bounded

(t =1,2,...,k), let " denote any D-fundamental system, let pel”
with p = p1®p2, and let ReA n G(E1 §a Ez;r'). Let

- Nnqa n
p(z) := sup{p(T, 1®S1 2z) . n,,n, z o}l.
Then ﬁ is a continuous cross-semi-norm, for we have

a n n
p(x1®x2) = iup{p1iT1 1x1)pz(s1 '2x2) :ngny2 0o}
Pq(x1)p, (x,) -

On the other hand .
- nqa n2 Py
p(Rz) = sup{p(R(T, ) Sy z) :nyn, 2 o}« ll R“’_' p(z),
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and therefore R € G(E Qa Ez,r'). But Proposition 1.5 below tells us
that f’ is a D-fundamental system, and so we are done by repeating

the above argument k—tlmes.//

1.5. PROPOSITION. Let G, c L(Ei) (¢ = 1,2) denote equicontinuous
subsets such that G OG c G.. Then for every D-fundamental system
F' on E ® E there e:nsts another D-fundamental system ", such
that

sup{lIl 7 ® sl T€G,, SEGZ} < 1.
Proof. Let p e r‘o such that
() P=p;®p, and p 2 )((I"o)p1 ®. Py-

Then 5i(xi) = sup{pi (Tix) : Tie Gi} define continuous semi-norms
A A ~ I

on E; such that P; 2 Py and Pi°R ¢ p, for all ReGi (i =1,2).

Next let

g(z) = sup{p(TéIz) : TeG1}
— -~ -
(pq & p,)(2) := sup{(p1 ®€ pz) (T ®Iz) : T€G1}.

Because of (%) we obtain
~ > k r‘ /A\ a ~ _ -~
p 2 k(l’))p; @ p, and p = p;®p,.
On the other hand
°}

sup{ 1(¢,Tx)] : TeG oeU

’
1 <

sup{ [(y,x)] : weup1°}

B, (x)

and hence

=

P, &

_/~ A_A A> r1 A A
. P, = Py @ Py P=p;®p,, and p 2 k(M )p, & p,.

By repeating this argument for G2 and p2,'we obtain the desired
result.
//

2. Joint spectra of tensor products of operators. Our main result in

this section will be the following

2.1. THEOREM. Let E, and E, denote two locally convex spaces, let
a be a tensor product topology fulfilling (1. 3), let T GL(E’ ) (2 =
1,2), and let A denote the bicommutant of T ®I I, ®T in the al-

gebra Le(E ® E) Then

G’(T1®I2,11®T2;Acs) = B(T (L (E1)),) X BTy (L (Ey))y)

2.2. Remark. If E1 and T:I2 are Banach spaces, then 2.1 generalizes

slightly a result of Dash and Schechter [6] to quasi-uniform cross-
norms in the sense of Ichinose [17_]. In this setting it turns out,
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that 2.1 holds also true, if A denotes the (bigger) commutant of
T1§I I.8T. in L (E, éoc E,). Indeed this sharpened version of 2.1

PAR 2 .
can be proved for bounded operators on Fréchet spaces E, and Eye. For

1
this and related results concerning the "classical" bicommutant
spectra, the reader is referred to [28]), 1I.3.

In order to prove 2.1, we need the following
2.3. LEMMA. Let TieL(Ei) (2 = 1,2), let (A,v)€ TL'(TJ)X W(Té) (ef.

(0.6)), and let [ denote a D-fundamental system on El &a E
Then for € > 0 given, the set

2

Pe := {pel: 4 2@y €eE ®F, s.t. ep(x@y) > max{p((T,-\)z®Y),
p(z ®(T,-y)y)}}

is algo a D-fundamental system.

Proof. Let q(—‘.r‘ be given. If for every pel" such that p = p1@ P,
and p 2 q, we had ep,(x)p,(y) € p, ((T, - A)x)p,(y) for all x®Y,
then re A (T1) contradicting our assumptions. Therefore

ﬁg ;= {pel:13 T®Yye L, ®F, s.t. ep(z®@y) > p(T1 - Mz@y)}

is a D-fundamental system. But for every pe r‘e such that p = p1®p2

there exists X4 € E1 such that

ep(x,®y) > p((T; - M) x,®y) for all y€E, such that p,(y) # O.

By repeating the argument above for r'e replacing [ ana T2 - Y12'
we obtain the desired result.// '

Proof of 2.1.
1° By 1.4 (iii) the operators (T1 - N 812 and I1®(T2 -v)
belong to Acs' provided they are Allan-bounded only. Therefore

1 -1

G’(T1®I2,I1®T2;Acs) C 6'(T1® IZ;Ab) x 5'(110 Tz;Ab) .
By 1.2 (ii) this gives one half of the Theorem. In order to prove
the inclusion "D " let

20

Then there exist C1,C

(A,y) e T(T,) X W(T,). Suppose (A,Y)€ (T15 1,1 LT

eAcs such that

1
2
(2.1) 1,®I,=C,((T, = M)®I,) + C(I,®(T, = Y)).

It follows from the definition of Acs that there exist a D-funda-

mental system " and constants CqsCy such that

(2.2) peC, ¢& c,p and peC, ¢ C,p for all pel" .

1
Choose 0< ¢ < (4(c1 + cz))_1 and apply Lemma 2.3. Hence there
exists a D-fundamental system r‘ec [ such that for every pe F‘e

we find X®Yy obeying
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ep(X®F) > max{p(('r1 - MX®y),px ®(T, - N}

But if we evaluate equation (2.1) in X®y and then apply p, we ob-
tain by considering (2.2)

P(X®F) ¢ c,p((T; - NX®Y) + p(XS(T, - VI <
< ec,p(X®F) + ec,p(X®F) < 4_1p()'<0§)
and hence a contradiction, which gives
TC(T1)>< T((Tz) C 3(T1312,I1®T2;Ac5).

(o}

3° (,y)e YT, % YT,): Choosing

1 and

o e((T, - A)E1)°, x,€ E, such that ¢ (x,)

vE (T, - y)E2)°, x, ¢ E, such that y(x,) = 1,

we find that ¢¢§qi vanishes on both (T, - \)®1,(E, & E,) and
e ('I‘2 -v) (E12®“ Ez). Therefore (2.1) cannot be fulfil}ed by some
pair (C1,C2) € A° : evaluate (2.1) in x1®x2 and apply ¢®Vy; then the
left-hand side gives 1, whereas the right-hand side vanishes. So we
have

¥T,) * YT < S, 81,,1,8T,;A).
4° (\,y)e T((T1) X {(Tz) (aﬂnd symmetrically (X,y) & X(T1)x Tt’(Tz)):
Suppose (A,Y)€ ﬁ) (T19 I2,I1®T2;Acs) . Then (2.1) is fulfilled for
suitable C1,C2€G(E1 éa EZ;I" ),r'denoting some D-fundamental system.
Choose O<e< k(M (414 C1llr')_1. Since (T2 - Y)EZ is not dense in E,,
there exists a continuous semi-norm p, on E, such that WZ

is not Up -dense. If < # O is a continuous semi-norm on E1, we find
2

p € Fe such that Py 2p ée P, and a constant ¢ > O such that

1 )
> ch, where po = 9018 poZ' Therefore iTZ - Y$E2 is not poz—

P

o2

dense, too, and we find by considering the quotient space
—— _ o

Ez/(T2 \()E2 an X2€E2 such that poZ(XZ) = 1 and weUpoz such

that y(x,) = 271, By 2.3 we find X,®y,€E ®E, such that

epo(x1®y.!) > po((T1 - A)x1®y1)-
Since P, is a cross—-semi-norm this implies

epo(x1®x2) > po((T1 - )\)x1 ®x2).
Now choose ¢ €U © such that ¢(x1) = po1(x1). Then the extension
¢éw of ¢ @Y ont81the completion lies in U o by (1.4). So evaluate

(2.1) in x1® X, and apply 4>§1p. Then we obt8in taking into consi-
deration (¢ ®Y) (C2(>‘:1®(T2 - Y)xz) = 0:

Py (%0271 = Gx) V(x,) = (8W (c, (T, - Vx,®x,)) &
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& k(M p, (€, (T, - Nx,®x)))
-1
S_vk(f‘) I c1llr, P, ((T = M x, ®x,)
-1 -1
< =
4 po(x1®x2) 4 Pg1 (X1)
and hence a contradiction. By Remark O.1 (4) we are done.//

In doing the proof of 2.1 with a fixed D-fundamental system r
and taking into consideration 0.1 (4), we get the following variant

of 2.1

2.4. COROLLARY. Suppose the assumptionsg of 2.1 are fulfilled. Then

for every fixed D-fundamental system [MonE éa E we have

1 2°
G(r,81,,1,81 4065, & £,;)) =

= @(r; 8I,;4nG(E, & E,; r))x G(I, BT, ;ANG(E, @ EZ,-F‘))
= G(T,56(E; r}))xG(TZ;G(E’Z;ré)),

where r‘z ;= {p(-@xz) : per'}, r;

z, @z, € E1®E2 fized.

= {p(x,®-) : pel’} with 0 #

For a given D-fundamental system [N 1let r'1, F‘z denote the fun-
damental systems of continuous semi-norms on E1, E, as defined in

2.4. Then

2

G(T1®I2,I1® T,ih, ) 2 Q 6'(T1®IZ,I1® T,iANG(E, &, Ez;r‘ )
=Q6(T1;G(E1;r‘1)) X QG(TZ;G(EZ; 2))
@(T,iG(E})) X &(T,iG(E,))

A ~
G (T, ® 12,I1®T2;Acs) .

]

The first inclusion is true because of the definition of Ac s the
first equality is true by 2.4, the second by (0.8), and the last
one is 2.1. The intersection is taken over all D-fundamental systems
[7. Therefore we abtained the following approximation theorem

£for joint spectra:
2.5. COROLLARY. Let the assumptions of 2.1 be fulfilled. Then

~ ”~
d(T1_®12,11®T2;A

o) =G, 81,1, 87 54068, 8 5y,

where the intersection i8 taken over all D-fundamental systems.

2.6. Remark. We do not know, whether 2.1 holds with Acs replaced
by Ab. For all examples we know this is true. Moreover, taking the
notations of 2.1, we pose the following problem concerning "classi-
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cal" joint spectra:

Let E'1 and EZ denote two Fréchet spaces. Prove or disprove

6(T1812,11®T2;A) = e’(Tl,-L(El))x G’(TZ;L(E'Z)).

3. Spectral mapping theorems. In section 2 we succeeded in descri-
bing the Cartesian product 6(T1; (L (ED) )X @(T,: (L (Ey)),) as a
bicommutant joint spectrum. In order to solve the announced problem,

we have to establish polynomial spectral mapping theorems. For that

purpose we start with a refinement of 2.5.

3.1. APPROXIMATION THEOREM. Let El and EZ denote two locally con-—
vex spaces, and let o denote a tensor product topology fulfilling
(1.3). Moreover let Tie'(Ls(Ei))b (¢ = 1,2), and let A be the bi-
commutant of TJQIZ,I1®~T2 in I;s(El G;z E,). Given C€A_; and an open
neighborhood U of G’(T1012,I1® TZ;Acs)’ there exists a D-fundamen-—

tal system I on El éa E2 such that

~ ~ A
Ud B(r,®I,,I,®T,ANG(E, @ Eg;l" ))
and
~ ~ ~
TJQIZ, I1®T2, CeAAG(El ®a E'2_;r')).
In order to prove this, we need the following slight modification
of Proposition 1.5.

3.2. PROPOSITION. Let G, ¢ L(Ei) (i = 1,2) denote equicontinuous

subsets euch that G,0G,. ¢ G.e Let [ denote any D-fundamental system
on E'1 éu E’2, and let CeG(E'l éa E'2;r'). If C commutes with all ele—
mfnte of GJ®I2 and IIGGZ, then there exists a D-fundamental system
M such that ’

~ -
. - £
CEG(E, G& Ez,r') and sup{ll T@Sllr', T€G,, S€ GZ} < 1.

The D-fundamental system [T constructed in the proof of 1.5 has the
desired properties.

Proof of 3.1. Let Ui) G(Ti;(LS(Ei))b) (f = 1,2) denote open
1)< U2 C U. By [19], Lemma 12 there exist
fundamental system r‘i of continuous semi-norms on Ei such that
T, € G(Ei;l"i) and e(Ti;c(Ei;r‘i)) cuy, 4=1,2).
Therefore the sets {(Ti - A) )\ec\Ui} are contained in a mul-

- (1) , I , cc
tiple of the unit-balls B, of (G(Ei,r‘i),l ll,..)n{-ri,L(Ei)} .

neighborhoods such that U

Let CE€G(E, & E,i ) N A. since {T,;L(E)}°°®1I, and

I‘IQ{TZ;L(Ez)}cc are contained in the commutative algebra A, C and
B, (1) fulfill the assumptions of 3.2. Hence there exists a D-funda-
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mental system ﬁ such that C e G(E.I éot Ez;l_".) and

sup{ I T&sl : TeB1(1), seB1(2)}£ 1.

But this especially means, that for all A€ C\ U1 and ye 0:\U2 we
have
T, - )\)-161 l= ¢ Wr, - A)—1" and
1 2'p T 1 f"1
= -1 -1
1 T, - = ¢ (T, -
N A P [ . "'“2

But from this it follows, that every ()\,Y)e c? \ (U, x U, ) is already
contained in (o(T1§IZ,I1§T iANnG(E ®a E, f")), and hence
G(T1812,I10T2;A0G(E1 X 2:"'))c. U, XU, ¢ U,

Theorem 3.1 turns out to be the main tool in order to prove the
second part of the following

3.3. SPECTRAL MAPPING THEOREM. Let Tie L(Ei) (¢ = 1,2), let P be a
polynomial in two variables, and let A denote the bicommutant of
~ -~ . -~
T1®I2, I1®T2 in the algebra Ls(El ®u E'2).
(¢) If &(T.; (Ls(Ei))b) A€ (¢ =1,2), then

P(G'(Tl_;(Ls(El))b),G(TZ;(LS(E'Z))b))C G(P(Tl ®I,,I,87T,);4A

1 2 cb)

(2Z2) If moreover Tl and TZ are Allan-bounded, then

P(G(T; (Ls(El))b),G'(TZ; (L(Eg))y) = G’(P(TIQIZ,IJQTZ),ACS)
)

6'(P(T1®I2,11®T2),Acb

Proof. By 2.1 and 2.5 we have

G'(T1; (LS (E1))b)’< G’(Tz; (LS(EZ))b)

- /r) G(r,81,,1,81,;anG(E, 8, E,:M))

where it is sufficient to take the intersection over all those
D-fundamental system | such that neither & (T ®I2,A/\G(E ®0L E, )
nor &(I QTZ,A"G(E ®a E r' )) co¥er the whole complex plane.
Since (A/\G(E ®u E AR B Ilr-.) is a Banach algebra by (0.3), we
apply Lemma 0.2 which gives

P(3(T,®I,,I,@T,;ANG(E, & E,ilN))) e
C G(P(T,®I,,I,@T,);ANG(E, § Ez;f‘))
and hence
P(B(T; (L (E;)) ), B(T,5 (L (Ey))y)) =
P(Q G’(T1eIz,I1®T2;AnG(E ®, ;l“)))
& E,iM)))

]

"w

p P(G(T, 8I,,1,8T,iANG(E,
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¢ () 8, 81,,1,871)) a0, &, BM)) =

=G (r,81,,1,8T,);a,).
This proves (i).
In order to prove (ii), let y¢P(d(T (L (E )) ) d(TZ,(L (E ))b))
and let V denote an open neighborhood of thls set such that y¢ V.
Then there exists an open neighborhood U‘)_c—}(T,'éI’Z,I‘é T2;Acs)
such that P(U)C V. By 3.1 there exists a D-fundamental system [
such that T, ®I I @T e G(E @a E, ;M) and U contains

G(T ®I ,I ®T AI\G(E1 8 E, r‘)), and hence

y¢p(6’('r 812,1 ®T iANGI(E, ® E, ;M))). Since T, &1 20 Iy ®T are
elements of the Banach algebra (An G(E ®a Ez,r‘) ll llF) , the spec-—
tral mapping theorem for joint spectra in Banach algebras gives
A A -~
P(G(T,®I,,I,8T,;ANG(E, @ E,;[M))) =
(%) = A & , & ,
= S(P(T,® I2,I1®T2),AAG(E1 ], Ez,r')).
But this implies Y4 d(P(T1®IZ,I1® Tz);Acb). It remains to be shown
that

-1

c:= (y1,81, - P(r,81,,1,8T,)) '€a

cs
Thus let D € ({C;L_(E, ® E)) }°9) e
D-fundamental system r‘ such that D,T ®Iz,I @T €G(E, ® Ez,r')

and U > G(T QIz,I ®T2,AI\G(E ® E, r')) A repetion of the spec-
tral mapping theorem (%) gives Y¢ G(P(T ®I I @T ) Af\G(E & E. ;M)

But this means, that CEA/\G(E Q E l"), and hence cCenA cs®

In applying 3.1 we find a

o 2°

Connected with part (i) this proves (ii) <))

3.4. Remarks.
(1) We do not know whether 3.1 (ii) can be sharpened by substitu-
ting A, for A ,. Such a result has been announced by Kawamura [18]

b cb
in the case where E, and E, are Fréchet spaces, one of which has to

be nuclear, but it turns oit that there is a gap in Kawamura's
proof, because the central Proposition 4.1 is false.

(2) The spectral mapping theorem can be generalized from polynomials
to functions, which are analytic in a neighborhood of the joint
spectrum, by means of an analytic functional calculus (see [28],
II.4 for details).

(3 The inclusion in 3.3 (i) is strict in general as we shall il-
lustrate by several counterexamples below. In order to get the re-
verse inclusion for non-Allan-bounded operators, too, one has to
pose additional conditions upon the operators T1, T2 and/or the po-
lynomial P. In [28], III. we have given a functional calculus ori-
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ginally due to Sebastifio e Silva [26], which guarantees two-sided
spectral mapping theorems under conditions that are fulfilled in ap-

plications to abstract Cauchy problems. We shall give an example
below.

3.5. COUNTEREXAMPLES.
For ne # let

3

(—oo’n)

{uec”(R) : supp u ¢ (-=,n)}

equipped with the topology induced from c” (R) . Then the space

nez
being equipped with the canonical topology of the inductive limit

(=,n)

is a strict (LF)-space, and a nuclear space. Hence the strong dual

b o= (‘:b-)ls

+

is especially a Montel space, and hence Ls(°b+'-) is sequentially com-
plete. As sets we have

cb ' {deqD': supp ¢ is bounded from the left}

and hence eb admits a convolution product. For every A €€ the ope-
rator g—x - )\ has an inverse in L(é? ), which can be written as con-
volution operator (e TH(.))* . Consequently the spectrum
G’(dx,L(ob )) is empty, but since the function A ~?> (e “H(.))*® is
analytic with respect to the L (ab )-topology, G'(dx, (L (SD )) ) is
empty, too, and hence G’(( ; (Ls(é?+)) = {o}.

A necessary (but by no means sufficient) condition for a distri-
bution U€ éD (IR ) to be contained 1né3 @ é)' is, that for every
¢e .&J , u(¢) belongs to é) (look at u as an element from L(é)
ob '), Schwartz [24], p. 51 )

Next let vec (IR \ {0}) denote a function, which is real-analy-
tic outside the origin, and let ¢ € Co RN\ {0}). Then the function
(%) Yy~ _[v(x,y) ¢ (x)dx

is real-analytic, and hence is contained in b; if and only if it

vanishes identically. From these facts we infer, that the Cauchy-
Riemann operator

d 2 4d v A ', A
a—@l-*—il@a—;.ob_'_ @ﬂo‘bl—’ob,r@“b;

has no fundamental solution in bl@wo‘b ."_, and consequently is not
surjective. But this is clear, since every fundamental solution of
the Cauchy-Riemann operator is analytic outside the origin, and
hence by (¥) cannot be contained in ub.'* 8 &o _‘F.
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After these preliminary remarks we shall consider three cases, which
show, that for non-Allan-bounded operators the spectral mapping the-

orem 3.3 (i) can fail in a dramatic manner.

d d
= = ' 1= = = i——
(1) Let E1 E2 ob+, let T1 = IR’ T2 : ldy

= QS (i =1,2). On the other hand, we shall show, that

. Then G(Ti; (Ls (Ei))b)

g1, 81, + 1,8T,;L(E, & E)) = ¢.
For that purpose note that T ®I + 116 T, - >\I1612 (A€ €) has no

12
for otherwise exp(—%(x - iy))u

fundamental solution u in E1 ®1r EZ'

would be a fundamental solution of the Cauchy-Riemann operator.

(2) Let E1, Ez, and T1 as above, and let T2 = (%—)-1. Then by si-
milar arguments as above, one can prove (cf.[28), II.4.18)

3 (T éTz;(L &, 8 E,N),) =
(3) Let B, :=TI'C, T,CL(E,) the left-ghift, E, =>!, T, -= gy
Then T ®I opérates as left—shlft onT—E = E1 ®7r 2 and I GT

operates coordinate-wise. Thus for every A€ € the sequence
-1 . . -~
(()\T2 )J)neN is an eigenvector of T1®T2, and hence

C'>’(T1®T2;L(E1 ®, E,)) =C.

4. A distributional Cauchy problem. Since it is beyond the scope

of this paper to present the functional calculus as devellopped in
[28], we content ourselves with giving a typical example illustra-
ting of what kind conditions have to be assuring a tensor product
of operators to be invertible. For that purpose let T & L(E) , let
P denote a polynomial in two variables, and consider the distri-

butional Cauchy problem for the operator
- A
. L) ]
( @1 I®T) .ob+¢3%1-: —_ °b+®rrE
If P(z1,22) =z, - z, this is a tensor product notation of a
Hille-Yosida-type problem.

In order to give sufficient conditions for P( @I I@T) to be in-

vertible, we need the following (cf. [28], p. 60)
4.1. LEMMA. For all k¢ # the function
— (4 -1 _ A .
A= (Gr - N7 = @ TH( )R EL (D))

is bounded on = {A€cC : Re()) < k},

4.2. THEOREM. Let E be a locally convex gpace, let TE€L(E), and
let celR. Suppose that the function A u-->P()\,T)-1 <8 bounded on
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€\F, = {X€¢ : Re(\) 2 c}. Then P( @I IaT)eL(éo 8, E) is in-
vertible and

p81,181)77 = (& 2 P85 f{x rg) A -

dt ’ dt dt
c+iR

where )\OG F, 18 arbitrarily chosen and the integral is an improper

NIB e, lan,

Riemann integral.

“le L, (é.') is

bounded on F . Therefore the integral ex1sts as an 1mproper Rlemann—
integral. Multiplying this integral by P( QI IQ T) we obtain

We sketch a proof. By 4.1 the function A ~~> (— -A)

®I,I®T) f{(P( ®I 1®T) - P()\I@I,I@T)}...d)\ +

p (&
at c+iR

+ ‘(P()\IQI,IQT)...dA,

where ... denotes the integrand of the integral in the statement of
the theorem. In the first integrand, { } contains (%E- - A)@I

as a factor. Therefore the first integral vanishes by a residuum
calculation. Since P()\IsI IéT)OIéP(A,T)-1 = I@I, the second
integral gives 2%i (-—- - A ) éI, which proves the theorem.

-1

By taking an m-th power of ()\-Ao) and (— - Ao) if necessary,

the assumptions of the theorem can be weakened, so that P (. ,T)_1
is polynomially increasing in some right half-plane. It is well
known, that in such a case P(.,T)_1 is Laplace-transform of an
operator-valued distribution u. In the case of a Banach space E,
u can be shown to be a fundamental solution for the operator
P(—— QI IQT) , and one gets the inverse operator by means of con-
volution of vector-valued distributions. This method of proof for
4.2 is the so-called Laplace-transform-method (cf. Beals [2]). It
seems to us, that our proof is more elementary even for Banach
spaces. If E is a proper locally convex space, the Laplace-trans-
form does not work in general, because a convolution cannot be
defined on the whole of "b-;-én E (cf. Fattorini [7]).
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