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TENSOR PRODUCTS OF LINEAR OPERATORS IN LOCALLY CONVEX SPACES 

Volker Wrobel 

Given continuous linear operators T.:E. »E, on locally convex spa-

ces E. (i = 1,2) and a polynomial P in two variables, spectral pro-

perties of polynomial operators 

PtT^Ô I ^I-jÔT^) -.E^êE^ » E^ÄE^ 

are studied in dependence of the spectral properties of their com-

ponents T and T . Here E Ś E denotes the completion of the tensor 

product E*&Ж2 with respect to a suitable ténsor product topology 

lying between the є- and the тг-topology, and I. denotes the identity 

map on E.. 

One of the main problems is to establish spectral mapping theo-

rems of the form 

,)) c ć(p(т
1
èi2,i1<âт2

);...) ( i ) P ( Ő ( T 1 ? ...),<SÍ(T2; 

anđ 

( i i ) P t C ř t T . ; . . . ) , < ( T 2 ; 

where ď ( S ; . . . ) : = { X Є C : 

• )) 3 <?(P(T1£l2,I1ST2) ;...) 

X - S has no inverse in ...} for S£L(F) 

denote suitable spectra depending on subsets ... from the algebra 

L(F). 

In [3] A. Brown and C Pearcy established (i) and (ii) for 

P(z1,z2) =• 2^2 in the Hilbert space setting, and M. Schechter f23] 

proved both for bounded linear operators on Banach spaces and gene­

ral polynomials P. The case of unbounded, closed operators on Ba­

nach spaces, which arises from problems in evqlution equations (cf. 

f2]), differential equations with operator coefficients (cf. [4]), 

and N-body problems in quantum mechanics, has been investigated by 

T. Ichinose [13] - [17] and M. Reed and B. Simon [21] . It turns 

out that (i) is always true, whereas (ii) in general fails even if 

the left hand side of (ii) is replaced by its closure in C. 

Since many problems for unbounded, closed operators on Banach . 

spaces admit a reformulation in a locally convex setting with con­

tinuous linear operators, this may draw some attention to the situ-
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ation studied in this paper, too. 

This aŕticle is based on a part of the author's Habilitàtions-

schrift [28] . 

0. Preliminaries. We start with some basic algebraic notions. Let 

A denote an algebra with unit element-e_over the complex numbers <Г, 

. and let M be a subset of A. For a.ЄA (i = 1,2,...,n) denote by 

ю(a<\ ra2' • • • '
a ;M

^
 t h e s e t o f a 1 1

 those (X..,X
2
,...,X ) Є <Г

П
 such that 

there exist b.ЄM (i = 1,2,...,n) with 

e = b
l
(X

1
e - a^) +*Ь

2
(X

2
e - a

2
) + ... + b ^ e - a

R
) . 

The set 

(0.1) (ÿ(ara2,...,an;M) := <E
П
\/ЭÍa.. ,a2,. . . ,an?M) 

is called joѓnt speatrum of (a^,a^,...,a ) with respect to M. 

If M = A this notion is well known from Banach algebra theory, but 

it turns out that for purposes of locally convex algebra theory one 

has to choose smaller sets M (cf. [28]). Throughout this paper we 

will restrict our attention to commutative subalgebras of the local-

ly convex algebra L (E) of all continuous linear operators on a lo-

cally convex space E equipped with the topology of pointwise conver-

gence. 

If P denotes a fundamental system of continuous semi-norms E, 

let 

(0.2) G(E;Г ) := {T ЄL(E) :3 c >0 s.tc poT < cp for all pє Г }• 

If E is Mackey-complete, then G(E,P) is a Banach algebra^ when 

equipped with the norm 

(0.3) || TІ| := sup{sup{p(Tx) : xЄE, p(x) = 1} : p є Г } (cf. [19] ) . 

Lateron, we shall deal with a decomposition of öЧT;G(E;P )) for 

TЄL(E). For that purpose let 

-Л. (T;Г) := {X€(Г :3 c>0 s.t. po(T - X) i cp for all pєГ} 

and 

(0.4) TГ(T;Г) := (C \. .X(T; ) 

(0.5) ^(T;Г) := {^eЛ(T;Г) : (T - Ç) EE^ E}. 

Moreover let 

.JL(T) :=U1(T;Г) 
P 

where the union runs over all fundamental systems of continüous 

semi-norms on E, and let 

(0.6) 1Ґ(T) := C \jL(T) 
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(0.7) y(T) := U<sJ.(T) : (T -rjE* ?- E} 

0.1. Remarks. 

(1) The sets TT(T;r ) , Tt(T) and y(T;P), tf(T) are very similar to 

Halmos' notions of approximate point spectrum and compression spec­

trum (cf. [13], [18J).. 

(2) For every T£L(E) we have (0 (T;G (E; P ) ) C -A (T; T ) and hence 

/0(T;G(E))C -A-(T), where 

(0.8) G(E) := U G(E;P ) , 
r 

the union taken over all fundamental systems of continuous semi-

norms on E, 

(3) Let TeL(E), and let T denote the (unique) continuous extension 

of T onto the completion E of E. Then 

TT(T;D =Tt(T;P), Tf(f) = Tt (T) 

tf(T;D = y ( T ; D , tf(T) = ^(T) (cf. [28]). 

(4) If E is a complete locally convex space, and T£L(E), then 

£(T;G(E?r)) =TT(T;r ) VJ y(T;P ) 

tf(T;G(E)) =Tt(T) O ^(T) (cf. [28]). 

If A is a subset of L(E) , let 

(0.9) A._ := A n G(E) . 
D 

The elements of AL will be called Allan-bounded operators in order 

to distinguish them from bounded operators (cf. [1] , [19], [29]). 

The following lemma can be proved by means of Gelfand theory 

(see [28] for a more general result). 

0.2. LEMMA. Let E denote a Mackey-complete locally convex space, 

and let A C L(E) be a commutative subalgebra containing J„. Let 
E 

TljT2^ Aj ^e^ p be a polynomial in two variables, and suppose that 
neither €(T2;G(E;r ) r\ A) nor &(T2;G(E;r ) s\ A) .oovers the whole 
plane €. Then 

P«Z(TVT2;A /> G(E;r ))) C <Z(P(TVT2);A s\ G(E;r )). 

In general this inclusion is strict, but there is equality, if T 
T£e G(E;T ). V 

1. Tensor products and admissible topologies. Let E^ and E2 be lo­

cally convex spaces, and let E ^ E ^ denote their algebraic tensor 

product. A semi-norm p on E. .®E2 is called cross-semi-norm, provided 

there exist continuous semi-norms p. on E. (i = 1,2) such that 

(1.1) p(x1®x2) = p1 (x . 1 )p 2 (x 2 ) for every x ^ x2€ E ® E 2 . 
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If (1.1) holds true, we shall abbreviate this by writing p = p . , ® p 2 . 

By E. <g> E* we denote E^ØE^ equipped with a locally convex topology 

a. If Г is a fundamental system of continuous semi-norms on E. ® E
0 

1 a 2 

we call Г a D-fundamental system, provided P consists of cross-semi-

norms only, and if there exists a constant k(Г) > 0 such that 
(1.2) p = P-JФP2 implies p > MПp,. ®є p2 for a l l p e Г , 

where p^ 0 p
2
 denotes a canonical semi-norm of the є-tensor- product 

(cf. [22j ). More specially we shall consider only those locally con-

vex topologies a on E..®E^fulfilling the following conditions: 

(i) There exists a D-fundamental system on E^ ® E 0 . 

(1.3) (ii) If A . C L(E ,) (i = Ij2) are equicontinuous subsetSj then 

AЉAp C L(E ® E ) is equicontinuous. 

1.1. Remarks. 

(1) The letter "D" in D-fundamental system is to suggest "dualizable" 

since in the normed case (1.2) with k(Г) = 1 implies, that the dual 

norm is a cross-norm, too. 

(2) If P is a D-fundamentalsystem, and if p.,®p
2
 = p€.P/ then 

(1.4) U^ °®U\ ° C k(Г)~1
U ° 

Pl P2
 P 

(3) For a = є, a = ÏÏ or more general for locally convex tensornorm-

topologies as studied by Harksen [10] , condition (1.2) is automati-

cally fulfilled with constant k(Г) = 1-

(4) For every cross-semi-norm p = p.^p. one has p < p^ ® ~p
2
« 

(5) Condition (1.3) (ii) especially implies E 'ФE^* C (E.. ф E ) • . 
By T^âт^ we denote the extension of T €>T onto the completion 

E1 ̂ a E2 °f E1 ®a V 
In order to avoid technical difficulties, we make the following 

general assumption : 
.«\ 

E^jE and £"- <8 E are barrelled locally convex spaoes3 and 
EJJE are complete. 

As we have announced in the introduction, we have to establish re-

lations between spectra of operators on tensor products and spectra 

of their components. In order to do so, we start with a simple 

1.2. LEMMA. Let Г.ÊLÍřJ. and let a äertote a tensor produot topo-

logy fulfilling (1.3) on E^E^. Then we have 

(i) ^(TгÒI2;L(Eг ê a E2)) = Ś(Tг;L(Eг)) 

(ii) tíd^I^.ÍL^E^ § a E2))b) = lЯT^ÍLjEjìJ. 
and oonsequently the sets CІ(T Ô I ;L (E7 & E )) and 

•í o l a 2 



TENSOR PRODUCTS OF LINEAR OPERATORS 303 

Єи T- &!„; (L (£ ф ^O^Ђ^ a v e índependent of the speoial topology a. 

One of the main difficulties when dealing with operators on 

tensor products of locally convex spaces originates from the fact, 

that not every Allan-bounded operator CЄL (E.. ® E ) is already 

contained in some G(E ® E ; Г ) , where Г is a D-fundamental system 

(cf. £28], p. 35 for an example). Therefore we consider the follow-

ing subclasses of operators: 

1.3. DEFINITION. For a subset A C L (E., Ž E j let 
s 1 a 2 

Acb : =
У (AЛG(

E l
®

a
 E

2
;Г)), 

where the union is taken over all D-fundamental system Г on E. ® E
2 

The elements of A , are called Cross-semi-norm bounded operators. 

Moreover, .an operator CGLÍE. ® E ) is said to be oross-semi-norm 

stable, provided the following condition is fulfilled: 

For every R Ç.-({C;L(E ф E )}cc) ({...}CC denoting the bioommutant 
ì a ci OD 

of {...} in L(E ® E )) there exists a D-fundamental system Г1 suoh 

that C,RЄG(E2 êa E ;Г ) . 

Let 
A := {CвA : C is cross-semi-norm stable}. 
cs 

For every subset A C L (Ê  ® E
0
) we have A c A , C A, . If A is a 

s I a z CS CD D 

commutative algebra, then so is A, , but we do not know whether A 

b cs 

or A , are. For our purposes the following result will be sufficient 

1.4. LEMMA. Let A C L (E ® E ) denote a oommutative subalgebra. 
s ì a ci 

Then the following hold true: 
(i) A + A c A , os os ob 

(U) Acв° Acв C AcЪ 

(UІ) {1finite T i è s i •• ^ V V V ^ V V V W ^ ^ s 
Proof. Since (i) and (ii) follow immediately from the definitions, 

only (iii) needs a proof. So let T.ês.ЄA, T. and S. Allan-bounded 

(i = 1,2,...,k), let Г denote any D-fundamental system, let p t Г 

with p = p . . ф p 2 , and let R^ A ̂  G^E^ S^ E
2
;Г ) . Let 

p(z) := supípíT^ 1 Ă s . . 2z) : n^ ,n2 > 0}. 

Then p is a continuous cross-semi-norm, for we have 

p(x..Фx
2
) = supíp^ (T̂  1xl)p2(Sl x2) : n . . , n 2 > . 0} 

= p ^ x ^ p ^ ) . 

On the other hand 

p(Rz) = s u p í p í R t T ^ ê s , - 1 1 2 ) ^ ) : n 1 # n 2 > 0}élІRІl p ( z ) , 
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and therefore R € G(E.. & E
9
; П ) . But Proposition 1.5 below tells us 

that П is a JD-fundamental system, and so we are done by repeating 

the above argument k-times. ,, 

1.5. PROPOSITION. Let G . C L(E .) (i = 1>2) denote eąuioontinuous 
ъ ъ 

subsets suoh that G.oG. C G .. Then for every D-fundamental system 

ІQ on E ® E there exists another D-fundamental system Г* 3 suoh 

that 

sup{\\ T % S\\p : TЄG^ S ЄG } < 1. 
Proof. Let p б Г such that 

(řr) p = P-®P2 and p > MГ^p^ Š є P2-

Then p. (x.) := supíp. (T.x) : T. r£ G. } define continuous semi-norms 
ť
Г 1

 ť ťl 1 ^ 1 1 
on E. such that p. > p. and p.oR < p, for all RéG, (i = 1,2). 

ì *i *i *i *i ì ' 
Next let 

p(z) := sup{p(T<Šlz) : TéG^} 

(p^ Ôє p 2) (z) := supííp^ ê £ p2) (T S l z ) : T Є G ^ } . 

Because of (*) we obtain 

P *
 k
<Г

0
>

p
1 % P

2

 a n d
 P

 =
 P^P^-

On the other hand 

p. (x) = sup{ |(ф,Tx)| : TЄG., фєu^ °} 
i i p. j 

= sup{ I(ф,x)i : ф €U °} 

= P1<8)P2, and p > M f ^ P - ®£ P2-

By repeating this argument for G2 and p2, we obtain the desired 

result. . . 

2. Joint spectra of tensor products of operators. Our main result in 

this section will be the following 

2.1. THEOREM. Let E and E denote two locally convex spaces, let 

a be a tensor product topology fulfilling (1.3) > let T . €L (E .) (i = 

1,2), and let A denote the bicommutant of T ̂ ® I , J ® T in the al­

gebra L (E ® E ) . Then 

dd^I^I^T^A^) = ^(T^U^E^)^ Xd(T2;(Le(E2))b) 

2-2« Remark. If E1 and E2 are Banach spaces, then 2.1 generalizes 

slightly a result of Dash and Schechter [6] to quasi-uniform cross-

norms in the sense of Ichinose Cl7j. In this setting it turns out, 
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that 2.1 holds also true, if A denotes the (bigger) commutant of 

T.Sl^, I . j S т in L (E.. S E^) . Indeed this sharpened version of 2.1 

can be proved for bounded operators on Frêchet spaces E. and E^* For 

this and related results concerning the "classical" bicommutant 

spectra, the reader is referred to [28], II.3. 

In order to prove 2.1, we need the following 

2 . 3 . LEMMA. Let T.ЄL(E.) (г = lл2)л let (\лy)Є TC(TJ* Ҡ(Tj (of. 
г г 1 6 

(0.6))л and let Г* denote a D-fundamental system on E § E . 

Then for є > 0 gѓvenл the set 

Г £ : - í p e Г . - З x®y Є E^® E2 s.t. zp(x®y) > max{p ( (T 2~\)x ®y) , 

p(x ®(T2-y)y) } } 

is also a D-fundamental system. 

Proof. Let q є Г be given. If for every p^Г such that p = p . , ® P 9 

and p > q, we had єp^ (*)P
2
 (У) < P<| ( ^^ ~ * )x

)p2
 ( y ) f o Г a 1 1 x

®
y
' 

then X€.-Л(T ) contradicting our assumptions. Therefore 

Г^ :- {peГ*:^ xQyЄ E2®E£ s . t . ep(x®y) > p (T - \)xQy)} 

is a D-fundamental system. But for every peP such that p = p..Фp
2 

there exists x.. € E. such that 

fptx^y) > p((T.. - A ) x . 1 ® y ) for all y€E 2 sucb that P2 (y) Ѓ °-

By repeating the argument above for P replacing i and T
n
 - YІ

9
' 

we obtain the desired result. .. 

Proof of 2.1. 

1° By 1.4 (iii) the operators (T.. - X)~ 1Śl 2 and Î  (T^ - ү)~ 

belong to A , provided they are Allan-bounded only. Therefore 

<ѓ(T^èl2,I^&T2;hcs) C Ö ( T . 1 ê l 2 ; A b ) X QЩ^ S T^; A
fa
) . 

By 1.2 (ii) this gives one half of the Theorem. In order to prove 

the inclusion "Э " let 

2° (X,ү)Є TťíT.j) X Tť(T2). Suppose (X ,ү) Є (O (T..S I^ ,1.- ê T2?AcS) . 

Then there exist C . , ,C 0 £A such that 1 2 cs 

(2.1) I-jÔ- = C
1((

T
1 " ^ V + C2 ( I1^ ( T2 " Y ) )" 

It follows from the definition of A that there exist a D-funda-

mental system Г and constants c^c^ such that 

(2.2) p^C^ £ c.p and P°C2 £ c p for all pfe Г . 

Choose 0< є < (4(c + c ))"" and apply Lemma 2.3. Hence there 

exists a D-fundamental system Г *- i such that for every pe i
 є 

we find x®y obeying 
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єp(x®ӯ) >max{p((T - X) x фӯ) ,p(x ф(T
2
 - ү)ӯ)}. 

But if we evaluate equation (2.D in xфӯ and then apply p, we ob-

tain by considering (2.2) 

p(xв> ) 1 c..p((T.. - X)xвy) + p(xф(T
2
 - ү)ÿ)< 

< є c . 1 p ( x ^ ў ) + єc
2
p(x®ÿ) < 4" p(x®ÿ) 

and hence a contradiction, which gives 

TlҶT..)* TГ(T
2
) C Ö(T1ál2,I1§T2;Acs). 

3° (X,ү)6 tf(Tл) X y(T
2
) : Choosing 

ф €((T . . - X)E . . )° , x . . e E 1 such that ф(x..) = 1 and 

ф€((T 2 - ү)E2
)°, x2€.E2 such that ф(x2

) = 1, 

we find that фŽф vanishes on both (T л - XJÔl^tE,. ® a E^) and 

I . . S ( T _ - ү) (E. ê . E 0 ) . Therefore (2.1) cannot be fulfilled by some 
1 -- 2 -* 

pair (C..CJ6A : evaluate (2.1) in x.Øx. and apply ффф; then the 

left-hand side gives 1, whereas the right-hand side vanishes. So we 

have 

tfT..) X jf(T
2
) C (=?(T1êl2,I1êт2

;A). 

4° (X,Y)Є K(TЛ) X y(T
2
) (and symmetrically (X,ү)Є tf (T..) X TC (т^) ) : 

Suppose ̂ (X^ү)^ /O (T Ő I fI Sт 2
;A

c s
) . Then (2.1) is fulfilled for 

suitable CwC.бGfE ф
 E

9 ' ^ ) fJ^denoting some D-fundamental system. 

Choose O < є < k(Г) (4 li C..Ц )~
1
 . Since (T^ - ү)E

2
 is not dense in E^, 

there exists a continuous semi-norm p
2
 on E

2
 such that (T^ - ү)E  

is not U -dense. If p . 4 0 is a continuous semi-norm on E., we find 
p

2

 ť1 r ^ 1 

p e Г such that p > p . ® p
n
 and a constant c > O such that 

°
 є
 ° ^

 є 2
 -

p
o2 *

 c p
2 '

 W h Є Г Є P
o
 = p

o1®
P
o2-

 T h e r e f o r e
 <

T

2
 " ^

) E
2
 І S П O t P

o2
_ 

dense, too, and we find by considering the quotient space 

E
2
/(T

2
 - ү)E

2
 an

 X

2

Є E
2

 S U C h t Һ a t P
o2

( x
2^

 = 1 a n d
 ^

Є U
p °

 s u c h 

-i o2 

that ф(x ) = 2" . By 2.3 we find x.öy.^E.вE such that 

єPo^l^Уt' ^
 P
o

( ( T
1 "

 x
>

x
i®Yi>-

Since p is a cross-semi-norm this implies 
^o

 r 

є p Q ( x . 1 ® x 2 ) > PQ((T.. - \)xл®x2). 

Now choose ФЄU such that ф(x..) = p Л x J . Then the extension 
**ч P<-л 1 ^ /-л 

ф®ф of ф Фф onto the completion lies in U by (1.4). So evaluate 

(2.1) in x . .®x and apply ф&ф. Then we obtãin taking into consi-

deration (фĂф) (C^íx.. ® (T^ - У)xJ = O: 

P
0І
(> )

2
~

1
 = Ф(x.,)Ф(x 2) = (фèЦ(cл((тл - X )

X l
® x

2
) ) < 
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4 k(Г)"
1
p

o
(C

1
((T

1
 - X)x^x2)) 

<. k(Г)
- 1
 Ц C.JІI p^KT^ - x)

X l
«sx

2
) 

< A-\ix^x2) = 4- í̂x.j) 

and hence a contradiction- By Remark 0.1 (4) we are done.,, 

In doing the proof of 2.1 with a fixed D-fundamental system П 

and taking into consideration 0.1 (4), we get the following variant 

of 2.1 

2.4. C0R0LLARY. Suppose the assumptions of 2.1 are fulfilled. Then 

for every fixed D-fundamental system Г on E ® E 3 we have 

díт^êi^i^êт^AnGíE^ êa V
Г ; ; = 

= ÜtTţŠl^AnGtE^ ê^ E2; Г ))X <ѓ(I ̂ ê T £; A n G (E.. ê^ E ̂ ; Г ) ) 

= Ö(T 2;G (E 2; Г2) ) * Ś(T 2;G (E 2; Г2) ) л 

where Г^ := {p(.Gx ) : peГ}, Г2 := {p(x ф.) : p e Г } with 0 Џ 
X1®X2^E1®E2 $ixed% 

For a given D-fundamental system I le t Г , I 2 denote the fun-

damental systems of continuous semi-norms on E,. , E« as defined in 

2.4. Then 

бftT^Ôl^.I^Sт^^A^^) ? П <Š(T^l2,l^êт2-ţAПG(E^ Š^E^Г ) 

= ß < (T1;G(E jГ^)) X Л ö ( T 2 ; G ( E 2 ; ^) ) 
л "L 

= < ( T 1 ; G ( E 1 ) ) X cf(T 2 ;G(E 2 )) 

= çtiтći2,i^êт2,ьcs). 

The first inclusion is true because of the definition of A , the 

c s 

first equality is true by 2.4, the second by (0.8), and the last 

one is 2.1. The intersection is taken over all D-fundamental systems 

l . Therefore we obtained the following approximation theorem 

-for joint spectra: 

2.5. COROLLARY. Let the assumptions of 2.1 Ъe fulfilled. Then 

d(T-»I2tI2êтgiAoв) ^П&T^I^I^êт^AлGfE^ê^ E2;Г), 

where the interseotion is taken over all D-fundamental systems. 
2 # 6 в ŁêШà-dS* W e d o n o t knowf whether 2.1 holds with A replaced 

by A.. For all examples we know this is true. Moreover, taking the 

notations of 2.1, we pose the following problem concerning "classi-
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cal" joint spectra: 

Let .£"? and E denote two Fréchet spaces. Prove or disprove 

ÓÍT^Šl^lfiт 2;A) = <Š(T1;L(E1))'* <Ś(T ̂ ; L (E £) ) . 

3. Spectral mapping theorems. In section 2 we succeeded in descri-

bing the Cartesian product Єř(T-;(L ( E A ) J X GЃ(T
0
;(L (E

0
)),) as a 

I S I D Z S Z D 

bicommutant joint spectrum. In order to solve the announced problem, 

we have to establish polynomial spectral mapping theorems. For that 

purpose we start with a refinement of 2.5. 

3.1. APPROXIMATION THEOREM. Let E and E denote two locally con-

vex spaceSj and let a denote a tensor product topology fulfilling 

(1.3). Moreover let T.Є(L (E.))u (i - 1>2), and let A Ъe the Ъi-
A
 г ^ s г Ъ 

commutant of T GI ,J
 7
 T in L (En & E ) . Given CЄA h and an open 

1 a 1 a S 1 (X Ci CD 

neighЪorhood U of Q?(T ф I ,J § T ;A ) л there exists a D-fundamen-
JĹ ó J. ö c s 

tal system i on E7 ® E such that 
U D äíтfil^lfiт^AлGÍE^ êa E2;Г )) 

and 

Tг*I2, *2è-V
 C U Л G Í Í j ®a E2;Г)}* 

In order to prove this, we need the following slight modification 

of Proposition 1.5. 

3.2. PROPOSITION. Let G. C L(E.) (i - lл2) denote equicontinuous 
г г 

suЪsets such that G.oG. C G .. Let Г* denote any D-fundamental system 

on En & E , and let CЄG(E ® E ;Г). If C commutes with all ele-
1 QL Ci 1 Ot ci 

ments of G
7
®J and I^&G^j then there exists a D-fundamental system 

P such that 
CЄG(E2 ® E2;Г ) and sup{\\ T<8>S\\^ : T € G ̂ , S€ G £] * 1. 

The D-fundamental system Г constructed in the proof of 1.5 has the 

desired properties. 

Proof of 3.1. Let U.Э Ő(T.;(L (E.)),) (i = 1,2) denote open 1 1 S 1 ь 

neighborhoods such that U.Л U^ C U. By [19], Lemma 12 there exist 

fundamental system Г. of continuous semi-norms on E. such that 

T^ÉGÍE^П) and éíT^GÍE^Г^)) C U ^ (i = 1,2). 

Therefore the sets { (T - X) : AЄ(C\U.} are contained in a mul-

tiple of the unit-balls B^
 ( І )

 of (G (E^; Г^) , H- Иp ì r\ {T±;L (E^) }
CC. 

Let CЄG(È^ Sa E 2
;Г) A A. Since ÍT^ ;L (Ê  )} C C ® I^ and 

I Ф{T ;L(E ) } c c
 are contained in the commutative algebra A, C and 

Ъ^ ' fulfill the assumptions of 3.2. Hence there exists a D-funda-
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mental system P such that C £ G(E. ̂  E ;f ) and 

sup{ II тâsiu : T Ê B ^ 1 1 , S é B ^ ' 2 ^ 1. 

But t h i s e s p e c i a l l y means, t h a t fo r a l l XfcCNU.. and ү€ C \ U 2 we 

have 

IKT̂  - X ) " 1 < І I 2 I U 1 II(T^ - X ) " 1 l l г and 

lli., Ž(т
2
 - үГ

1
!!- * II (т

2
 - ү)"

1
li

г
 . 
^2 

But from this it follows, that every (X,ү)Є.C \ (LVxU ) is already 

contained in ß (T 0 I ,1 Ф T ;A л G (E Ô E ; P ) ) , and hence 

Ö(T^êl2fI^êT2;h лGÍE^ â a E2;f ) ) C U^ X u^ C ü. /f 

Theorem 3.1 turns out to be the main tool in order to prove the 

second part of the following 

3.3. SPECTRAL MAPPING THEOREM. Let T.GL(E.) (г = 1,2), let P Ъe a 
г г 

voЪynomiaЪ гn two variaЪЪes, and Ъet A denote the Ъioommutant of 

T ê l , І Љ T in the aЪgeЪra L (E ф Ej. 
-í c> 1 o S Ł Qk Cå 

(i) If <â(T.;(L (E.))J í <£ (i = 1,2), then г s г u 

(ii) If moreover T and T are AЪЪan-Ъounded, then 

p^;ГL
s
ŕ£j;;ь

J.tírг
2
;П

s
ГV

;
ь

;
 = o ř ř P ř ^ в ^ . ^ в T2),AO8) 

= cfíPíTгêi^ijêт^.л^) 
Proof. By 2.1 and 2,5 we have 

^ V Í V V V * ö(т
2
;(L

s
(в

2
))

b
) = 

= ґ\ <Š(T^êl2,I^®T2;AnG(E^ â^ E
2 ?
Г)) 

where it is sufficient to take the intersection over all those 

D-fundamental system Г such that neither <э (T̂  ® I ;A r\ G (E. S E ;Г)) 
yч л — \ Z \ CL Z 

nor <o(I. ®T
2
;A^ G(E ф E ;J )) cotøer the whole complex plane. 

Since (AЛG(E ® E ;Г ) ,ІЬ Iip) is a Banach algebra by (0.3), we 

apply Lemma 0.2 which gives 

P(в(T^êl2,I^T2;h^ GÍE^ ^ E
2
;Г ))) C 

C ÖÍPÍT^ Ž І ^ І . J Š T ^ A П G Í E . . <§a E 2 ; Г ) ) 

and hence 

P«á(T,;(Ls(E^))ъ),<ś(T2;(Ls(E2))ъ)) = 

= P ( П ^ ( T ^ S І ^ ^ І ^ T ^ ^ A / Ì G Í E ^ ê a E 2 ; Г ) ) ) 

ç / ì PÍGÍT^ < S l 2 , I 1 è т 2 ; A л G ( E 1 $a E 2 ; Г ) ) ) 
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C !C) <i?(P(T
1
®I

2
,I

1
$T

2
);AnG(E

1
 $a E

2
; D ) = 

This proves (i). 

In order to prove (ii) , let y 4 P (̂ (T.. ; (L
g
 (E

(j
) )

 b
) , d(T

2 ?
 (L

g
 (E

2
) )

 b
) ) 

and let V denote an open neighborhood of this set such that y t
v
-

Then there exists an open neighborhood U D . ^ T ^ L f l ^ T ;A ) 

such that P(U)C V. By 3.1 there exists a D-fundamental system P 

such that T,.®I , I - J S T
2
 £ G(E1 S

 E
2
; r*^ a n d U c o n t a i n s 

^(T1Sl2rIl(ST2;A/>G(El ^ E 2 ? P ) ) , and hence 

y^P((5(T lSl 2,I 1®T 2;A^G(E 1 ^ E^P))). Since T..0I2, I . , S T 2 are 

elements of the Banach algebra (AnG(E ® E 2 ' ^ )''#^p)' t h e spec­

tral mapping theorem for joint spectra in Banach algebras gives 

P«S(T
l
вI

2
,I

l
fcT

2
;AЛG(E

1
 <8>

a
 E

2
;Г))) 

(*) = ÖÍPtT.jSl^^I^ÔT^Í^AлGtE^ ®
a
 E

2
; Г ) ) 

But t h i s implies Y4 cJ(p (Ti ® I 2 ' I 1 ® T2^ ? A b^ * I f c r e m a i n s t o b e shown 
t h a t 

cs C : = ( ү l ^ ® ! ^ - P Í T , . ® ! ^ , ! , . ® ^ ) ) ' € A c 

Thus let D€({C;L (E S E )}cc) . In applying 3.1 we find a 
s .«. a z C D ^ ^ ^ — 

D-fundamental system \ such that D,T ® I ?, I ® T 6 G (E1 0 E ;l ) 

and U :> S ( T ^ I 2 , I ® T ;AAG(E 1 ® E ; P ) ) . A repetion of the spec­

tral mapping theorem (*) gives y^ <»(P (^ ® I ^ I ^ T ) j A n G ^ 0 E^F) I 

But this means, that CG A^G(E. § E 2;P ) , and hence C € A 

Connected with part (i) this proves (ii).,/ 

3-4* Remarks. 

(1) We do not know whether 3.1 (ii) can be sharpened by substitu­

ting A, for A , * Such a result has been announced by Kawamura fl 8] 

in the case where E and E are Frechet spaces, one of which has to 

be nuclear, but it turns out that there is a gap in Kawamura1s 

proof, because the central Proposition 4.1 is false. 

(2) The spectral mapping theorem can be generalized from polynomials 

to functions, which are analytic in a neighborhood of the joint 

spectrum, by means of an analytic functional calculus (see [28], 

II.4 for details). 

(3) The inclusion in 3.3 (i) is strict in general as we shall il­

lustrate by several counterexamples below. In order to get the re­

verse inclusion for non-Allan-bounded operators, too, one has to 

pose additional conditions upon the operators T.. , T and/or the po­

lynomial P. In £28], III. we have given a functional calculus ori-
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ginally due to Sebastiao e Silva C26l, which guarantees two-sided 

spectral mapping theorems under conditions that are fulfilled in ap­

plications to abstract Cauchy problems. We shall give an example 

below. 

3.5. COUNTEREXAMPLES. 

For n€ af let 

&t m „ \ := {u€C°°(R) : supp u c (-°°,n)} (-°°,n) 

equipped with the topology induced from C (E). Then the space 

h := U L , 
- rXi (~~'n> 

being equipped with the canonical topology of the inductive limit 
is a strict (LF)-space, and a nuclear space. Hence the strong dual 

< f o ; := ( < k _ ) ' s 

is especially a Montel space, and hence L (oO !) is sequentially com­

plete. As sets we have 

<£}' "*= {<f>€.oD : supp <f> is bounded from the left} 

and hence ob' admits a convolution product. For every X 6 (C the ope-
j + * 

rator -=— - X has an inverse in L (©D ') , which can be written as con-dx -. + ' 
volution operator (e *H(.))* . Consequently the spectrum 

G?(4-;L(ob') ) is empty, but since the function X ~> (eX*H(.))* is 

analytic with respect to the L (ob')-topology, (D(-T-; (L (oD')),) is 
•3 S + QX S T JD 

empty, too, and hence tf( (g-;)" ; (Lg (<b|) ) b> = {0}. 

A necessary (but by no means sufficient) condition for a distri­

bution U€ ob (IR ) to be contained in ©b ' ® ©D' is, that for every 

<J>£ eO _ , u((()) belongs to oD ' (look at u as an element from L(oD_, 

ob ') ; Schwartz [24], p. 51 ) . 

Next let v C'C OR N {0}) denote a function, which is real-analy­

tic outside the origin, and let $ € C°°(iR X {0}) . Then the function 

(*) y~>_£°v(x,y)(|)(x)dx 

is real-analytic, and hence is contained in ob ' if and only if it 

vanishes identically. From these facts we infer, that the Cauchy-

Riemann operator 
~~ ® i + ii 0~- :Jb; <S ob • — > cb'' & <b • 
dx dy + TT + + TT + 

has no fundamental solution in ob ' ® ^ 1 ' a n^ consequently is not 

surjective. But this is clear, since every fundamental solution of 

the Cauchy-Riemann operator is analytic outside the origin, and 

hence by (v) cannot be contained in ob ! 9 ob ' . 
+ IT + 
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After these preliminary remarks we shall consider three cases, which 

show, that for non-Allan-bounded operators the spectral mapping the­

orem 3.3 (i) can fail in a dramatic manner. 

(1) Let E 1 = E 2 = <£;, let T.. := | p T 2 := i|--. Then e?(T.; (Lg (E±) ) fa) 

= 0 (i = 1,2). On the other hand, we shall show, that 

g (T 1 <S l 2 + I 1 ® T 2 ; L ( E 1 S^ E2)) = <C. 

For that purpose note that T <S I + 1..® T - XI <$I (X6<C) has no 

fundamental solution u in E 0 E , for otherwise exp(—-j(x - iy) ) u 

would be a fundamental solution of the Cauchy-Riemann operator. 

(2) Let E , E , and T as above, and let T 2 := (—)" . Then by si­

milar arguments as above, one can prove (cf.[283, II.4.18) 

tf(T * T M L (E.®.. E )> ) = <E. 

(3) Let E1 := | | <C, T^LfE . . ) the l e f t - s h i f t , E2 = <b | , T2 = g - . 

Then T ® I operates as l e f t - s h i f t on7TE 2 = E1 %^ E , and I ^ ^ 

operates coordinate-wise. Thus for every K C the sequence 
-1 r ^ 

((XT )6) ^ is an eigenvector of T ® T , and hence 

<^(T1®T2;L(E1 8 ^ E2)) = C. 

4. A distributional Cauchy problem. Since it is beyond the scope 

of this paper to present the functional calculus as devellopped in 

f28j, we content ourselves with giving a typical example illustra­

ting of what kind conditions have to be assuring a tensor product 

of operators to be invertible. For that purpose let T £ L ( E ) , let 

P denote a polynomial in two variables, and consider the distri­

butional Cauchy problem for the operator 

P(!£<£I,IST) :<fe;<8>E » <&l®nE 

z2) = z1 - z2 this 

Hille-Yosida-type problem. 

In order to give sufficient conditions for P ( T T ® I , I ® T ) to be in­

vertible, we need the following (cf. [283, P- 60) 

4 . 1 . LEMMA. For all kQ& the function 

X —> (3- - X) " 1 = e X ' t f ( . ) » £Le(h±) 

is bounded on Fk= {\€ tf ; Re(\) < k)% 

4.2. THEOREM. Let E be a locally convex spaoe, let T$.L(E)S and 

let c*.tR. Suppose that the function X 1—»P(\ST) is bounded on 

If P ( z 1 , z . ? ) = z1 - z~ this is a tensor product notation of a 
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C \ F = {XGff : Re(\) * o}. Then P(~r &I„I& T) £. L (h '§> E) is in-o at + IT 
vertible and 

c+^f? 
where \ €. F is arbitrarily ohosen and the integral is an improper 

Riemann integral. 

We sketch a proof. By 4.1 the function X ~*-> (— - A) £ L (i)') is 
at . s + 

bounded on F . Therefore the integral exists as an improper Riemann-

integral. Multiplying this integral by PfetJl.lST) we obtain 
P(£-®I,I®T) J ... = ]{(P(~Sl,I®T) - P(Xl<£l,I®T)}...dX + 

at: c+iB J a r 

+ f P(XlŽl,I0T) . . .dX, 

where ... denotes the integrand of the integral in the statement of 

the theorem. In the first integrand, { } contains {-rr " X)®I 

as a factor. Therefore the first integral vanishes by a residuum 

calculation. Since P (XI ® 1,1 $ T)#I& P (X ,T) " = I®I, the second 
d -2 •* 

integral gives 2tr*i (— - X ) ® I , which proves the theorem. 

By taking an m-th power of (X-X ) and (-rr - X ) if necessary, 

the assumptions of the theorem can be weakened, so that P(.,T) 

is polynomially increasing in some right half-plane. It is well 

known, that in such a case P(.,T) is Laplace-transform of an 

operator-valued distribution u. In the case of a Banach space E, 

u can be shown to be a fundamental solution for the operator 

P (-TT QI, I €>T) , and one gets the inverse operator by means of con­

volution of vector-valued distributions. This method of proof for 

4.2 is the so-called Laplace-transform-method (cf. Beals £2]). It 

seems to us, that our proof is more elementary even for Banach 

spaces. If E is a proper locally convex space, the Laplace-trans­

form does not work in general, because a convolution cannot be 

defined on the whole of -i?!®^ E (cf. Fattorini [7] ) . 

REFERENCES 

1. ALLAN G.R. "A spectral theory for locally convex algebras", Proc. 

London Math. Soc. (3) JJ5 (1965), 399 - 421 

2. BEALS R. "Laplace transform method for evolution equations" 

in: Garnir (ed.) Boundary value problems for linear evolution 

equations. Reidel Publishing Dordrecht 1977 

3. BROWN A., PEARCY C "Spectra of tensor products of operators", 
Proc. A.M.S. 17 (1966), 162 - 166 



314 WROBEL 

4. CARROLL R.W. "Transmutations and operator differential equa-

tions", North-Holland Amsterdam 1979 

5. CHAZARAIN J. "Problèmes de Cauchy abstraits et applications à 

quelques problêmes mixtes", Journ. Funct. Analysis 2 (1971) 

386 - 446 

6. DASH A.T., SCHECHTER M. "Tensor products and joint spectra", 

Israel J. Math. 8 (1970), 191 - 193 

7. FATTORINI H.O. "On a class of differential equations for vector 

valued distributions", Pac. J. Math. 3_2 (1970), 79 - 104 

8. GROTHENDIECK A. "Rêsumè de la thêorie metrique des produits ten-

soriels topologiques", Bol. Soc. Mat. Sao Paulo 2 (1952) 

9. "Produits tensoriels topologiques et espaces 

nuclèaires", Memoirs A.M.S. _1_6 Providence 1955 

10. HARKSEN J. "Tensornormtopologien", Dissertation Kiel 1979 

11. HARTE R.E. "Tensor products, multiplication operators and the 

spectral mapping theorem", Proc. Roy. Ir. Acad. Sect. A 7_3 

(1973), 285 - 302 

12. HÖRMANDER L. "Linear partial differential operators", Berlin-

Heidelberg-New York 19 69 

13. ICHINOSE T. "On the spectra of tensor products of linear opera-

tors in Banach spaces. J. Reine Angew. Math. 244 (1970), 119 -

153 

14. "Operators on tensor products of Banach spaces", 

Trans. A.M.S. V70 (1972), 197 - 219 

15. "Tensor products of linear operators and the methoď 

of separation of variables" , Hokkaido Math. J. _3 (1974), 161 -

189 

16. "Operational calculus for tensor products of linear 

operators in Banach spaces" , Hokkąido Math. J. -4 (1975), 306 -

334 

17. "Spectral properties of tensor products of linear 

operators 1,11", Trans. A.M.S. _235 (1978), 75 - 113; 2У7 (1978), 

223 - 254 

18. KAWAMURA S. "On the spectra of tensor products of linear opera-

tors in locally convex spaces", Tohoku Math. J. 22 (1975), 

247 - 258 

19. MOORE R.T. "Banach algebras of operators on locally convex spa-

ces", Bull. A.M.S. 25 (1969), 68 - 73 

20. NEUBAUER G. "Zur Spektraltheorie in lokalkonvexen Algebren", 

Math. Ann. T42 (1961), 131 - 164 

21. REED M., SIMON B. "Tensor products of closed operators on Ba-



TENSOR PRODUCTS OF LINEAR OPERATORS 315 

nach spaces", Journ. Funct. Analysis J_3 (1973), 107 - 124 

22. SCHAEFER H.H. "Topological vector spaces", New York-Heidelberg-

Berlin 1970 

23. SCHECHTER M. "On the spectra of operators on tensor products", 

Journ. Funct. Analysis 4 (1969), 95 - 99 

24. SCHWARTZ L. "Thêorie des distributions â valeurs vectorielles I" 

Ann. Inst. Fourier 7 (1957), 1 - 142 

25. "Thêorie des distributions... II", Ann. Inst. Fou-

rier 8 (1958) 1 - 209 

26. SEBASTIAO E SILVA J. "Sur le ca3.cul sÿmbolique dl opèrateurs 

permutables à spectre vide ou non bornê", Annali di Mat. pura 

ed appl. (Bologna) (4) 58 (1962), 219 - 275 

27. SIMON B. "Uniform Cross-norms" Pac. J. Math. 46 (1973), 555 -

560 

28. WROBEL V. "Tensorproduktoperatoren in lokalkonvexen Räumen", 

Habilitationsschrift Kiel 1981 

29. —• "Spektraltheorie stetiger Endomorphismen eines lokal-

konvexen Raumes", Math. Ann. 234 (1978), 193 - 208 

VOLKER WROBEL 

MATHEMATISCHES SEMINAR DER UNIVERSITÄT KIEL 

OLSHAUSENSTRASSE 40 - 60 

D-2300 KIEL 

FEDERAL REPUBLIC GERMANY 


