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CAUCHY-KOWALEWSKI EXTENSION THEOREMS AND REPRESENTATIONS 

OF ANALYTIC FUNCTIONALS ACTING OVER SPECIAL CLASSES OF 

REAL n-DIMENSIONAL SUBMANIFOLDS OF C11*1 

Oohn Ryan 

INTRODUCTION 

The study of holomorphic extension of real analytic functions 
defined on real hypersurfaces of complex manifolds has been develop
ed by a number of authors [3, 7 and 8] # In this paper we utilise 

the invariance of the kernel of the differential operator d+d* , 
under orthogonal transformations, to provide Cauchy-Kowalewski ex
tensions for the elements of complex Clifford modules of real ana
lytic functions defined on special classes of real n-dimensional 

_ .1 

subraanifolds of C . Each of these extensions is a holomorphic 

function in (n+l)-complex variables and satisfies the operator 

d'+d*' . 

In the cases where n=-l mod 2 , the manifolds are compact, 

satisfy a further geometric restriction, we are able to use the 

generalized Cauchy integral formula established in [10] to con

struct a generalized Cauchy transform acting on the duals of the 

modules introduced here. Using this generalized Cauchy transform 

and the Cauchy-Kowalewski extensions obtained here, we are able to 

present an integral representation of the dual space acting on 

these Clifford modules. 

The results obtained here generalize results obtained by 

Sommen [13J on representations of analytic functionals on the unit 

sphere in Rn , by means of solutions to generalized Cauchy-

-Riemann equations. Our methods make use of a number of results 

from Clifford analysis [4, 5, llj. We begin by developing the ne

cessary background on Clifford algebras, Clifford analysis and dif

ferential forms that we require to establish our main results. 
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PRELIMINARIES 

For each positive Integer n it is demonstrated in [9, Chap, 
13] and [2, Part l] that from the vector space Rn**, with ortho-
normal basis (e-j}n»i » J-* is possible to construct a 2 n dimen
sional, real, associative algebra An - , containing the space 
n*l n+A 

R as a subspace# The algebra
 A

 + 1 Has an Identity e and 
the basis vectors (o.i}n*i of R n + 1 satisfy the relation 

ejek * ekeJ • 2 c rjk eo • <*> 

where c?.^ is the Kronecker delta, and l^j , k—n+1 # 
The algebra has as basis elements the vectors 

eo'el'##*'en+l'###'enen+l"##'el*#'#*en+l • *2* 
The algebra A n + 1 is called a Clifford algebra, but it is 

not the most general example of such an algebra# A general basis 
element of this algebra is denoted by e. e, with r^n+1 and 

j^»•• j r 

j1< •••< j r • Also a general basis element of the algebra is 
written as 

u - x 0 e 0 + x 1 e 1 + . . . + x n + 1 e n + 1 + . . . * x : J i # # ^ . . . e ^ . . . 

•••+xl...nel",en * 
with % , x 1 . x n t l , x ; J i f # j J r , x 1 > i n e R . 

We denote the subspace of A , , spanned by the vectors 

From expressions (1) and (2) it may be observed that the vec
tor space A

n +i is canonically isomorphic to A(R n* ) , the 
alternating algebra generated from the vector space Rn* 

We observe that each element 

x - x 1e 1 +...*x n + 1e n + 1£R
n + 1-{o}QA n + 1 

has a multiplicative inverse 

-1 xlel*"#*xn+len+l 
x » 2 2 

xl*###*xn+l 

in the algebra A
n +i • 

By considering the real symmetric tensor product of the 

algebra A
n + 1 with the complex field A

n+±®fp we obtain the 
complex Clifford algebra A

n . > 1 ( c ) introduced in [_9, Chap* 13]# 

Again this algebra is spanned by the basis elements (2)# A general 
element Z of this algebra is denoted by 
zo eo* zl el**"* 2n en* #"* 2J^ ' 
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where z # z 1 , 2 r | i z i | , ,z± n x 1 G C , and each z , » 
vi x n j4««»jp -i»##,n+j. J l # * » J r 

ax, . +iy. A , with x. . and y* A G R . 
Jl # # #Jr Ji # # #jp Jl»«»jp Ji'»*j r 

We define the norm of the vector Z to be 

(|-o|2+-"+izj1...dr|
2+-"+lzl...n+l|

2)1/2 ' 

We denote the complex vector space spanned by the vectors 

{ei)l«l ky c ° + • Unlike tne r e al case, not every element of 

C n + -|o) is invertible in the algebra A -(C) # For exarople the 

vector (ex*
io2^ ie a n elefflent °f the set c ~{°} * a n d 

(e1+ie2)(e1+ie2) • 0 . For each point z Q£C
n + the set S(zQ) • 

« { z £ C n + : (z-z0)(z-zQ) » 0} is called the singularity cone at 
z Q . Each element of the set Cn -S(o) is invertible in the 
algebra An+1(C) . 

For each set Y £ c n + 1 we denote the set VJ S(z) by S ( Y ) , 
* z£y * 

For each pair of vectors z a z1e1+.,, •
 +z

rH.i
en+l an" -?-' B 

a z|e^+»»»+z' ie
n+i

 w e define their Herroitian product to be 
n+1 

<z,z'> « IZz.z* . 
j»l 3 3 

Using these algebraic preliminaries we may now develop the 
differential calculus we require. 

In [5J Delanghe Introduces the generalized Cauchy-Rieroann 
operator 

n+1 n 
X>d~ • < 3> 
4.1 J '*J 

This operator acts on pointwise differentiable functions de
fined on subdoroains of Rn+ , and taking values in the algebra 
An+1 * T*10 operator (3) roay also be described in terms of differen
tial operators acting on differential forms. 
Construction: Using the canonical isomorphism 6 : A — > A(R n ) we roay [6J , for each domain uCR n + , define an inner product 
between smooth L integrable forros g,h : U—>A(U) # We define 

this inner product to be J Trace {e(8"'1(g).e-1(h))}dxn+1 . 
U J 

Definition 1 [s] 1 For r€N + , for each smooth (r-1) form 

$t U—*A r(U) with compact support, and each smooth r form 
g : U-^A r- 1(U) we define the operator d* to be the adjoint of 
the operator d arising in the inner product 

fTrace {e(0-1(d<|))#e
-"1(g))}dxn+1 
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where d ie the usual de Rharo cohonology boundary operator 

n+1 П + .Ł ft 

It nay now eaeily be deduced that for each polntwlee differen
tia ble function f : U—>A^ A we have 

n*l J* 
----•i-*r " B"1uó*ú*)eif)) . (4) 

Definition 2: We define ker..(d+d*) to be the eet of pointwiee dif-
ferentiable forma g : U — > A ( U ) © R C which satlefy the equation 
(d+d*)g(x) u o for each x G U . 

The eet ker.,(d+d*) ie a right module over the conplex 
a n + l U 

algebra A ( R ) © R C , of a l t e r n a t i n g tensors. 
D e f i n i t i o n 3 : We define 

ker.A^e.-^r) (5) 
{3±1 sp 

, г u ( ^ í dTxJ: 

to be the set of polntwlse differentiable functions 
n+1 çf 

f : U-*A n + ,,(C) euch that for each xGU we have > 'ei u (x)np. 
« j»l J i 

n+1 ^ J J 
The eet kerM(2I3

e-i'7TT") *8 a ri9^t module over the complex 
j-1 3 i 

Clifford algebra A
n + 1(C) • 

It follows from equation (4) that the complex vector spaces 
ker.,(d+d*") and (5) are equivalent. 

The space ker-,(d+d*) is Independent of the choice of ortho-
normal baeie in Rn+ . It thue follows that for each f in (5) 
and each orthonorroal basis {e-j}-?li — R R + ~ An+l^ C^ w e ̂ ave 

n+1 n 

We now proceed to give some examples of elements of the space 
(5). 
Definition 4 [sj : Let us consider, for 2 ^ 1 . ^ n+1 , the variables 

8 1 " *l eo - x l ° l e l ' 
( s - a ^ « (x1-a1)e0 - (x1-a1)e1e1 , 

for a » a i e i + # * * + a n + l e n + l # F o r o a c h t 1 ! * ^ • • 1
r o ) ^ {2» •• • #n + 1} r o 

we nay conetruct the following homogeneous polynomials of degree ro; 
V, , (x ) « 2 3 e, s , , (6) 

V " > 7(i1..aln) V " "So 
vl i (x-a) - S . . *(e-a), (e-a), . (7) 

where the euro is taken over all permutations without repetition of 
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the sequence (l^,***,! ) # 
In [5] it is established that for each domain u C R n + 1 the 

n±l $ 
polynomials (6) and (7) are elements of the space ker..(>>:e.. >\ ) . 

From [VJ it raay be established that for each element 

n±l o 
f Gkeril(2-3e^ ̂ v )

 a n d e a c h point a £U there is a subneighbour-
u j-1 J ^ x j 

hood UQ , containing the point a , and there is a series 
co 

S 3 .13 V, (x-a)c, , , (8) 
ra»o lv**\ 1 l " # 1 m 1l'--1ra,a 

with each c^ ^ ̂  ^ An+i^ c) • which converges uniformly on U 

to the function f(x) . 

In [12J Soraraen observes that for the case where 

a » a2e2+###*an+l0n+l t*ie s e r i e s (8) restricted to the variable 
x2e2+•#•+xn+len+l ^ecooes 

2 3 • 2 3 (x , - a , ) . . . ( x , - a , )c , , 
m«o l a • • • l ra 1 1 m •''m x " " V a 

Using th is fact Soraraen establishes [_12]: 
Theorem 1 : For each doraain U 'CR n and each rea l analy t ic function 

r . u . ^ A n + 1 ( C ) (9 ) 

there is a doraain U p £R n and a unique function f : U —* A
n + l ( C ) 

such that : 
i U ' C U p . 

+1 

u r J - l - ÍX) 
i i i fl » r . D 

fU ' 

The function f is called the Cauchy-Kowalewski extension of 
the function r with respect to Rn * 

In this paper we shall also consider the following type of 
functions: 
Definition 5 [lo]: For each subdoraaln U(C) of Cn+1 we say that 
a holomorphlc function f : U(C)—*A

n«,i(
c) i8 complex left regular 

n+1 o p 

if for each zGU(C) we have ZZei-f|-(z) » 0 , A similar defini-
J-l J / ? zj 

tion is given in [lo] for complex right regular functions. 

Examples: 

1# The holomorphlc extension of the series (8) is a complex left 
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regular function. It follows that the holoroorphic extension of the 
Cauchy-Kowaleweki extension of the function (9) ie a complex left 
regular function., 
2. The function 

G : Cn+1- S(o)-^C n + 1CA n + 1(C) : G(z) - z(z.z)
(n+1>/2 . 

defined for n»l rood 2 , is a conplex left regular function. More
over, this function is a complex right regular function. 

The class of complex left regular functions defined on an open 
set U(C) is a right nodule over the algebra A

n + 1(
c) • We denote 

this module by -flr(U(C),An+1(C)) . The class of complex right re
gular functions defined on U(C) is a left module over A -(C) . 
We denote thie module by -Q1(U(C),An+1(C)) . 

Using the complex isomorphism 6© Rid : A 1(C)—^AfR
0* )© RC , 

where id stands for the identity map, we observe that for each 
complex left regular function F : U(C) —* An+^(C) the holoroorphic 
forro (9©Rid)F : U(C) — > A ( R

n + 1 ) © R C eatisfies the equation 
(d'+d*')((0©Rid)F) - 0 , where d* is the holoroorphic extension 
n+1 Q 

> 1dzA * of the operator d , and d*' is the holoroorphic ex-
j-1 J ^ 2 j 
tension of the operator d* . 

We shall require the following classes of manifolds in our 
analysis. 
Definition 6 [7J: A smooth, real (n+l)-dinensional subnanlfold, M , 
of Cn<l> is said to be without conplex structure if for each 
zGM the tangent space TM2 is spanned by vectors {?*(._)}?Ii ' 
where for each zAz) we have Iz^z)^™-^ • w© shall refer to 
such nanifolds as manifolds of type a . ~" 
Observation 1: If M is a manifold of type a then it follows from 
Definition 6 that for each z E M the conplex extension of the 
tangent space TM_ is isomorphic to the space Cn* . If M is 
not a manifold of~~type a , then for each zGM the conplex ex
tension of the tangent space TM is isomorphic to a proper conplex 
subspace of Cn+ , ~* 
Definition 7; In the cases where n-1 rood 2 a smooth, real, 
(n+l)-diroeneional, conpact subnanlfold, M , of Cn+ , with boun
dary, i8 called a nanifold of type b if it is a nanifold of type 
a , and for each zG M 

i TM2 n S(z) 
ii M " n S(2 

Definition 8: In the cases where n»l nod 2 a smooth, real 
(n+l)-diroen8ional, noncoropact subnanlfold, M , of Cn* is called 

(5) -{-} . 
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a manifold of type c if each smooth, compact, (n+l)-dimensional 
submanifold of M is a manifold of type b . 

An example of a manifold of type c is the real vector space 
Rn+lc cn+l 9 

For each manifold, M , of type a , and each z E M the 
vectors spanning the tangent space, TM , are orthogonal with 
respect to the Hermitian structure of Cn+ , Thus, each manifold 
of type a is a Riemannian manifold, inheriting its Riemannian 
structure from the Hermitian structure of Cn+ , It follows [&] 
that for each manifold M of type a we can construct an adjoint, 
d* , to the differential operator d , Thus, the operator d+d* is 
well defined over each manifold of type a , In fact, for IL,(C)C 
& C n + a domain containing a manifold M of type a , and 
H : U M(C)—*

 A
n + 1(C) a holomorphic function, we have for each 2 6 M 

(d+d*)((G©Rid)H(z)) - (d'+d*')((G©Rid)H(z)) , (10) 

where the operator d+d* is acting over the manifold M , 
Definition 9: For M a connected manifold of type b we denote the 
component of Cn+1- S(^ M) containing the interior of M by U(M), 

In [ll] we establish that U(M) is an open subset of Cn+1 , 
Using Definitions 7 and 9 we establish the following generali

zation of the classical Cauchy integral formula [l. Chap, 4], 
Theorem 2 [ll, 14]: Suppose F • U(C)—• A n + 1 (C) is a complex left 
regular function, and suppose M £ U ( C ) , is a connected manifold of 
type b , then for each point z Q in U(M)Hu(C) we have 

H-o) m k LG (-'?o ) D-p (- ) -
^ M n+l where wn is the surface area of the unit sphere lying in R 

and Dz is the complex n-form 
n + l ... I—I 

Z3(-l)3 ejdz1A ...Adz^AdZj^A •.. Adzn+1 • U 

CAUCHY-KOWALIEWSKI EXTENSIONS OVER 
MANIFOLDS OF TYPE a 

All manifolds of type a considered in this section will be 

real analytic, Riemannian manifolds* 

Definition 10: Suppose M C c n + 1 is a manifold of type a , without 
boundary, and M' is a real analytic, (n+l)-dimensional, Riemannian 
submanifold of M , with boundary. Then the manifold M' is called 
a manifold of type d , 
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Any type b real analytic submanifold of a real analytic mani
fold of type c is an example4of a manifold of type d # 

We denote the set of real analytic, A

n+i(
c) valued functions 

defined over ^M* by 
^(?M',An+1(C)) . (11) 

The 8et (11) is a right A

n + i (
c ) module* For each element of this 

module we may deduce the following extension theorem* 
Theorem 3 (A Cauchy-Kowalewski Extension Theorem): Suppose M' is 
a manifold of type d lying in a type a manifold, M , without 
boundary* Suppose also the function g is an element of the module 
Atf) M',An+1(C)) * Then there is a domain U (C)£c

n + 1 containing 
the manifold l?M' , and there is a complex left regular function 
f 2 u „ ( c ) - ^ A » . , . i ( c ) such that Fl « g * 

g n + A |/jM# 
Proof: Ae the manifolds M and M' are real analytic and Rieman-
nian there exist real analytic chart maps 

{*„ : U . C R - ^ M } ^ . (12) 
such that each chart, V , preserves the Rieraannian structure of 
the manifold M , and for 

R " + 1 - {* - * l e l + ' " + * n + l e n + l ( E R n + 1 : xl^°) ' 
R {x - V l ł ; . .« П ł l e w l ЄR n + 1 . x^o} 

we have for each iuGN+ 

^m« u « n R r 1 - * M t
 ' 

V~ : U n R n + 1
-> (M-M')U9 M' . m m — ' 

We shall restrict our attention to the subset 

{^p
 : U

P
~*

M
 »

 u

p

 R
" l

1 $} o f t h e 8 e t
 (

1 2
)*

 lx m a
y
 b e
 observed 

that the set of maps {iC i U nR n
— > M J is a set of real analytic 

charts for the manifold 0M'
 #
 We shall denote each chart map 

^p
 : u

p
nR

n
-»#M' by pp . 

Suppose now that g is an element of the set A,(Q M' ,A
n + 1
(C) )« 

Then it follows from Theorem 1 that for each real analytic function 
g( \u ) i U nRn

-*>
 A

n + 1
( C ) there is an open set U

 q
----U contain

ing the set U
n
flR

n
 , and there is a function f „:'u^ , , - ^ A ^ A C ) 

* p p,g p,g n+1* ' 
satisfying the conditions 

1 f
P,g

G k e r
U (Se,-^) , 

p 9
 p-gj«i

 J
^*J 

1 1 f
p.g|u

p
nRn - 9( f

p
> • 

As the kernel space of the operator d+d* , acting over a Rie-

mannian manifold, is invariant under diffeomorphisms which preserve 
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the Rieroannian structure of the manifold we have that the real ana
lytic form 

DYp^eQ-idHf^.C-p-)) ; ^ p ( U p < g ) — A ( R
n + 1 ) © R C (13) 

satisfies the equation 
(d+d^)D!i/p{(e©Rid)(fp^(^p

1))} « 0 . (14) 

where D<--p is the complex vector bundle transform 
OVp : A ( U p ) © R C — A ( W p ( U p ) ) © R C 

induced by the diffeomorphisra y/ . 
As the form (13) is a real analytic form (over an (n+l)-dimensional 
manifold without complex structure it follows from Observation 1 
that there is an open set U (C)Qcn+ containing the set 

Ik!p(U ) , and there is a complex left regular function 
Fr. -, : U_, „(C)—*A_-(C) which satisfies the condition P*9 P.9 n+lx ' - ± . -

FP-»I* (U 1 " {(G0Rid) D ^ P ( 6 0R i d )} ( fP,9 ( t fP » • 
1 *pv p.g' 

It now follows from equations (4), (10) and (14) that each function 
F is an element of the right module ^ r(U p q(

c)»A
n+i(

c)) • 
If for some p± and p.GN* we have that 

__ _n. _. J. __ _n. . T K, (U
D ORn)n w (u r i R V $ * Pi Pt Pj Pj 

then it follows from the uniqueness of the Cauchy-Kowalewski extens
ions f„ _ and f„ _ , and the invariance of the operator d*d* 

Pi.9 P r 9 
under the chart maps \^ D) > t\\at the function 

P 
f 
Pi'9 U ni_"1('_ U ) 

Pi.g Pi Pj PJ«Í' 

is identical to the function 
(G© Rid)-

1D_^D'_ p j(e© Rid)f p_ j #_(_; j
1(_ P i un -П:_ľ 1(_ ,_ U_ _) Pi»9 PІ Pj Pj'9

7 

Thus on the open set U g (
c
)

n u
p g(

c
)

 t h o
 functions F 

and F
n
 are identical. On placing U (C) • Î J U (C) we may 

(C) 
Pj,g ~ "

 r
 ' o

% #
 p P*9 

now construct a complex left regular function F : U (C)—^ A
n + 1 

by placing F I « F
rt
 for each pGN* . 

g
|u

p f g
(C) P-B 

The function F„ satisfies the condition F I « g • • 

We call the function F , constructed in Theorem 3, the 

Cauchy-Kowalewski extension of the function g . 
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REPRESENTATIONS OF ANALYTIC FUNCTIONALS OVER 
CLASSES OF TYPE d MANIFOLDS 

We begin by introducing, for the caee where Q W9 is compact, 

the dual to the right AR^1(C) module A (0 W',An+1(C)) . 

Definition 11; For M' the compact boundary of a manifold of type 

d we call a map 

T : ^l(^M'.An+1(C))->An+1(C) 
a bounded, right An+1(C) linear, analytic functional over QW' 
if 

i for each g ^ G l ^ M\A n^(C)) and a£A n + 1(C) we 
have 

T(ga*h) » T(g)a • T(h) , 
ii there exists a positive real number C(T) euch that for 

each gG^(^M',A n + 1(C)) we have 
|T(g)|^C(T) eup^ |g(z)| . 

Definition 12: The eet of bounded, right An+1(C) linear analytic 
functionale over Qw* ie called the dual space of 

^ M ' # A n + 1 ( C ) ) • 
We denote this space by 

^*(#M\A n + 1(C)) . (15) 

For eech T 1 #T 2 G A*{0 W9 »A
n+1(C)) , each aGA n + 1 and each 

gGcyK^M'#An+1(C)) we have (aT1+T2)(g) - a(T1(g)) • T2(g) . It 
follows that the dual apace (15) ie a left A

n +i(
c) nodule* 

For a special class of manifolds M' of type d , with compact 
boundary, we can transform the dual epace (15) into a apace of 
complex right regular functions. We now introduce this epecial 
claad of manifolds. 
Definition 13: A type d manifold, M' , with compact boundary, ie 
called a manifold of type e if for each zGO W9 we have 

/jM#ns(2) •{?} • 
For each manifold, M' , of type e we may introduce the 

following transform on the dual epace (15): 

Definition 14: For M' a manifold of type e and T an element 

of the module JL*{/d W9 #A
n+1(C)) we call the transform 

TG : C n + 1- S(tf M')-.An+1(C) : TG(z) • T(G(z-zQ)) . 

where the complex vector z Q varlee over the manifold Qw , the 

G-transfora over G W9 of the functional T „ 

The G-traneform ia a generalization of a traneform introduced 

by Sommen [l3J and [4, Chap* 4] , in his study of representations 
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of analytic functionals over the unit sphere in Rn . 
Theorem 4: For each manifold M' of type e , and each element T 
of the module &*{Q M'#A

n+1(C)) the G-transforro, TG , defines a 
complex right regular function on the open set Cn+1- S ( l j M ' ) . 
Proof; For each point z £ C n + 1 we consider the spaces 

*(_.!> - (Cn+1- S(?M'))n(R n + 1
+ ? 1 ) , 

Y(2X) = (C
n+1- S(^M'))n(iRn'|-1

+ z±) . 
Suppose (£> : % (z±) -**A

n+1(C) is an A
n + 1(C) valued test function. 

Then it may be observed that the integral 

,/ G(z-zo)$(z)dx
n+1 . 

where dxn+ is the Lebesgue measure of X,(.?i) - gives a well de
fined real analytic function on the manifold /?M' . As T is a 
bounded analytic functional it follows that the transform, TG , 
restricted to the set Xv-=i) * is a wel1 defined A 1(C) valued 
distribution. Similar arguments reveal that the transform, TG , 
restricted to the set Y ^ ) is also a well defined A

n +i(
c) 

valued distribution. We shall call these distributions TGv and 
A/-=i TGY respectively. 

As the integral 

X(zi) J-1 d 1 
vanishes it may be deduced from [4, Chap. 3] that the distribution 
TGv is a real analytic function TG.. : ^ (?i) —*"An+l^c) which 

^1 -1 
satisfies the equation 

n+l ^ G X 2 l 

^ - ^ x p e J "° ' <16> 
Similar considerations reveal that the distribution TGY., is 

a real analytic function TGYz : Y(z1) -*•
 A
n +^(

c) which satisfies 
the equation n+1 'JT&Y 

It follows that the G-transform of the functional T is a real 
analytic function in the variables x1,y1,##.,x 1 #y 1 , on the 
open set Cn+1. S(^M') , As the function G(z) is holoroorphic it 
may be observed that the integrals 
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are equivalent for each j, l^j-^n+i . It follows from the clas
sical Cauchy-Riemann equations [l. Chap* l] that the G-transform 

TG : Cn+1- S(/^M')-^An+1(C) (17) 

ie a holomorphlc function in the variables z.lt09.,z 1 . Moreover, 
it may now be observed from equation (16) that the function (17) ie 
a complex right regular function. -—-

In fact the G-transform, TG , given in Theorem 4 is the fol
lowing type of complex right regular function. 
Definition 15: From M' a manifold of type e we say that a 
complex right regular function F : cn+1- S(# M') -> A n + 1(C) is 
complex right regular at infinity with respect to 0 M' if for 
each unbounded, continuous function s : (0,+co )—.>Cn+ - S^PM') , 
which is not asymptotic to the set SC? M') , we have 

lira F(s(t)) « 0 , 
t->co 

We denote the eet of complex right regular functions at infi
nity with respsct to fl M* by 

-n^C0*1- SC?M'),An+1(C)) . (18) 

It may easily be deduced that the set (18) is a left A
n +i(

c) 
module, and the set of G-transforras over O M' is a subraodule of 
the module (18), In fact, by using similar arguments to those used 
in [4, See. 28] we may obtain the following isomorphism. 
Theorem 5; For M' a real analytic manifold of type b , lying in 
a real analytic manifold of type e , the left An+1(C) modules 
t/i*(#M',An+1(C)) and n^tf M' *An+1(C)) are isomorphic. • 

In the cases where M' is a manifold of type b we can use 
the G-transform to give an integral representation of an analytic 
functional acting on an element of the eet Jt{Q W ,K 1(C)) # 
Theorem 6; For M' a real analytic manifold of type b , lying in 
a manifold M of type c , for T an element of the module 
^(/P M',An+1(C)) and for g an element of the module 

l/t(
/3M',An+1(C)) there exist a manifold M , of type b , a 

complex right regular function FT : cn+1- S{Q M' ) — A n + 1(C) and 
a complex left regular function F : U £ c n + 1 - » A AC) such that 

/
y y n+-i» 

-. n FT(S)D2F (z) . 
Proof: For each g € A{Q M* -An+1(C)) we take the Cauchy-Kowalewski 
extension F : U (C)—*-A

n+i(
c) constructed in Theorem 3. 

As the manifold M' is a eubmanifold of a manifold M of type 
c , there exists a manifold M £ M , of type b which satisfies the 

y 
conditions 
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1 M
g - y c > • 

ii ^ M ' C M , 
iii ^M'H QM « $ . 

Thus, for each vector z Q ^ ^ M ' we have from the generalized 

Cauchy integral formula, given in Theorem 2, 
9(?^ " k /M 6(^o)D^gC-) • 

9 
Thu8f for T an element of J\?(Q M' fAn+1(C)) we have 

T(g) - T( / G(z-z )DzF (z)) . 

9 
From Fubinni's theorem we deduce 

T(g) » / TG(z)DzF (z) . (19) 
^M 9 

9 

On placing the function TG(z) a F-(z) we obtain our result, I I 

The integral (19) generalizes an integral representation obtain

ed by Soramen £l3J , and (_3, Sec. 28], for analytic functionals act

ing on analytic functions over the unit sphere in Rn+ • 
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