USA 11

Kunio Yoshino

Polya's theorem for non-entire functions

In: Zdeněk Frolík (ed.): Proceedings of the 11th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1984. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 3. pp. [385]--395.

Persistent URL: http://dml.cz/dmlcz/701328

Terms of use:

© Circolo Matematico di Palermo, 1984
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Polya's theorem for non-entire functions

by Kunio Yoshino (*)

Abstract

Using transforms of analytic functionals with non-compact carrier, Polya's theorem concerning arithmetic entire functions is generalized to arithmetic non-entire functions.

1. Introduction

In 1920 Polya (see [7])) proved the following

Theorem. Suppose that the function $f(z)$ satisfies the following conditions :

$$
\begin{equation*}
|f(z)| \leqq C^{\alpha|z|} \quad(z \in C) \tag{1}
\end{equation*}
$$

(2) $\quad \mathrm{f}(N) \subset Z$.

If $\alpha<\log 2$, then $f(z)$ is a polynomial with rational coefficients.

Recently, this theorem has been generalized by several authors to the case of entire functions of several complex variables (see 「2.1, [3] , [4]).
In this paper, we investigate Polya's theorem for non-entire functions of several complex variables.
The following theorem is our main result.

Theorem 1. Let $f(z)$ be holomorphic in $\Gamma=\left\{z^{\in} \in C^{n}: \operatorname{Re} \quad z_{i}>0,1 \leqq i \leqq n\right\}$ and satisfy the following conditions :
(1) For any $\varepsilon>0$, there exists a constant $C_{\varepsilon}>0$ such that

$$
|f(z)| \leqq C e^{a(z)}
$$

($\mathrm{P} \mathrm{e} \quad z_{i} \geqslant \varepsilon, 1<\mathrm{i}<\mathrm{n}$)
where $a(z)$ is a convex function of homogeneous degree 1.
(2) $\mathrm{f}\left(\dot{N}^{\mathrm{n}}\right) \subset Z$.

Furthermore let $L \subset C^{n}$ be defined by
$\mathrm{L}=\left\{\zeta \in C^{\mathrm{n}}: \operatorname{Re}\langle\zeta, z><\mathrm{a}(z), \forall z \in \Gamma\}\right.$
and suppose that the $i-t h$ projection $L_{i}=p_{r_{i}}(L)$ of L is contained in $\left\{\zeta_{i} \in C:\left|e^{\zeta_{i}}-1\right|<1\right\}$ for all $i(1 \leqq i \leqq n)$.
(*) This work is partly supported by the "Commissariaat-Generaal voor de Internationale Culturele Samenwerking" (Belgium)

Then $f(z)$ is a polynomial with rational coefficients.

To prove Theorem 1 we use the Fourier-Borel and Avanissian -Gay transforms of analytic functionals with unbounded carrier and in the sections 2 and 3 we define the Fourier-Borel and Avanissian - Gay transforms of such functionals. In section 4 we recall the definition of the transfinite diameter and its properties while in section 5, we give the proof of Theorem 1.

Acknowledgenent
The author wants to express his gratitude to Professor R. Delanghe for valuable suggestions and aids.
2. The Fourier-Borel transform of analytic functionals with unbounded carrier
In this section we first recall the definition of the Fourier-Borel transform of analytic functionals with unbounded carriers and also mention the Ehrenpreis-Martineau type theorem due to J.W. DE. Roever. Let L be a closed convex set which is bounded in the imaginary direction in C^{n} and put
$H_{b}(L: \varphi)=\left\{f(z) \in O(\mathrm{~L}) \cap C(L): \sup _{z \in L}\left|f(z) e^{-\varphi(z)}\right|<+\infty\right\}$,
where $\varphi(z)$ is a real valued function and $O(\stackrel{\circ}{L})$ and $C(L)$ denote respectively the spaces of holomorphic functions defined in the interior of L, and the space of continuous functions in L.
Put
$Q\left(L: K^{\prime}\right)=\lim _{\varepsilon \downarrow 0} \operatorname{ind}_{\varepsilon^{\prime} \downarrow 0} H_{b}\left(L_{\varepsilon}:-h K^{\prime}(z)-\varepsilon^{\prime}|z|\right)$
where L_{ε} stands for the ε-neighbourhood of L and $h_{K^{\prime}}(z)$ is the supporting function of the compact convex subset K^{\prime} of C^{n}. An element of the dual space $Q^{\prime}\left(L: K^{\prime}\right)$ of $Q\left(L: K^{\prime}\right)$ is called an analytic functional with carrier L and of type $h_{K}(z)$. Let us recall that if L is a compact convex subset of C^{n} then $Q^{\prime}\left(L: K^{\prime}\right)$ concides with the space of analytic functionals $0^{\prime}(\mathrm{L})$ in the sense of A. Martineau, and that if $L=R^{n}$ and $K^{\prime}=\{0\}$ then $Q^{\prime}(L: K ')$ coincides with the space of Fourier-hyperfunctions studied by M.Sato and T. Kawai.
When the $\operatorname{exponential~function~} \exp \left(\sum_{i=1}^{n} \zeta_{i}{ }_{i}\right)=\exp \left(\zeta^{z}\right)$ belongs to
Q(L:K'), the Fourier-Borel transform $\widetilde{T}(z)$ of $T \in Q^{\prime}\left(L: K^{\prime}\right)$ is defined as follows :

$$
\widetilde{\mathrm{T}}(z)=\left\langle\mathrm{T}_{\zeta}, \exp (\zeta \mathrm{z})>.\right.
$$

Now let Γ be an open convex cone in C^{n}, let $a(z)$ be a convex function on Γ of homogeneous degree one and put

$$
\Omega(\mathrm{a} ; \Gamma)=\left\{\zeta \in C^{\mathrm{n}}: \operatorname{Re}\langle\zeta, z>\leqq \mathrm{a}(z) . \forall z \in \Gamma\} .\right.
$$

Then the following generalized Ehrenpreis-Martineau type theorem is valid :

Theorem 2 (J.W. DE Roever [9])
The Fourier-Borel transform is a linear topological isomorphism from $Q^{\prime}\left(\Omega(\mathrm{a}: \Gamma):\{0\}\right.$ onto $\operatorname{Exp}(\Gamma: a)$, where $\operatorname{Exp}(\Gamma: a)=1$ im proj $H_{b}\left(\Gamma+\varepsilon\left(z_{0}\right)\right.$; $a(z)+\varepsilon|z|)$ and z_{0} is a fixed complex vector contained in Γ with $\left|z_{0}\right|=1$.

Note that the space $H_{b}\left(\Gamma+\varepsilon\left(z_{0}\right): a(z)+\varepsilon|z|\right)$ may be defined in a similar as $H_{b}(L: \dot{\varphi})$.
We close this section by giving two examples of $\Omega(a: \Gamma)$ in the case of $n=1$.
Take

$$
\Gamma=\left\{z \in C: \operatorname{Re}_{z}>0\right\}
$$

Example 1. If $a(z)=\alpha|z|$ with $\alpha>0$, then $\Omega(a: \Gamma)=$ $\{\zeta \in C:|\zeta|=\alpha\} \cup\{\zeta \in C:|\operatorname{Im} \zeta| \leqq \alpha, \operatorname{Re} \zeta \leqq 0\} \quad$ (see Figure 1).

Figure 1.

Example 2 (see [8]) If $a(z)=|z|\{\cos \varphi 1 \log (2 \cos \varphi)+\varphi \sin \varphi\}$ where $z=|z| \mathrm{e}^{\mathrm{i} \varphi}(-\pi / 2<\varphi<\pi / 2)$, then $\Omega(a: \Gamma)=\left\{\zeta \in C:\left|\mathrm{e}^{\zeta}-1\right|<1\right\}$. (see Figure 2)

Figure 2
3. The Avanssian-Gay transform of analytic functionals with unbounded carrier
In [3], the Avanissian-Gay transform is introduced for analytic functionals with compact carrier, while in [6] and [10] it has been generalized to the case of analytic functionals with unbounded carrier. According to [3], [6] and [10]. Let us first recall the definition of the Avanissian-Gay transform of analytic functionals with unbounded carrier.
Assume that the closed convex set L is bounded in the imaginary direction and also bcunded below in the real direction. More precisely, we assume there exist $a_{i} \in R(1 \leqq i \leqq n)$ and compact sets K_{i} ($1 \leqslant i \leqslant n$) having a width less than 2π such that

$$
\mathrm{LC}{\underset{\mathrm{i}=1}{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}}+R_{+}+\sqrt{-1} \mathrm{~K}_{\mathrm{i}}\right)}
$$

where $R_{+}=[0, \infty)$
Furthermore let $T \in Q^{\prime}(L:\{0\})$; then the Avanissian-Gay transform $\mathrm{G}_{\mathrm{C}}(\mathrm{w})$ of T is given by

Some properties of $\mathrm{G}_{\mathrm{T}}(\mathrm{w})$ are listed in Proposition 1. (see [3], [6], [10])

$$
\begin{equation*}
G_{T}(w) \in O\left(\sum_{i=1}^{n}\left\{d \operatorname{lexp}\left(-L_{i}\right)\right\}\right) \tag{1}
\end{equation*}
$$

where L_{i} is i-th projection of $L(1 \leqq i \leqq n)$

$$
\begin{equation*}
\mathrm{G}_{\mathrm{T}}(\mathrm{w})=(-1)^{\mathrm{n}} \sum_{\mathrm{m} \in N^{n}} \mathrm{~T}(-\mathrm{m}) \mathrm{w}_{1}^{-\mathrm{m}_{1}} \cdots \mathrm{w}_{\mathrm{n}}^{-\mathrm{m}_{\mathrm{n}}} \quad\left(\left|\mathrm{w}_{\mathrm{i}}\right|>\mathrm{e}^{-\mathrm{a}_{\mathrm{i}}}\right) \tag{2}
\end{equation*}
$$

where $\mathrm{m}=\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right) \in N^{\mathrm{n}}$.
(3) Let $K_{i}=\left[k_{1}^{(i)}, k_{2}^{(i)}\right]$ with $k_{2}^{(i)}-k_{1}^{(i)}<2 \pi, \quad 1 \leqslant i \leqslant n$.

Then for all $\varepsilon>0$ and $\varepsilon^{\prime}>0$, there exists a constant $C_{\varepsilon, \varepsilon^{\prime}>0 \text {, such }}$ that

$$
\begin{align*}
\left|G_{T}(w)\right| \leqq C \\
\varepsilon, \varepsilon,\left|w_{1}^{\prime}\right|-\varepsilon^{\prime} \ldots\left|w_{n}\right|^{-\varepsilon} \\
\left(\varepsilon-k_{1}^{(i)} \leqq \arg \omega_{i} \leqq 2 \pi+\varepsilon-k_{2}^{(i)} ; 1 \leqslant i \leqq n\right)
\end{align*}
$$

(4)

$$
<\mathrm{T}, \mathrm{~h}>=\left(\frac{1}{2 \pi i}\right)^{\mathrm{n}} \int_{1 \times \ldots} \mathrm{G}_{\mathrm{T}}\left(\mathrm{e}^{-\zeta}{ }^{-\zeta}, \ldots, \mathrm{e}^{-\zeta \mathrm{n}}\right) \mathrm{h}(\zeta) \mathrm{d} \zeta_{\mathrm{n}}, \ldots \mathrm{~d} \zeta_{\mathrm{n}}
$$

for all $\mathrm{h} \in \mathrm{Q}\left(\underset{\mathrm{i}=1}{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}}+R_{+}+\sqrt{-1} \mathrm{~K}_{\mathrm{i}}\right):\{0\}\right)$, hereby $\Gamma_{\mathrm{i}}=\partial\left(\mathrm{a}_{\mathrm{i}}+R_{+}+\sqrt{-1} \mathrm{~K}_{\mathrm{i}}\right)$
Moreover

$$
\begin{aligned}
& T(z)=\left(\frac{1}{2 \pi i}\right)^{n} \int_{\Gamma_{1 x} \ldots \Gamma_{n}} G_{T}\left(e^{-\zeta 1}, \ldots e^{-\zeta_{n}}\right) e^{\zeta z_{d}} d \zeta_{1} \ldots d \zeta_{n} \\
&=\left(\frac{-1}{2 \pi i}\right)^{n} \int_{G_{T}}\left(w_{1}, \ldots w_{n}\right) w_{1}^{-z} \cdots-1_{w_{n}}^{-z_{n}-1} d w_{1} \ldots d w_{n} \\
& \partial \exp \left(-\Gamma_{1}\right) x \ldots x \exp \left(-\Gamma_{n}\right)
\end{aligned}
$$

4. Transfinite diameter and the Martineau-Šeinov theorem about Laurent series of several complex variables
In this section we recall the definition of the transfinite diameter of a compact set K in the complex plane and the Martineau-Šeinov theorem about Laurent series for functions of several complex variables.
Let K be a compact set in the complex plane and put

$$
\begin{aligned}
& V_{n}=\max _{z_{i} \in K} \underset{\substack{\pi \\
1 \leqq i \leq j \leqq n}}{\substack{i-z_{j}}} \\
& z_{j} \in K
\end{aligned}
$$

Then it is well knownthat $\tau(K)=\lim _{n \rightarrow \infty} \frac{2}{\frac{2}{n(n-1)}}$ exists for any compact KСC and it is called the transfinite diameter of K (see [1] and [12]).
Some properties of the transfinite diameter of a compact set K are listed in

Proposition 2. Let $\mathrm{K}_{\mathrm{i}}(\mathrm{i}=1,2)$ be compact subsets of C.
(1) $K_{1} \subseteq K_{2} \Rightarrow \tau\left(K_{1}\right) \leqq \tau\left(K_{2}\right)$
(2) $\tau\left(K_{1}\right) \leqq \frac{1}{2 \pi}$ (1ength of ∂K_{1})

Some examples of transfinite diameters are now given (see [1] and [12]).

Example 3. If $K=\{\mathbf{z} \in C:|z|=r\}$, then $\tau(K)=r$.
Example 4. If $K=\{z \in C:|z|=r,|\arg z| \leqq \alpha\}$, then $\tau(K)=r \sin \frac{\alpha}{4}$.
Example 5. If $K=[a, b], a, b \in R$, then $\tau(K)=\frac{b-a}{4}$
Theorem 3. (Martineau [5] and Šeinov [11]). Suppose that $G(w)$ is holomorphic in $\underset{j=1}{n}\left(C \backslash F_{j}\right)$, where F_{j} is a polynomially convex compact set and $\tau\left(F_{j}\right)<1$ for all $j(1 \leqq j \leqq n)$. Suppose furthermore that $G(w)$ has the following Laurent expansion at infinity

$$
\mathrm{G}(\mathrm{w})=\sum_{\mathrm{v} \in N} \frac{\mathrm{n}}{\mathrm{a}_{\mathrm{v}}} \frac{\mathrm{w}}{\mathrm{v}} \quad\left(\mathrm{a}_{\mathrm{v}} \in Z\right) .
$$

Then

$$
G(w)=\frac{A\left(w_{1}, \ldots, w_{n}\right)}{B_{1}\left(w_{1}\right) \cdots B_{n}\left(w_{n}\right)}
$$

where $A\left(w_{1}, \ldots, w_{n}\right) \in Z\left[w_{1}, \ldots, w_{n}\right], B_{i}\left(w_{i}\right) \in Z\left[w_{i}\right]$ and $B_{i}\left(w_{i}\right)$ are monic polynomial.

Remark 2. In theorem 3 , the assumption $\tau\left(F_{j}\right)<1,1 \leqslant i \leqslant n$ is crucial.
For instance, if $n=1$ and

$$
\begin{aligned}
G(w) & =\sum_{k=1}^{\infty}\binom{2 k}{k} w^{-k}=\sum_{k=1}^{\infty} \frac{(2 k)!}{(k!)^{2}} w^{-k} \\
& =\sqrt{\frac{w}{w-4}}-1,
\end{aligned}
$$

then $G(w)$ is holomorphic in the outside of the interval [0.4] In view of Example 5, $\tau([0,4])=1$ and obviously $G(w)$ is not a rational function.
5. Proof of Theorem 1.

In this section, we give the proof of Theorem 1, it is inspired by Avanissian and Gay [3].

Proof of Theorem 1.
By means of Theorem 2, there exists an analytic functional T, which is carried by L and of type $\{0\}$, such that $f\left(z^{\prime}\right)=<T_{\zeta}, \exp (\zeta z)>=\widetilde{T}(Z)$. From the assumption, L is contained in $\prod_{i=1}^{n}\left\{\zeta_{i}:\left|e^{\zeta}-1\right|<1\right\}$. Now consider the analytic functional \nVdash defined as follows

$$
\stackrel{\vee}{\langle T}, \mathrm{h}>=\left\langle\mathrm{T}_{\zeta}, \mathrm{h}(-\zeta)\right\rangle, \quad \mathrm{h} \in \mathrm{Q}(-\mathrm{L}:\{0\}) .
$$

Obviously, T is carried by (-L) and of type $\{0\}$.
From Proposition 1-(2), we get :

$$
\begin{aligned}
\operatorname{Gy}(w) & =(-1)^{n} \sum_{m \in N} n^{\stackrel{v}{T}(-m) w_{1}^{-m_{1}} \ldots w_{n}^{-m_{n}}} \\
& =(-1)^{n} \sum_{m \in N^{n}} T(m) w_{1}^{-m_{1}} \ldots w_{n}^{-m_{n}}
\end{aligned}
$$

$$
=(-1)^{n} \sum_{m \in N^{n}} f(m) w_{1}^{-m_{1}}, \ldots w_{n}^{-m_{n}}
$$

Remark that by means of the second assumption in Theorem 1, all $\mathrm{f}(\mathrm{m}), \mathrm{m} \in \mathrm{N}^{\mathrm{n}}$, belong to Z .
In virtue of Proposition $1-(1), G_{T}^{V}$ is holomorphic in
$\underset{i=1}{n}\left\{C \backslash \exp \left(L_{i}\right)\right\}$. From the assumption upon $L, \exp \left(L_{i}\right)$ is contained
in $\left\{w_{i} \in C:\left|w_{i}-1\right|<1\right\} \cup\{0\}$.
So there exist $a_{i}>0(1 \leqq i \leqq n)$ such that $\exp \left(L_{i}\right)$
$\subset\left\{w_{i} \in \mathcal{C}:\left|w_{i}-1\right| \leqq 1\right\} \cap\left\{w_{i} \in \mathcal{C}: R e w_{i} \leqq a_{i}\right\}$. (see Figure 3).

Ca11 $\mathrm{F}_{\mathrm{i}}=\left\{\mathrm{w}_{\mathrm{i}}:\left|\mathrm{w}_{\mathbf{i}}-1\right|<1\right\} \cap\left\{\mathrm{w}_{\mathrm{i}}: \operatorname{Rew}_{\mathrm{i}} \leqq \mathrm{a}_{\mathbf{i}}\right\}, 1 \leqq \mathrm{i} \leqq n$.

By virtue of Proposition 2-(2) $\tau\left(\mathrm{F}_{\mathrm{i}}\right)<1$. Therefore $\tau\left(\exp \left(\mathrm{L}_{\mathrm{i}}\right)\right)<1$. Accordingly we can conclude that

$$
\mathrm{G}_{\mathrm{T}}^{\mathrm{v}}(\mathrm{w})=\frac{\mathrm{A}\left(\mathrm{w}_{1} \ldots, \mathrm{w}_{\mathrm{n}}\right)}{\mathrm{B}_{1}\left(\mathrm{w}_{1}\right) \cdot \ldots \mathrm{B}_{\mathrm{n}}\left(\mathrm{w}_{\mathrm{n}}\right)}
$$

where $A\left(w_{1}, \ldots, w_{n}\right) \in Z\left[w_{1}, \ldots, w_{n}\right]$ and $B_{i}\left(w_{i}\right)$ are monic polynomials with integral coefficients.
The roots of $B_{i}\left(w_{i}\right)$ are algebraic integers which are contained in $\left\{w: \in C: \mid w_{i}+\mathbb{1}<1\right\} \cup\{0\}$ together with all their conjugate algebraic integers. But, in virtue of Proposition 1-(3), zero is not a root of $B_{i}\left(w_{i}\right)$ so that by means of C.R. Buck's lemma (See 3.2.5) in [3]), we can conclude that

$$
B_{i}\left(w_{i}\right)=\left(w_{i}-1\right)^{m_{i}} \quad(1 \leqq i \leqq n)
$$

Now, using the inversion formula of Proposition 1-(4),

$$
\begin{aligned}
& f(-z)=(T)(Z)=\left(\frac{-1}{2 \pi i}\right)^{n} \int G_{T}^{v}\left(w_{1}, \ldots, w_{n}\right) w_{1}^{-Z_{1}-1}, \ldots w_{n}^{-Z_{n}^{-1}} d w_{1} \ldots d w_{n} \\
& \partial\left(\exp \left(L_{1}\right)\right) \times \ldots \partial\left(\exp \left(L_{n}\right)\right) \\
&=\left(\frac{-1}{2 \pi i}\right)^{n} \int \frac{A\left(w_{1}, \ldots, w_{n}\right)}{\left(w_{1}-1\right)^{m_{i}} \ldots\left(w_{n}-1\right)^{m_{i}}} w_{1}^{-Z_{1}-1} \ldots, w_{n}^{-z_{n}^{-1}} \\
& \partial\left(\exp \left(L_{1}\right)\right) \times \ldots \partial\left(\exp \left(L_{n}\right)\right)
\end{aligned}
$$

whence, by means of the residue theorem

$$
f(-z)=P\left(z_{1}, \ldots, z_{n}\right) \text {, a polynomial in } z_{1}, \ldots, z_{n}
$$

But as $A\left(w_{1}, \ldots, w_{n}\right)$ belongs to $Z\left[w_{1}, \ldots, w_{n}\right]$, the coefficients of $P\left(z_{1}, \ldots, z_{n}\right)$ are rational numbers.
Hence $f(z)$ is a polynomial with rational coefficients.
Finally, we give two examples.

Example 6. Suppose that $f(z$, is holomorphic in the right half plane $\{\mathbb{Z} \in C: R e z>0\}$ and satisfies the following conditions :

$$
\begin{align*}
& |f(z)| \leqq e^{\alpha\lfloor z\rfloor} \quad(\operatorname{Re} z>0) \tag{1}\\
& f(n) \in Z, n \in N . \tag{2}
\end{align*}
$$

Since $a(z)=\alpha|z|$ and $\Gamma=\{z \in C: \operatorname{Re} z>0\}, L=\Omega(a: \Gamma)$ is the same as in Example 1.
Therefore, if $\alpha<\log 2, f(z)$ is a polynomial with rational coefficients.

Example 7. Put $f(z)=\frac{1}{B(z, z)}=\frac{\Gamma(2 z)}{\Gamma(z)^{2}}$,
where B and Γ are respectively the Bêta and Gamma functions.
This function has the following properties :
(1) $f(z)$ is holomorphic in $\left\{z: \operatorname{Re}>-\frac{1}{2}\right\}$, and hence also in $\{z: \operatorname{Re} z>0\}$.
(2) By virtue of Stirling's formula, for any $\varepsilon>0$, there exists a constant $C_{\varepsilon}>0$, such that

$$
L f(z)\left|\leqq C_{\varepsilon} e(2 \log 2) x+\varepsilon\right| y \mid
$$

and this for all $\dot{z}=\dot{x}+\dot{j} y \in\{z: \operatorname{Rez}>0\}$.
(3) $f(n)=\binom{2 n}{n} \in Z$.

In this case $\Gamma=\{\underset{\sim}{z} \in C: R e \dot{z}>0\}$ and $A\left(z_{i}\right)=2(\log 2) \dot{x}$.
So $\Omega(a: \Gamma)=\{\xi \in R: \xi \leqq 2 \log 2\}$.
Since $L=\Omega(a: \Gamma)$ is not contained in $\left\{\zeta \subseteq C: l e^{\zeta}-1 \mid<1\right\}$ this function $f(z)$ is not a polynomial.

REFERENCES

[1] R. Ahlfors, Conformal Invariants. Topics in Geometric Function Theory (McGraw-Hi11, New York, 1973).
[2] V. Avanissian, Sur les fonctions harmoniques d'ordre quelconque et leur prolongement analytique dans C^{n}. Lecture Notes in Mathematics 919 (Springer-Verlag, Berlin, 1981).
[3] V. Avanıssian and R. Gay, Sur une transformation des fonctionnelles analytiques et ses applications aux fonctions entières de plusieurs variables. Bull. Soc. Math. France, 103(1975), 344-384.
[4] F. Gramain, Fonctions entières arithmétiques. Lecture Notes in Mathematics 694 (Springer-Verlag, Berlin, 1978).
[5] A. Martineau, Extension en n variables d'un théorème de Polya -Carlson concernant les séries de puissance à coefficients entiers, C.R. Acad. Sc. Paris, 273. Série $A(1971)$ 1127-1128.
[6] M. Morimoto and K. Yoshino, A uniqueness theorem for holomorphic
functions of exponential type, Hokkaido Math.J., (1978), 259-270.
[7] G. Polya, Über ganze ganzwertige Funktionen, Göttingen Nachr. 1920, 1-10.
[8] G. Polya and G. Szegö. Problems and Theorems in Analysis I, (Springer-Verlag, Berlin, 1972).
[9] J.W.DE.Roever, Complex Fourier Transformation and Analytic Functionals with Unbounded Carrier, Mathematisch Centrum, Amsterdam 1977.

[10] P. Sargos and M. Morimoto, Transformation des fonctionnelles analytiques à porteurs non-compacts, Tokyo.J.Math.4(1981) 457-492.
 [11] V.P. Seinov, Transfinite diameter and some theorems of Polya in the case of several complex variables, Siberian Math.J.12(1971) 999-1004.
 [12] L.Zalcman, Analytic Capacity and Rational Approximation, Lecture Notes in Mathematics 50 (Springer-Verlag, Berlin, 1968)

Sophia University
Department of Mathematics
Kioi-cho, Chiyoda-ku
Tokyo 102. Japan

