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THE BULER CHARACTERISTIC AND SIGNATURE FOR OPEN MANIFOLDS 

Jürgen Eichhorn 

1. Introduction 

In £5] we studied the following situation. Given an open complete 

Riemannian manifold (Mn
fg), ajs?principal fibre bundle P(M,G)—•» M

n 

and a connection CA> on P. Chern-Weil construction and taking cha

racteristic n-forms c(Pf u> ) defines characteristic numbers 

c(PfcofM) * c(P,cu)[lfl - /C(P,CJ) 

M 

if the latter integral converges. Thus one has at first to assure 

the existence of the integral and at second to clarify how 

c(Pfcj ,M) depends on the connection OJ .To do this we introduced 

the completed space ^-p f K °* connections CO with bounded 

curvature R*0 and finite 1-action </)(CO) • f \RW\ dvol and 

proved the 
Theorem. Characteristic numbers exist for and are constant at the 

lopd components of vip $ <u* 
The metric of Mn did not enter into the characteristic numbers 

but was used to define and topologize the space P ^ p + ̂  • 

Here we consider the case Mn open, oriented, g allowed to vary, 

CO -= CO the Levi-Civita connection. We denote by E(g) the Euler 

form corresponding to g and set 

X (Mn,g) - / E(g). 
M 

In an analogous manner S(g) shall denote the signature form and 

d(Mn,g) . Js(g). 
M 

This paper is in finr.l form and no version of it will be 1 submitted 

for publication else* tere. 
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Then there arise the following natural questions. 

1. Under which conditions on g is X (Mn,g) defined? 
2. How does it depend on g? 

3. What is the topological meaning of X(Mn,g)? 

4. Under which conditions does there hold X(Mn,g) = X(M n), i.e. 

the GauB-Bonnet formula? 

5. The questions 1. - 4. for 6(Mn,g), <$ (Mn) . 

These questions are attacked successful by fundamental work of 

Cheeger and Gromov ( C3 3 t £-\~]) and Rosenberg ( [ 9] ). Cheeger 

and Gromov made the general assumption vol(M,g)<oo , | K| -£ 1 for 

the sectional curvature and r. .(M) ̂  1 for some normal or profi-

nite covering M of M. This altogether they denote by geo(M) £ 1. We 

here exhibit that the condition geo(M) < 1 is not necessary for 

answering the above questions and study in particular the depen

dence on g. To do this we topologize the space of Riemannian me

trics in an appropriate manner as described in section 3. In the 

4 th section we present the invariance theorems which come out 

by our approach (theorem 4.1, 4.3). The proofs essential use L -

cohomology. The 5 th section is devoted to dimension 4 where some 

nice results immediately come out from our approach. 

2. The attack of the problem and first results 

Starting with the Euler characteristic, we remark that for 

n « dim M odd the Euler form E(g) vanishes identically. Therefore 

the answers to questions l.,2. are trivial. 4. is affirmatively 

answered if and only if X(Mn) • 0. For Mn with a finite number 

of ends, each of them smoothly collared, i.e. compactificable to 

i:M—»M, M compact, this holds if and only if X(^M) • 0: 0 * 

= X (M ^ M) « 2X(M) - X(dM) « 2X(M) - X (&M) . The only in

teresting case for the Euler characteristic X(Mn,g) is the case 

n even. A simple and in a certain sense complete answer to the 

above questions can be given in the case vol(Mn,g) <oa , 

- b2 £ K * -a2< 0. 

Theorem 2.1. Suppose (Mn,g) complete, vol(Mn,g)<°o , -b2 £ K £ -a 
< 0. Then there holds X(Mn,g) « X (Mn). 

Proof. Prom the assumption follows that (Mn,g) posses a finite 

number of ends £^,..., £k, each of them with a Riemannian collar, 

i.e. each end has a collared neighbourhood U«^UXCo,°°C such 
ŝ l ~ A*nt _i_ AaH . m T a k i * * " " *» *»--»-•-- '"• "^ ..---»""--̂  that ds | „ - dr + ds | &u x / r j •J|§£-ng a chart (U« ,u , . . . ,un_J-) 

in dU, ds | v,x (o,^ " d r + - - — -^(u.iOdu^u^ with 
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h±;j(u,0) e~
2 b r ^ hi;j(u,r) <- h±;j(u,0) e"

2ar. 

This implies lim voltdU^ X {r}, ds I vn r v ) =- 0, k«l,..,k. 
r—> oo • ' * * ' 

Further the second fundamental form of dU Kx {r^ is bounded. 
For Mn we can writ* Mn * M,nu (*l au^K(ofc*C . M , n compact with 
boundary bM'n = U * U K • *~1 

For any compact manifold M? C Mn with boundary bid? there holds 

X(Mj,g|Mn) + IIy(dMj,gkMn) - X(ttJ), (2.1) 

where IIv (^?tgli/rn) « / II™ and 11™ is an (n-l)-form directed 
* i Mi &M£

 E E 

by the second fundamental form. If one has an exhaustion 
Mj C MJ C .. • of M n such that 

vol(&Mj)-r—-2*0 , IIE(dMj) bounded 

then, taking in (2.1) the limit i > oo f one obtains 

(2.2) 

X(Mn,g) - X(M n), (2.3) 

since lim llIy(dMn)|« lim I / II^cll?) I £ 

6 lim IlI^oM?) l«voKdMn) » 0, lim *(Mn) - XtM11). 

In our case we set M n « M«n » \) b\* Co,i) and (2.2) is satif-
fied. D 
Examples are certain cusp manifolds 

(Mn,g) - (M'n« N-^ Co,°°C u •••« Uk* C 0 , « C , g ) , 

ds2k<o,~c •dr2 + (e"r)2 **-V 
The curvature formulas at Nx£of<*>C are well known. These cusp 

manifolds arise as Riemanniaii manifolds which are locally symme* 

trie at infinity (generated ba rank 1 lattices P c G). 
A-modified situation is settled by 
Theorem 2.2. Suppose (Mn,g) open, complete with a finite number 
of Riemannian collared ends. Assume for each end £ there exists 
a neighbourhood U( £ ) « l^x ••• x Nfe* Co,°*( with 
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d s 2 | ü ( € ) - f l ( r ) 2 d ó ^ + — + f k ( r ) 2 d ó 2
k + d r 2 . 

t 

I f l im fK ( r ) * l im * i < ( r ) " °» *" It •••!---# then 
r i r M n , g ) - * ( • » > . 

Proof. [9] . D 

As a special case we consider surfaces and start with B famous 
theorem of Cohn-Vossen. 

Theorem 2.3. (Gaufi-Bonnet inequality) Suppose (M ,g) open, com-
p 

plete, oriented, TTi(M ) finitely generated. It the GauBian cur
vature K is absolutely integrable, then 

X(M) * ^p- JK dvol. o 
M 

2 2 
Theorem 2.4. Suppose M open, complete, oriented, T!\(M ) finitely 
generated, vol(M ) < <* , K absolutely integrable. Then 

X(M) « ^ J K dvol. 
M 

Proof. C7l . D 

Remark 2.5* The curvature K is allowed to be unbounded. 
Remark 2.6. The condition vol(M) <°o is far of being necessary. 
• P ? p 
Example. Let (M ,g) be the surface of revolution z • f(x +y ) for 
f ec°°(C0, <*>C), f(0) =- ff(0) = 0, the metric induced fromlR3. 

Then X(M). - (2TT)"1/ K dvol if and only if t 1 / 2f'(t^—» i°° . 

Taking f(t) « t , n * lf supplies examples with vol(M,g) •» oc 
and positive curvature. 

As a conclusion we see that one has to give up the assumption 

IK I £ 1, vol(M) < °° and to consider the more general case. This 

does not contradict to the matter of fact that in the case 

vol(M) < QO ,|Kl £ 1 Gromov and Cheeger were very successful in at
tacking the problem. Their methods work at the first instance only 

under their restrictive conditions. 

In a similar manner one treats the signature <j(M). The starting 

point is the analogous equation to (2.1) for (Mn,6Mn) compact with 

boundary, 
<£(M) * d(M,g) + ^(fcM,g) + II^(bM,g), (2.4) 

where ^|(6M,g) is the ̂ i-invariant of £l] and II ̂  (&M,g) is the 

integral of an (n-l)-form directed by the second fundamental form. 

The natural way to attack the problem is seeking for an exhaustion 

Mjc ltn C ••• of Mn and to assure 
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nrj(6M, ,g) >0, I I 6 (6M, ,g) > 0. (2.5) 
1 1 i—>oo U X i~»~ 

The second limit condition is satisfied if the second fundamental 
form of dM. is bounded (independent of i) and voKdM^) i> 0; 
or the second fundamental form tends to 0 and volf&M,) is bounded. 
Then the equation 6(M) = cS (M,g) holds if and only if 
^(dM. ,g) > 0. For this it would be sufficient 
v x i—*-<*> 

I 'n(dM.)I - C-voK&M.) and voKiM,) > 0# 
1 -1- X i »QO 

Along this line Cheeger and Gromov attacked the problem under the 
assumption geo(M) - 1. We return to their solution in the 4 th 
section. 
Remark 2.7. <j(M,g) can be (if it exists) an arbitrary irrational 
number. But (S(M) defined as the signature of a certain intersec
tion form is an integer (if it exists in the open case). Therefore 
the equation (J (M) * <s(M,g) holds "very rarely". One has to give 
<£(M,g) a new topological meaning as done in £3] . -

3. The space of Riemannian metrics on a noncompact manifold 
For the preparation of the invariance theorem we have to introduce 
an appropriate and natural topology into the set of Riemannian me
trics on a noncompact manifold. This shall be done now. Suppose 
M n being open, connected, oriented, TM the tangent bundle, g a 
complete metric on M. The pointwise norm of a tensor 
tec°°(<4> TM 3 ^ T*M)of type ( r , s ) with respect to g i s defined 

• ,*1 fx--rrSr*iJ...i;*jJ...^. (3.D 
where we apply the Einstein summation convention. If 
e-,,...,en T!_M is an orthonormal base and e ,...,en the dual base, 
then we can (3.1) write as 

2 1 T_ il -
'•'g.x-pTTT i7T7:.,i t(e ,.-.,e r,e.j ,...,e.j ) . 

•i- r _ S 

As uniform structure U(g) of g we define the set of all Rieman
nian metrics gf such that |g-gf L _ and |g-gf !„,, _ are bounded 

tS> x g ,x 

on M. 
V. 

Lemma 3.1. U(g) coincides with the quasi isometry class of g, in 
particular are the conditions g f€ U(g) and g € U(gf) equivalent. 
Proof. Assume Q1 g € g

f € C 2 g, C± « Ci(g,g
f) (3.2) 
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in the sense of positively definite forms. Let e19*.«,e ( T M 
be an orthonormal base with respect to g. Then (3.2) implies 
g,(e.,ei) £ C2 g(ei,ei) * C2. Squaring and summing up gives 
lgf|| x * C^n, and we obtain together with |g-g

f| * lg| + 
+ (g'L ^ - T 5 + C9Tn *(C9+l)Yn, i.e. Ig-g'l,. ,. is bounded on M. 

g»X «c £ g*-* 

In the same manner one shows Ig-gMgi-j-. bounded on M. Suppose now 

|g-gf lg xt lg-gflgffX bounded on M. Then again I g
,l g > x

 c^S9\g$x 

+ I g L ^ * C0. If e-,...,eweTM is an orthonormal base with re*-
g»x *c -*- 2 2 2 2 

spect to g, then > gf(e.,e.) -* C^ = C^gte^e.^) , in parti
cular gf(ei,ejL^ ^ C2g(ejL,ei), i = l,...,n, i.e. g

f £ C2*g. 
The second inequality follows in the same way. D 
Let f: R+ > R+ be a nonnegative function. As growth type of f 
we define the equivalence class df f with respect to the equiva
lence relation *i ̂ * 2 S T**ere exis* constants a,b,c,d> 0 such that 
fj(t) * a f2(bt), f0(t) £ c f1(dt). The growth type of a Rieman-
nian manifold (Mn,g) shall be defined by the growth type of 
f(t) = vol(B.(xQ)), where B.(xQ) denotes the metric ball of radius 
t centered at x 0€M. The growth type is independent of xA and an 
invariant of U(g). In particular each metric g fG U(g) is comple
te, since every gf-bounded set Nf is contained in a g-bounded set 
N (lemma 3.1). N is relatively compact, thus Nf too. (Mn,g) has 
the growth type of a bounded function if and only if vol(Mn,g)<*-* . 
The same then also holds for all vol(Mn,gf), gf € bU(g). 
vol(Mn,g) • °o if and only if (Mn,g) has the growth type of an 
unbounded function. This is equivalent to vol(Mn,gf) « °° for 
all gf € bU(g). 
If sup | t I x exists we define the sup-norm l|tlL o* t with re-
spe$te,Klo g by bllt||g - sup I t| . From gf £bU(g) follows the 
existence of bounds Ak(g*g

f7f Bk(g,g
,)> 0 such that 

Ak , t ,g.x^ , tlgt fx*
Bk , tlg fx-

 (3-3) 

A kHtH g * llt||gf ^Bkl|t||g' (3.4) 

for every (r,s) tensor field t with r+s • k and litII « IItil 
In what follows we still need norms of higher deriyatives. For 
metrics g,gf we set B « g» - g> n *= Vf - V s V g - V s . 
Lemma 3.2. Suppose gf € U(g)« The boundness on M of one of the 
the following terms implies the boundness on M of allvothers, 
l^g'lg, IVg'lg,, IVgl g, \Vg\ ,,IVBlgt l7B|g,, lv'Blg, 
I V'Blgt.lDlg, iDlg., where V - V g, V - Vg'and we omitted 
the index i. 
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Proof. We use 
{ W | - | V B | , | V ' g l = | V B | , (3.5) 

always taken with respect to the same metric, 
g'(D(X,Y),Z) = -| STX B(Y,Z) + V~yB(X,Z) - V z B(X,Y),(3.6) 

V£ B(Y,Z) - g(D(X,Y),Z) + g(Y,D(X,Z). (3 .7) 
Then, omitting "bounded on M", we have the following implicati-

OTJ.S * 

(VgM 4=»(Vg f ( g ,<=^ IVBl , by (3.3) and (3 .5 ) . I VB | g . ^ 
=> |VD| , by (3 .6 ) , ( D J g f ^ l D ( g by (3 .3 ) , | D | g = > I V ^ l g 

by (3 .7 ) , I V f B i g ^ j V f g | g ^ | V f g ( g f by (3.5) and (3 .3 ) , 
j V f B/ g 4=^ |D( follows from (3 .6 ) , replacing gf- by g, 

Vby V f (g f GbU(g) i f and only i f g £ b U ( g f ) ! ) , by the same 
procedure for (3.7) we obtain (Djgf-^(VB( f , by (3.5) 

(VB|gf4=^ | V g f / g f , and the cirdle i s closed. D 
Now we set 

b f lU(g) « { g f £ b U ( g ) [ b((Dl(g<^ . |{VgDll <<*>}. 
fomma 3.3 . gf Cbf lU(g) i f and only i f g € b f l U ( g ' ) . 
Proof. According to lemma 3.2 i t remains only to show llDIL<< ,̂ 
btlVD(| <oo imply bttVfBlLf<

od (the other direction one gets 
by changing g, V with g f , V f ) . Now VfD * V»D- VD + VD, 
b l |V fD|| f ^b(tDD(|gf + bWVDUgf « B3(

bHPD»g + V D t ^ X • 
Remark 3.4 . We now b({D(L<^is equivalent to b | |Vg fM<^o. There
fore KVD |L< so means a condition for the second derivatives 

K b 2 
of the metric, and i t would be also reasonable to write f U(g) 
instead of f U(g). We decided to write f U(g) since we consi
der the conditions on the second derivatives of the metric as 
conditions on the f i r s t derivatives of D. 

Assume p ^ 1. We set 
V ( g ) « (g f €bU(g) | J~(g-gf|P

gfX d v o l ( g ) x < o c } , 

V ' ^ g ) - £ g > € V ( g ) | / | D | P dvol(g) <<* , lVD|p dvol <<*}, 
S f g,x 

b f lup^(g) « bflu(g) n V ' ^ g ) . 

Lemma 3.5. a. gf £ V ( g ) if and only if g€ bU p(g f). 

b. gf6 V f l ( g ) if and only if g€ bU P f l(g f). 

c gf €bf±Up'1(g) if and on.y i* g ^ ' V ' ^ g ' ) . 

Proof. This follows immediately from lemma 3.1, 3.2 and the deri

vation of (3.6), (3.7). D 

Now we consider 
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*M-' • {g I g complete metric with lR6L X hounded on M ) f 

.^W? • fg | g complete metric with J lRg|p _ dvol(g)<c^'\ f 

bJU? - b.At n JM.P. 

Lemma 3.6. If ggb_M. g'Cb;-U(g). then g'CbJrt.. 

Proof. With R - Rg, R' = Rg* there holds 

R'(U,V)W - R(U,V)W + D(U,D(V,W)) - D(V,D(U,W))- ( 3' 8 ) 

- D(D(U,V),W) + D(D(V,U),W) + V.jD(Y,W) - VyD(U,W), 

i«_e.R,DV V D bounded imply R' bounded. O 

Now we are able to introduce a natural topology for Jk. 
If g € b A , l> 0, then we set 

b'1Ut(g) -8{g'6
b'1U(g)( bllg-g'l|g<€ ,

 b« 7-Dllg<» , i-0,lj. 

According to (3.4) and lemma 3.3 there exists a <f> 0 such that 

* Ug(g) is a neighbourhood for all gf € » U^(g). Altogether this 
means that the system of all * Ufc(g), g£ -M., fc> 0, defines a 
locally metrizable topology for _Vlwith { • Uj (g))f>o as neigh
bourhood base for gG -AC. Let JJL be the completion of JA with 
respect to this topology. 

In similar manner we treat JA%* This shall be prepared by 
Lemma 3.7. If g£Jl% and g' Gb,1UPfl(g) then g'&M J. 

Proof. This follows from (3.8) and by use of l(sft)_|
p - |t||'|sl? 

and It|p | s|p is an element of L. if | t|p L1 and | fl| is bounded. 

We denote pHg-gfll *^pllg-gfllg s-( /I g-_
fl | _dvol(g)_)1/pt analo

gous PJI^^U- VllVHjL and set for g£Jkt9 £ > 0 

bflup»1(g) -ig'€b»V»1(g)|p||g-g'| |g<e i W D I I ^ 
i * 0,1 V 

Aggtin according to (3.4) and lemma 3.3 the system of all 
b,IuP*

1(g)f g£J/t
p Z> 0, defines a locally metrizable topology 

for JflJZ whose completion we denote by JK 2. 
Lemma 3.8. J^-and J^? are locally arcwise connected. 

Proof, it is sufficient to show the locally arcwise connectness of 
b-M. and .At?. We show the local contractability which implies the 

locally arcwise connectness* This is done if for 0< t <19 

g f£ b f lU € (g) tgf+(l-t)g€b»1Ug (g). But bHtgf+(l-t)g-g||g « 

«b|lt(gf-g)|l - t(bllgf-g|| ) < £ , the first condition is satis-

fled. NowlfDll <— is equivalent to II Vgfllg < ~ , thus 

|| V(tgf+(l-f)g|| « tl|Vgf||<*> . In analogous manner 
b||Vr2(tgf+(l-t)g)lL » t"b||v2g'l|g <<*> , altogether we have pro-
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ven b||vtg,+(1-t)g -Vg|| *J«» , b||V(VtS'+(1"t)e -Ve|lg*~> . The 
proof for >>i(? --s completely parallel, replacing | I by **|| || . 

Corollary 3.9. In "At, J/i , JAj, JK,j coincide components and 

arc components.a 

Now we are able to prove our first main theorem. 

Theorem 3.10. a. Suppose g£ J/L. Then the component of g in -At 

resp. bJi coinsides with b,1U(g) resp. b,1uTg). _ 

b. Suppose g£*-At̂ . Then the component of g in JAJ^ resp.jVt^ coin
cides with b,1Up,1£g) resp. b,1Up,1(g>. 

Proof. We start with Jt. According to corollary 3*9fe& have to con

sider arc components. Assume gf to be an element of the' arc compo

nent of g in <Al , and let (.S-̂ o-Rt̂ l b e a n a r c ^e*Wjeen £ and gf, 

gQ-6t &!-&'• T*-© arc can be covered by a finite number o£ open 

neighbourhoods b,1U t (g0),
b,1U t(gt ) ,... ,

b,1Uc (gt ) «- ̂
,1Ue(g

,)t 
9 ue ( gt ) A Ut ( gt ) * 0- X r 

I f gi-l,i £ b , l ui ( gt ) A b , l u£(6 t
 }* t h e n w e have" 

b ' 1 u ( g V i ) D
 b a ^ ( g V i ) 5 g i- l f i€

b' 1u t(g t i)c
b , 1u(g t i), 

i.e. according to lemma 3.5 ' U(g. ) = * U(g. ), which implies 
i-1 i 

b,1U(g) - b,1U(g«), g'€b,1U(g). Suppose now g« £ b,1U(g). We wili 
show that g* is an element of the arc component of g. This is done 
if there exists an arc in ^Allying in • U(g) between g' and g. 
Set gt • tg

f+(l-t)g. This is in fact an arc in J^ since 

(03 )• Further we conclude as in the proof ~of lemma 3.8 that 
bl|g-gtllg<~ ,

 bIIV8t -V%«* , bH (V 8 t -V« )I g<- • Since 
g,g' ly in the same isometry class g and g. ly in the same isome-

try class too. Thus we obtain II l| < °° for the above expres

sions. For JA> a. is proven, and tne extension to *At is tri

vial. The proof for b. is performed completely parallel, replacing 
bll II by P|l II , using lH«l X, I R*'L, X. I Dl_ X J D L , X 6 L , 
. . I gfX g fX g,x g ,x p 

IDL _t ID Li .̂ bounded, (3t9) and the translated arguments in 
g»X g ,x 

the proof of lemma 3.8.Q 

Finally we consider JAJ^ « JA^JtiJf with the weakest topology 

such that both inclusions J/\^ c—rM.9 M% are continuous. This 

is just the topology generated by the b , 1U p , 1(g), gC^VlJ, £> 0. 

Then immediately follows 
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Theorem^3.11. Suppose g £ .vAl?. Then the component of g in M^ 
resp. hM^ coinsides with b,iUp,1(g) resp. b , 1U p , 1(g). D 

4. The existence and invariance of the Euler characteristic and 

signature 

Por the proof of the invariance theorem we still need L -cohomolo-
gy which we now shortly define. By Qq we denote the vector space 
of all smooth q-forms on M. Given some metric g on M, then for 
* € j l q pirf II * ( / Klp4vol)1/p is defined, if the latter Inte
gral converges. Denote 

and 

pJlq - pJ2q(g) -{tf€Ji<upi.fii<«> , Piidfii <<*} 

p J l q , d = completion of p- i lq with respect to pll Ud, 
PUflL - WH + pMd*|| . 

0 

'd 

The cohomology of the complex 

0—>PIi°»d--+ PJl-+d—> *** -»PJl<l»d^->"*—> PJtn»d 

is called the analytical L -cohomology pH*(M,d) of (Mn,g), 

pHq(M,d):« ker(d:pJlq'd—?'pJlc'+:L'd)/im(d:
pJIq-1'd—>pIIq'd) -

= pZq(M,d)/pBq(M,3). 

The complex 

o->pJlJ — > pAj—>-*-> pJl q —> «* < ->pJlJ-^ o 

defines the cohomology PH (M,d). According to a result of Cheeger 
(C2l ) the inclusion pJl*c-> PJl*id inducefl a n isomorphism 
pH*(M,d)—> pH*(M,d). Por this reason we identify these spaces 

and write simply pHq(M). 

Now we are able to prove the invariance 

Theorem 4.1. a. If g€-4ti and X(M,g) exists, then X(M,gl) 

exists for all gv of the component of g and X(M»g) "^(Mfg1)* 
b. If g6-AlJ and <£(M,g) exists, then <j»(M,gv) exists for all 
gv of the component of g and (J (M,g) «d(M,gv). 

Proof. Suppose X(M,g) « tf E(g) exists. If g1 is an element of 
the component of « ±nJi^9 then g v£ b , 1U l f l(g). Since g,gv are 
quasi isometric (IJ?,d(g),d)f (

IJl*,d(gv) ,d) are equivalent 
Lj-complexes and 1^(M fg),d) f"

 1H^(Mfg
,).d) coincide. There 
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exists an arc between g and g1 in * U • \g) cj^^ which generates 

an (n-D- form P̂ , *f and d̂ f absolutely integrable, such that 

E(gf) * E(g) + d!f , i.e. E(g) and E(gf) are cohomological cocycles 

in ̂ H^Mjd) ( C53 )• According to a fundamental theorem of Gaffney 

( C61 ) lrAi = 0, i.e. 
X(Mn,g') = I E(g') -* I E(g) + I dtf -= I E(g) «X(Mn,g). 

The proof of b. for n«4k is completely analogous using (S(Mn,g) « 

» I L, I « l(p(g)) the Hirzebruch polynomial, a 

Remark 4.2. The theorem extends immediately to the components in 

Assume M—>M a normal covering with Deck(M) * p , geo(M) -£ 1. Let 

TTq: JT-q(M)—.K^iq be the orthogonal projection onto the L2-harmo

nic forms 1&q, "]f q("f) -= Jllq(x,y),,f (y)dvol with a C°° symmetric 

kernel hq(x,y). The pointwise trace, tr(hq(x,x)), is invariant un

der J"1 and thus can be considered as a function on M. We set 

%f2)(VL) -= ^ tr(hq(x,x))dvblx and . 

fsJ 

\2)™ - Z^ (-Dq%)CM), 

C(2)(M
4k) - Itr(*'h2k(x,x))dvolx. 

/** r* 

Corollary 4.2. a. Suppose geo(M,g) £ 1, M a normal or profinite 
covering of M. If M has finite topological type (i.e. M has a fini

te number of ends, each of them smoothly collared), then 

Z(Mn) «X(M n,g) * £(Mn,g'), (4.1) 

d(Mn) » d(Mn,g) « £(Mn,g') (4.2) 

for all g1 of the component of g in J& + * 
b. Suppose geo(M^) £ 1 for some normal covering M of M. 
Then X(2)(M

n)« X(Mn,g) « *(Mn,g') (4.3) 

7>(^(VLn)= 6(Mn,g) * 4(Mn,g') (4.4) 
* ' AAI 

for all gf of the component of g in JVkf. 
Proof. The first equation in (4.1)-(4.4) is contained in p j , 
the second comes from theorem 4.1. D 

Theorem 4.3. If g£*!A(f, then X(Mn,g) resp. d(Mn,g) exists and 

X(Mn,g) «£(Mn,g') resp. ^(M11^) «d(Mn,g') for all g' in the 

component of g. 

Proof. The existence follows immediately from lemma 3.8, corollary 

3.9 of C5l t the invariance from 4.1 above•D 
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5. Applications to 4-manifolds 

M^ shall denote an open oriented 4-manifold. The special orthogo-

^ of algebraic curvature tensors on 

M. Let tfc * ̂  + "f + \KJ the corresponding decomposition into 

irreducible subspaces. Then this induces for the curvature tensor 

R * Rg a decomposition R « U+S+W. For R = R6 « R + R_ we denote 

by Ric » Ric6 the Ricci tensor, by T • T g the scalar curvature, 

by K the sectional curvature and by W « Wg s W + W_ the Weyl ten

sor. The sign . resp. refers to the decomposition of 
2 A 2 2 "* 

_/V «= .y\-+ ®-/\._ into self dual and anti self dual components. 
Theorem 5.1. If g£A^, then ^(M,g), <jr(M,g) exist and are 
constant on the component of g in JA^. 
Proof. For iRl2 « (R|2 there holds 

|R|2 « |Dp + ISI2 +IWI2, (5.1) 

|Ric|2 * 6 |Ul2 + 2lSl2, <5.2> 

X2 * 24 | U | 2 , ( 5 - 3 ) 
(R|2

 = 4 lW | 2 + 4|W_|2 + 2 |Ric | 2 - i T 2 . (5.4) 

Therefore / iR l dvol«*» implies the integrabil i ty of i R i c ! 2 , ^ 2 , 
(W+(2 , |W - l

2 . The equations 

E(g) . - ^ | — 2 ( U l 2 - 4 lRicl2 +X2)dvol (5.5) 

2 S ( g ) e "FT? ( , W + [ 2 * l W - ' 2 ) d v o 1 

f in i sh the proof .o 
Corollary 5.2. Suppose gfc-^t^. If there exists an A>0 such that 
-A*g 6 Ric 6 - | A g or -A £ K 4 - 1 A, then 

l<S(M,g)Hf £(M,g), 

and the inequality holds for all gf in the component of g. 

Proof. The pinching conditions imply the corresponding inequali

ties for the integrands ( C^3 )• O 

We conclude with 

Theorem 5.3. Suppose g^^Hf* Then ^ M j g ) , £ (M,g) exist and 

y(M,gf) *)£(M,g), (^(M^1) «^(M,g) for all g' in the component 

of g in M.\. This in particular holds if vol(M,g)*<*> , K 

bounded* 

Proof. g€ *Ji\ implies g€>H2. O 
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