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NOTE ON STIEFEL-WHITNEY CLASSES
OF FLAG MANIFOLDS

Jdlius Korbad

The Stiefel-Whitney characteristic classes seem to contain
quite interesting information on real flag manifolds (cf. e.g. @3l
@, [ .

Let G(kl""'kr) denote the real flag manifold O(kl+...+krY'
O(kl)x...xo(kr), where kl,...,kr(r>»2) are fixed positive inte-
gers. For instance, G(kl'kz) is the Grassmann manifold of kl—pla-
nes (or k2—planes) in real Euclideen k,+k,-space.

Recall (cf. [5] for details) that over the manifold G(kl”"’
kr) one has naturally defined ki-dimensional vector bundles
(i=1,...,r) with their Whitney sum being trivial bundle. For the
tangent bundle one- has
(1) TGk, e0n k) = 1<i€23.<r TP -

Moreover, by [1], the Z,-cohomology algebra ﬁzG(kl,...,kr);Zz)
can be identified with

Zg[wl(ji),...,wkl(zi),...,wlbz}),...,wkr(z})]/J,

where J is en ideal determined by single relation f£1w( i)=1.
Here W(F) =1 + wlCF) + w2(f) +... means the totall 'Stiefel-
Whitney class of a vector bundle¥ . If M is a smooth closed mani-
fold, one puts as usual w(M)=w(TM).
The main purpose of this short note is to illustrate our

introductory observation anew by the following

THEOREM., If r23; k.= kz‘—-'-'- cee = kr(mod. 2) and k1k2"'kr‘ >1,
then WB(G(kl""’kr))E G(kl""’kr);ZZ) does not vanish.

As an application, one gets

COROLLARY. If r >3, then the flag manifold G(kl,...,kr)' ad-
mits an almost complex structure if and only if k1=k2="'=kr=1,
and dim(G(kl,...,kr)) = (g) is an even number.
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Namely, it is easily verified that the manifold G(1,...,1)
is pearallelizable. r

Therefore, if its dimension is even, this manifold obviously
admits an almost complex structure.

Moreover, in order that a real smooth closed manifold M be
almost complex, it is necessary that M be even-dimensional, orien-
table and also that all the integral Stlefel-Whltney classes

1€ #21-1(M;2) be zeros (cf. [7, 41.9), hence the same be
true for wys 1 (ME H21—1(M Z,).

Keeping in mind that kl— kz_....ESKP(mod 2) is equivalent to
orientability of G(kl""’kr) (cf. [J), we get Corollary as a con-
sequence of Theorem indeed.

Proof of Theorem. Without loss of generality, we suppose

> eee <kr. Hence kik,...k >1 implies clearly kr>2.
Consider first the case r=3, If kIE k2‘='k3(mod 2), we compu-
te from (1) (cf. 3] if needed)

w2(G(k1,k2;k3)) =[1 +(:9 1v“(l;)]w%(a'l) +[1 +(:2)+(:3nwi(a%) +

k1< k

+ w1(11)wl(wé)'

Since wl(G(kl,k2,k3)) is now zero, the Wu formula yields

w3(Gley Ky, k) = wECP Iwy O,) + wy (Wl ().
By direct finding a basis in ﬁ%G(kl,kz,k3);22) or by apply-
ing the Leray-Hirsch Theorem to the obvious differentiable fibre
bundle G(k2,k3)(———9G(k1,k2,k3)

G(ky,kytky)

one proves the assertion.

Now recall ( [2] ) that when FQ—¢F is a differentiable fibre

p

bundle, then one has TE = ﬁ*(TB)GBn , where m is the "tangent
bundle along the fibres". So, if F is connected, wj(F\ # 0 implies
wj(E) # 0,

This, when applied to the fibre bundle

G(kz,...,kr)C__,G(kl,...,kr)

ngl,k2+...+kr),
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with an obvious induction, proves Theorem completely.
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