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NOTE ON STIEFEL-WHITNEY CLASSES 
OF FLAG MANIFOLDS 

Julius Korba§ 

The Stiefel-Whitney characteristic classes seem to contain 

quite interesting information on real flag manifolds (cf. e.g. [3], 

[4], K ) . 
Let G(klf...fk ) denote the real flag manifold O(k1+...+k V 

0(k,)x...xO(k ), where k,f •. • ,k (r> 2) are fixed positive inte

gers. For instance, G(k,,kp) is the Grassmann manifold of k,-pla-

nes (or kp-planes) in real Euclidean k,+kp-space. 

Recall (cf. [5] for details) that over the manifold G(k,,..., 

k ) one has naturally defined k.-dimensional vector bundles *>. 

(i=l,...',r) with their Whitney sum being trivial bundle. For the 

tangent bundle one- has 

( i ) TG(k . . . , k ) = e - h ® ^ . 

Moreover, by [l], the Z?-cohomology algebra mG(k,,...,k );Zp) 

can be identified with 

Z2- wl (Tl )»"" wk 1
('h ) wl(tr)>-"'wkr

(Tr):,/J' 
r 

where J is an ideal determined by single relation Plw^. )=1. 

Here w(TF) = 1 + w-.0|O + W2^P + ••• m e a ns the total1=1Stiefel-

Whitney class of a vector bundle^. If M is a smooth closed mani

fold, one puts as usual w(M)=w(TM). 

The main purpose of this short note is to illustrate our 

introductory observation anew by the following 

THEOREM. If r>3, k,s- k2s . # # s kr(mod 2) and k^.. .kr >1, 

then w-,(G(k, ,... ,k ))€ HvG(k, ,. •. ,k );Z?) does not vanish. 

As an application, one gets 

COROLLARY. If r .>3> then the flag manifold G(klf • • • ,kr> ad
mits an almost complex structure if and only if k, =k9=..,=k =1 

2 is an even number. 

This paper is in final form and no version of it will be submitted 

for publication elsewhere. 
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Namely, it is easily verified that the manifold G(l,...,1) 

is parallelizable. r 

Therefore, if its dimension is even, this manifold obviously 

admits an almost complex structure. 

Moreover, in order that a real smooth closed manifold M be 

almost complex, it is necessary that M be even-dimensional, orien-

table and also that all the integral Stiefel-Whitney classes 

W2i_1(M)€ H
2i"1(M;Z) be zeros (cf. [7, 41.9]), hence the same be 

true for w2i-1(M)€ H
2l-1(M;Z2). 

Keeping in mind that k-.= k2= ... s k (mod 2) is equivalent to 

orientability of G(k-,,...,kr) (cf. [J), we get Corollary as a con

sequence of Theorem indeed. 

Proof of Theorem. Without loss of generality, we suppose 

k-,<: k0< ...^k . Hence k-.k0...k >1 implies clearly k >2. 1 2 r 1 d v r * r 

Consider first the case r=3. If k-.-= kp =k-.(mod 2), we compu

te from (1) (cf. [3] if needed) 

w2(G(k1,k2,k3)) =[l +(2 j+( 2 /JwfC JL) +[l +(2 ) + (2 )Jwf(^) + 

+ w1(-|fi)w1(lr2). 

Since w-.(G(k1,k2,k-,)) is now zero, the Wu formula yields 

w3<a<k1,k2fk3>) = w2(Tl)Wl(^2) + w^ft.w^Jj,). 

By direct finding a basis in H(G(k1,k2,k3);Z^) or by apply

ing the Leray-Hirsch Theorem to the obvious differentiable fibre 

bundle G(k2,k3)( >G(k1,k2,k3) 

G(k1,k2+k3) 

one proves the assertion. . 

Now recall ( [2] ) that when F<—•F is a diff erentiable fibre 

bundle, then one has TE = p*(TB)©7] , where Tj is the "tangent 

bundle along the fibres". So, if F is connected, w.(F) ^ 0 implies 

w.(E) ? O. 

This, when applied to the fibre bundle 

G(k2,...,kr)C—».G(k1,...,kr) 

0.(^^2+...+^), 
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with an obvious induction, proves Theorem completely. 
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