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NATURAL TRANSFORMATIONS OP WEIL FUNCTORS INTO BUNDLE FUNCTORS 

WProdzimierz M. Mikulski 

Abstract. We deduce that the set of all natural transfor

mations of the Weil functor T of A-velocities into a bundle 

functor P is bijectlvely related to the set 

(v<.F0F
k : tyf£ C°°(ak,IRk+1) (jAf=jAik--=--»Pf(v)=Pik(v) )} , 

provided A is a Weil algebra in k variables and where 

ik:IR
k MRk4"1 is given by ik(x) = (xfO). In the case where P 

is a linear bundle functor we deduce that the dimension of 

the vector space of all natural transformations of T into P 

is finite and is less than or equal to dim(FJR ). We const

ruct a linear bundle functor G such that the vector space of 

all natural transformations of 0 into G is infinite dimensio

nal. We determine the spaces of all natural transformations 

of Weil functors into linear functors of higher order tangent 

bundles. Corollary 4»2 shows that any bundle functor has 

(locally) a finite order i 

1,Bundle functors. Throughout the paper all manifolds are 

assumed to be paracompact, without boundary, second countable, 

finite dimensional and smooth, i.e of class C°°. In general 

maps will be assumed to be C°° , unless the smoothness should 

be proved. 

Let Mf be the category of all manifolds and all maps, £SL 

be the category of all fibered manifolds and their morphisms 

and B: Si *M£ be the base functor. Given a functor P: 
P 

U£ • M satisfying B»F= idjj- , we denote by pjy-:FM »M 

"This paper is in final form and no version of it will be 

submited for publication elsewhere." 
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its value on a manifold M and by F f:F M- * Pf( x)
N the rest

riction of its value Ff:FM •FN in f:M—•N to the fibres 
of FM over x and of FN over f(x), x£M. 

Definition 1,1 (C8DA bundle functor on 1 is a functor 
F:J2£ *FM satisfying B»F = i d ^ and the localization condi
tion: if i:U --M is the inclusion of an open subset, then 
Fi:FU -*(PM)~

1(TJ) is a diffeomorphism. 
Let M,N,P be manifold. A parametrized system of smooth 

maps -? :M *N , p £ P is said to be smoothly parametrized, 
if the resulting map f:MXP *N is of class C°° . 

Pro-position 1,1 (C8I) Every bundle functor F:E£ ^HJ 
satisfies the regularity condition: if f:MXP—»-N is a 
smoothly parametrized family, then the family Ff:"Wx.P +m 
defined by (̂ f) -=̂ (f ) is also smoothly parametrized. 

V/e will cite the proof of the proposition in Section 9. 

2. Weil funptors. Let E(k), k£ tM be the algebra of all 
germs at zero of smooth functions on [R into IR, jn(k) the 
ideal of apll germs from E(k) vanishing at zero and nL(k)r+' 
its (r+1) power. Any ideal (A) in E(k) satisfying the condi
tion j&(k)D@!}m(k)r+1 (for some integer r^O) will be cal
led a Weil ideal and the corresponding Weil algebra in k va
riables is defined to be the factor algebra A = E(k)/t5) • 

Let M be a manifold and A = E(kj/^) be a Weil algebra. 
Let E(M,x) be the set of all germs at a point x e M of 
smooth functions on M into [R. We recall the following 
definition. 

Definition 2,1 (L5.D Two maps g,h:IRk *M, g(O)=h(O) 
= x, are said to be A-eouivalent , if tp*g -qp»h€ (£) for eve
ry germ CD6E(M,X). Such an equivalence class will be denoted 
by i s a n d called an A-velocity on M. The point g(0) will 
be said to be the target of j g . 

Denote by T M the set of all Ar-velocities on M. The 
target map is the projection pM:T M *M., Every chart (U,*p), 
^«(CJ>1,... ,<pn) on M determines a chart ((pM)~ (TJ)f » ) 

T M in the following way: 
?(3Ag) = (3A(^1og),...,3A(cpn.g))e A x . . . x A c ^ ^

d i m A> 
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Hence T M is an (ndimA)-dimensional manifold. Further , for 

every f:M *N we define TAf:TAM ->TAN by TAf(jAg) = 

j (fog). Obviously, TA is a bundle functor. We call T a 

Weil functor of A-velocities. The functor was described by 

A. Morimoto C411 as another description of a Weil functor of 

near A-points CI 51 . For ®= j m ( k ) r such a functor coinci

des with the kr-velocities .functor studied by C. Ehresmann 

f 2 ] . The kr-velocities functor maps a manifold M to the 

bundle Tr>kM = jJ(tRk,M) of all r-jets at zero of maps of 

[Rk into M and a map f:M •N to the extension Tr,kf : 
Tr fk M ^rnr,kN d e f i n e d b y t h e composition of jets. 

5. An order theorem. The crucial point in our studies is 

the following order theorem. From nov; on ik will denote the 

map ik:R
k »[Rk+1 given by ifc(x) = (x,0). 

.Theorem 5.1 Let F be a bundle functor\ k a natural 

number, A = E(k)/(A) a Weil algebra and vfc PQIR
k a point. 

Suppose that j cp = jAik implies Fcp(v) = Fik(v)" for any 

map ep:IRk *[Rk+1. Then for any two mai)s f,g:(Rk *M 

with jAf = jAg we have Ff(v) « Fg(v) . 

Proof. Let Ffk,A and v satisfy the assumptions of the 

theorem. T,fe shall Drove tho following lemmas. 

Lcrrnr: ?. 1 If f:IPk »(Rk is a map such that jAf = 

2 id , then Ff(v) = v . (We denote by id the identity map 

on IRk.) 

Proof of Lemma 3.1. Let p, :IPk+1=IRkX R *[Rk be the 

canonical projection. Since j (ik°f)= j* (i,) , we have that 

Fik(v)= P(ik«f)(v). Therefore Ff(v)= F(pk*ik<> f) (v) = 

^Pk«P(ik°f)(v) = FpkoFik(v) = Fid(v) = v. • 

Lemma 5.2 Suppose ffg: (ffT ,0) » (IR ,0) are maps such 

that JacQ(g) f 0 and jAf= jAg . Then Ff(v) = Fg(v) . 

Proof of Lemma *5.2. Let h:(lHk,0) _*([RkfO) be a map 

such that germQ(goh) = germ0(h<>g) = germQ(id) . Of course, 

jA(h«f) = jA(id). Therefore, by Lemma 3.1 and the localiza

tion condition, we get Ff(v) = F(g<>h)<>Ff(v) « FgoF(h°f)(v) 

= Fg(v) ;• 

Lemma 5.5 If f,g:([Rk,0) *(Rk,0) are maps such that 
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JAf=dAg , then Ff(v)=Pg(v) . 

Proof of Lemma 3.3. Consider one parameter families 

f. = f + tid , g. = g + tid , t € IR . Since their Jacobians 

at 0 are certains non-zero polynomials in t , f. and g. 

are local diffeomorphisms in neighbourhoods of 0 except 

a finite number values of t . Since j f. = j g, for all t , 

Lemma 3.2 implies Ff.(v) = Fg , (v) except a finite number 

values of t . Then the regularity condition (Proposition 1.1) 

yields Pf 0 (v) = Pg 0 (v) . * 

Lemma ^.A Let f,g :(IRk ,0) -(IRm,0) be maps such 

that jAf = jAg and m «{k. Then Ff (v) = Fg(v) . 

Prnnf of Lemma ?.A. T)efine j:LR
m- «*IRk by j ( y ) = (y,0) , 

Ot IRk_m and p: [Rk= CRmX Rk~m .-[Rm to be the obvious projec

tion. Since j A ( j » f ) = j A ( j « g ) , Lemma 3.3 implies P ( j o f ) ( v ) 

= F ( j o g ) ( v ) . Hence Ff (v) = F (p« jo f ) (v) = PpoF ( jof ) (v) -

Fp«F ( jog) (v) = Fg(v) . • 

Lemma 3.5 For every functions h1,... ,hm:IR • IR 

(m^k+2) such that j V = ... = jAhm = jA0 , we have 

P(id+(h1,...,hk),hk+1,...,hm)(v)=F(id+(h1,...,hk),0,hk+°,... , 

h r a)(v) . 

Proof of Lemma 3.5. Put h=(h1,...,hk) . Define H: [Rk+1 

-.IR1" by H (x,y) = (x+h(x),y,hk+2(x) h r a (x)) , where 

xt!Rk and y€.R . It is obvious that H ° ( i d , h k + 1 ) = 

(id+h,hk+1,...,hra) and H-ik= (id+h,0,hk+?,...,hm). By using 

the eouality j A ( i d , h k + 1 ) = jAik , we get F ( i d,h k + 1 ) (v) = 

F i k ( v ) . Therefore F ( id+h,h k + 1,... ,hm) (v) = F(H«»(id,hk + 1 ) ) ( v ) 

= FHoF ( id ,h k + 1 ) (v)=FHoFi . (v)= F ( i d + h , 0 , h k + ? , ...,h m) ( v ) . • 

Lemma 3.6 If hn,..,,h : CR- »>tR (m^k+P) are functions 

such that jAh1=...=3Ahra=jA0 , then F(id+h,hk+1,...,hra)(v) 

= F ( i d + h , 0 , . . . , 0 ) ( v ) , where h=(h1,...,hk) . 

Proof of Lemma 3.6. By using the induction on s we shall 

prove that P ( i d + h , h k + 1 hra)(v)=P(id+h,0,...,0,hk+s+1,..;, 

h m ) ( v ) . 

If s=1, then the assertion is given in Lemma 3.5. Assume 

that the assertion is proved for s=s* # Suppose k+s*+1 ,/ m. 

Let P be the transposition exchanging k+s* + 1 and k+1 in 

the sequence (lf*i.fm) • Define S:Rm • IR™ hy 
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s ( y 1 , . . . , y m ) = ( y * ( l ) , . . . , y $ ( m ) ) . By Lemma 3 . 5 wi th h k + s * + 1 , 0 , . . . 
n , k + s * + 2 v,m i • 4-1 i .o - k + 1 . , m , 

. . . , O , h , . . . , h p l a y i n g t h e r o l e of h , . . . , h we have 

I ( S o ( i d + h , O , . . . , O f h k + s * + 1 , . . . , h m ) ) ( v ) - P ( i d + h , 0 , . . . , O , 

h k + S * + ^ . . . , h m ) ( v ) . Hence P(id+h,hk+1,...,hm)(v) = PS~^F(So 
(id+h,o,...,o,hk-4-B*"f1,...,hm))(v)== P(s~Vid+h,o,...,o,hk+s,f+2, 

#..,h
m))(v) = P(id+h,0,...,0,hk"fs"+?,...,hm)(v) as required. • 

,m mk mm 
Lemma 3.7 Let i :[jr i-En (m^k+1) he given by 

)), 0£[Rm~k. Suppose that i 
such that f1

Af«fj
Aim . Then Ff(v)-Pim(v) 

im(x) = (x,0), 0G[Rm~k. Suppose that f:Kk MR111 is a function 

Proof of Lemma 3.7. If m=k+1, then im=ii_ and therefore Lk 

Pf(v) = Pi m(v). So, we assume that m^>k+2. "Ve can choose func
tions h 1,...,h m:E k MR such that jAh1 = .. .=jAhm-=jA0 and 
f-=(id+h,hk + 1,... ,hm) , where h=(h 1,...,h k). By Lemma 3.6 we 
have Pf(v)=P(id+h,O,...,0)(v). Since 3A(id+h)=jAidf Lemma 3.1 
implies P(id+h)(v)=v. It is easily seen that (id+h,0,...,0) 
=imo(id+h). Therefore Ff(v) = P(id+h,0,... ,0) (v)= F(imo(id+h))(v) 
= Pim°F(id+h)(v) = Fim(v) . m 

Lemma 3.8 If f,g:(lRk,O) *(lRm,0) (m\k+l) are two 
A. A. maps such that rankQf = rank0g = k and j" f = j* g , then 

Ff(v) « Fg(v) . 

Proof of Lemma 3«8. By the rank theorem there exist two 
diffeomorphisms vpi:(Vi,0) *(WifO) , i=1 f2, V1 f-^ctopR

1* , 

V9,V/ € top(R
m , such that Y?°£°Yi ~ ̂  on s o m e open neigh

bourhood of O i R k . (We recall that im:!Rk •{Rm is given 

by im(x)=*(x,0).) Let id m_ k be the identity map on (Rm~k..By 

i™*^" 1 = ^ ^ X ^ m - k ^ ' we have t h a t ( H /
1 ^

i d
m ^ k

) ° Y 2 c g 

« i m on some open neighbourhood of 0€. BT . Let 
f" .rj^ ^ m b e a f U n c t i o n 0f c i a s s c°° such that germ0 *f = 
germ0((ip1x i d m - k > y 2 « f ) and y:(Rm * IRm a function of 
class C°° such that g e r m ^ ^ n y . " " x i<im_k)) ~ g^rmQ^T. Sin
ce cj

A?= j Ai m, Lemma 3.7 implies that m v ) « Pim(v) . But 
germ0(

/y «f)= germQf and germ0(y<>i
m) = germQg , Therefore,by 

the localisation condition, we have Ff(v) = P(vp<,f)(v) = 
F^Ff(v) -* F$*Fim(v) - P(yoim)(v) - Fg(v) . » 

Lemma 3.9 Let f,g: (Pk,0) ^(Em
f0) (m^k+1) be two 

maps such that jAf » jAg . Then Ff(v) « Fg(v) . 
Proof of Lemma 3.9. Consider one-parameter families f^ * 
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-=- f+ t-im , gt = g + t-i
m
 f t€(R. Define p:(R

m=Pk/IRm""k *[Rk 

to be the projection. Since P^f+ = p°f + t-id and P°g.f = 

p«g + t-id , so by using similar arguments as in the proof of 

Lemma 3.3 , we obtain that p«f+ **nd P*S4- are local diffeo-

morphisms in neighbourhoods of OtlR except a finite number 

values of t. Therefore rankQf. = rank0g, = k except a finite 

number values of t. Since j' f. = j g. for all t , Lemma 3.3 

implies Pf^(v) = ^g.(v) except a finite number values of t. 

Then the regularity condition (Proposition 1.1) yields 

Pf0(v) = FgQ(v) . m 

We are now in -position to prove Theorem 3.1. Consider 

arbitrary functions f fg:R »M such that ^ f = j g . 
J J Tiff 

Choose a chart (TJ,«p) on M satisfying of(U) = tR " and 

<?(f (0 ) ) = 0. Let ?, g ' .dR^O ) «.(|Rdim M , 0 ) be two functions 

of class C00 such that gernuf « germ,-̂ '" <> f) and germ0g -= 

germ0(cp"" ogO. Since 3 T = j g" , Lemma 3.3, Lemma 3.4 and Lem

ma 3.9 yield Pf(v) = $?(v). Hence, by the localization condi

tion, we get Pf(v)= P(^>"1o/f)(v) = P(jT1oP?(v) = P<.p~1°Pg(v) = 

P(<f>~ ogfMv) = Pg(v) , Theorem 3.1 is proved. • 

4. Corollaries. Prom Theorem 3.1 we get the following 

corollary. 

Corollary 4.1 Let P: Uf t»PM be a bundle functor, 

v\0 an integer, k a natural number and ve PQIR a point. 

Sup-pose that j0*p =JQik inmlies P<p(v)=Pi, (v) for any map 

cp:Rk • £Rk+1. Then for any maps f,g: IRk *M with jjf * 

j0g we have Pf(v) = Fg(v). 

Proof. We apply Theorem 3.1 in the case where (£)= m^k)1* .1 

Let P:£l£. t-H be a bundle functor on !!£• If we repla
ce the category M£ by the category Mfm of all m-dimensional 
manifolds and their local diffeomornhisms, we obtain the clas
sical concept of a natural bundle in dimension m introduced 
by Nijenhuis f[lllf and Palais- Terng ,[13]. Hence the rest
riction F of P to Mf_ is a natural bundle in dimension 

m 
m ; According to Palais-Terng ,[131» every natural bundle 

has a finite order • Let P has a order r(m) . We recall 

that r(m):= min Ir£ CJU(c*>}: jjf » j£g implies Fxf = Pxg 
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for any two loca l diffeomorphisms f f g of m-dimensional ma
n i fo lds and any x € dom(f )f\dom(g) J . ( in Q3] f L131 and 

[16^ e s t i m a t e s of r(m) are given . ) 
I . Kolar and J . Slovak proved in LSI the following 

r e s u l t . 
Pro-position 4.1 Let F be a bundle functor , MfN€iJ£ . 

Write m=dim M , n=dim N and r(m fn) = r(max(m fn)). Then 
for any maps ffg:M *K, ; j £ ( m ' n ) f = d j ( m , n ) g implies 
F f - P g , x xto 

On the other hand we constructed in $01 a bundle functor 
of infinite order f i.e with an iinbounded sequence of r(m). 
Therefore the follov/ing corollary is interesting. 

Corollary 4. 2 "Every bundle functor F has locally a fi
nite order. More precisely- for any mat)S f ,g: M •N f 
..rCdim M + D f m r̂Cdim M+1 Jg i m p l i e g ^ = ^ # 

.Proof, Consider two maps ffg:M *N* such that 
£(m+l)f = jr(m+l)g ^ w h e r e x € M and m = dim M ^ B y u g l n g 
x x ^ 
a chart around x , we can assume that M= R and* x= 0. 

By Proposition 4.1 we get 35(nH"l)qp = 3f3(m+l)*m implies 

FQep = PQi for any map cp :CRm --[R111"1*1 . (An independent 

proof of the last fact is the following: Define $ :p
m+l-*[Rm+1 

by $(x,y)=<p(x)+(Ofy) , xe(R
m
 f y€R • Recall that 

i : nf MRm+1 is .aiven by i (x) = (xf0) . Since D5
(m+l)<p 

= 30
r(m+l)im • w e h*ve t h a t f0

(m+l)$ =3g(m+l)id . There-
fore PQ$ = P0id . But (goi^cp. Hence PQcp = ̂ 0

(<^oim^ = 

= F Q$opj a FQim . ) Therefore , by Corollary 4.1 with 
r=r(m+l) and k=m f we obtain that Ff = Fxg . This comple
tes the proof of the corollary. « 

An unsolved problem. According to Corollary 4,1 we ha
ve the following unsolved problem. Let F be a bundle func
tor such that F has order r(m). For each natural number 
m f find the minimal number R(m) such that for any maps 

f,g:M •N, m=dim M f xeM, j^
(m)f =j*(m)g implies F f * 

X -A. X 

F g . From Corollary 4.2 it follow that R(m)^r(m+1) . 
On the other hand it is obvious that R(m)^r(m). Is R(m) 
equal to r(m) ? 
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5. Natural transformations of Weil functors into bundle 

•fimctnnq. We recall the following definition. 

Definition 5.1 Let F and G "be two bundle functors on Mf. 

A family of (fmaps l(M):FM—oGM, M£H£, is called a natural 

transformation of P into G if for any f:M—*N l(N)*Ff=Gf©I(M); 

Remark. One can show that for every natural transforma

tion I:F *G and MCMf p^*l(M)=p^ . A simple proof of this 

fact is given in [7 J. 

From now on Trans(F,G) will denote the set of all natu

ral transformations of F into G „ (This is a sot because 

any natural trans form? tj on I:F *G is uniquely determi

ned by the sequence I(Rm) , m=O,l,2,... .) If A= E(kj/(A) 

is a Weil algebra and F a bundle functor, then define 

Adm(A,F) to be the set 

[v€F0R
k: Vf6CT(4Rk,IPk+1) (jAf=jAik=>Pf(v)=Fik(v))} , 

where iv-R" »-lR is given by ik(x) = (x,0) . We prove 

the following theorem. 

Theorem 5.1 Let F:H£ *FH he a bundle functor and 

A=TC(k)/tS) a Weil algebra. Then the function 

J:Trans(TA,F) i>Adm(A,F) given by J(l)=IflRk) (jA(idR)) 

(v/here idk is the identity map on tR ) is a bi jection. The 

inverse bisection is of the form Adm(A,F)l»v >-Iv €. Trans(TA,P) 

where IV(M):TAM—-FM is given by IV(M)( jAf)=Ff(v) . 

Proof. Consider I € Trans(TA,P) . If jAf=jAik, then 

Flk(l(lR
k)(jA(idk)))=l(IR

k+1)oTAik(d
A(idk))=l(lR

k+1)(jAik) 

=KlRk+1)(jAf)=l(Kk+1)»TAf(3A(idk))=Ff(l(lR
k)(jA(idk)))i Hence 

l ( I R k ) ( j A ( i d . )) € Adm(A,F). Therefore J is well-defined. 

Now, suppose that If , I"*Trans(T ,F) are such that 

:idk)) 
I'(tRK)(jA(idk))=I"(R

K)(f(idk)). Then I'(M)(j
rtf)= 

I'(M)oTAf(jVk))=PfI'(lR
k)(^(idk))=FfoI»'((R

k)(jA(: 

=I"(M)(;jAf) for any jAf 6 T^M. Hence J is a injection. 

The main difficulty in proving Theorem 5.1 is to show 

that J is a surjection. Consider v£Adm(A,F). By Theorem 

3.1 the condition jAf=jAg implies Ff(v)=Fg(v). Therefore 

IV(M):TAM >FM is well-defined. For any h:M t*N and 

any jAf we have Iv(N)oTAh(jAf)=Iv(N)(jA(h»f))=F(hof)(v)s: 

Fh»Ff(v)= Fh«Iv(M)(jAf). It is clear that Iv(tRk)(jA(idk))=v. 
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Hence the theorem is proved, provided IV(M) is of class C00
 # 

We have to show that IV(M) is of class C00 . Since 
Iv(M)oTAf"1 = Fqp~1<>Iv(|Rn) for any chart tp on M , it 
is sufficient to show that Iv(Rn) is of class C°° for every 
natural number n. We shall use the following lemma, which 
is a stronger version of Boman's Theorem, £ 1 ] i 

Lemma 5.1 Let f :M *N be a function of two positive 
dimensional manifolds such that for every C00 function 
f:\R *M fo^ is of class C°° . Then f is of class C** 

Proof of the lemma; Recall that in the theorem of Boman 
M and N are wiP and IR̂  respectively. At first we assume 
that f is continuous. Consider x € M • Choose a chart 
(Uf«p) on N near f(xj such that q)(TT)=#dim N# There 
exists a chart (V,y) on M near xQ such that ip(V)=Ruxm 

and f(V)CU. By Bomarfs theorem and the assumption of Lem-
— 1 no 

ma 5.1 we get that Gp«f<>y is of class O00 ; Therefore 
f is of class C°°# 

Hence we have to show that f is continuous. Suppose 
that f is discontinuous in yQ € M • Choose a chart (Vf v.p) 
on M near yQ such that vj}(V)= (Rdim M and y (y0)= 0. By 
replacing f by f©y we can assume that M= [Rm and 70=°. 
There exist a sequence of points xi £ tR

m (.1=1,2,...) and 
a neighbourhood 'if of f(0) such that x. *0 and 
f(x.) fe II for all i . By passing to subsequences we can 
assume that |Jx.|Kexp(~i) for all i ; By the Whitney ex
tension theorem [M*f ] there exist a function ^:P. *IRm of 
class C^such that )fO/i) = x± for all i . But fof is 
of class C00. Hence f(xi)= f" fU/i) •fo)f{0)-=f (0). This 
is a contradiction and the lemma is proved, u 

Now, it is sufficient to show that Iv(lRn)of is 
of class C°° for any C°° curve )f:R t-lV1. Suppose that 
JlL(k)r+1C ® • Let fiJR ^ T V 1 be an arbitrary C00 curve. 
There exists a linear section s:A ^^(k^<C(k)r + with 
respect to the linear projection E(k)^2Si2k)r+1 +k given 
by Jgf * j A f . Put f(t)=s3

A(fJ;f...ff!J) and jJCli)-
s(jA(f^)) f i=1f...fn . There exist C00 maps ̂ i:IR XET *R . 
such that J Q ( ^ ) » ^(^(t,*)) for i-1,...fn. For example, 
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^(t.x) =ZH|oCl<r (1/^! - ^ ( O ) * * >• Jt l a "bvious that 

jA($^ $J) = y(t) , where $*(x) = $i(t,x). By Proposi

tion 1.1, we have that the mapping Iv(£Rn)«lT is of class C°° 

because Tv(tRn)<» fit) = IV(Rn) ( 3A(^,... ,§n) )=P(^,... ,§n)(v). 

This finishes the proof of the theorem, n 

As a special case of Theorem 5.1 ( (A) ~m(k)r ) we 
have the following corollary. 

Corollary 5.1 Let F be a bundle functor on j4f such 

that F, , the restriction of F to the subcategory of (k+1) 

-dimensional manifolds and its local diffeomorphisms, has or

der r(k+l). Sup-pose that r\r(k+l). Then there is a bisec

tion between Trans(Tr»k,F) and FQlR
k given by I *l(lRk) (Doidk)# 

6. Natural transformations of -Veil functors into Wei 1 

functors . Let A=E(k^/@ and B=E(p^(B) be two Weil algeb

ras. In £Jf *] * I» Kolar introduced the following definition. 

Definition 6.1 We say that 3 f £ T ^ is an A admisible 

B velocity if jB(^of)=jBO for all cpe®. 

It is easy to show that the set of all A admisible B 

velocities is equal to Adm(A,T ). Therefore we have the fol

lowing corollary. (This corollary was deduced by T. K o l a r [ . 5 " P 

Corollary 6.1 There is a bisection between the natural 
A B 

transformations I:T •T and the A admisible B veloci
ties given by J(lRk) ( jA(idk)). 

7. Natural transformations of Weil functors into linear 

functors of higher order tangent bundles. A class of well 

known functors in differential geometry can be constructed 

as follows, see e.g [4],C6]. Given two integers n,r^1 and 

a manifold M, we put Tr*M=Jr(M,Rn)Q , the set of all r-jets 

of M into Rq with target 0. One can see that Tr*M is a vec

tor bundle with standard fibre J0(lR
m,lRq)0, provided dim M=m. 

Let TrM be the dual vector bundle of Tr*M. Given any r-jet 

A from Jr(M,N) , the composition of jets determines a line

ar map from the fibre (Tr*N) over yeN into the fibre 
r q 7 

(T *M) . Hence any smooth map f :M *N induces a linear 

morphism Tr*f;fTr*N *Tr*M , where f*Tr*N means the 
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pull-back of Tr*N with respect to f , Then we define 

Trf :TrM—*TrN * to be the dual map of Tr*f and we obtain 
<i 1 4 r 1 

a bundle functor T with valuers in the subcategory VM CM 

of smooth vector bundles. 

Let A=E(k)/^) be a Weil algebra r,q\l two integers. 

We have the following lemma. 

Lemma 7.1 The following equality is satisfied: 

Adm(A,T^={i^(J*(Pk ,Rq)0f: V f c ® * ^ ( 3 ^ ) = o] , 
where ® q = @)X... X(K) , q-times . 

Fence \>re have the following corollary. 
Corollary 7.1 There is a bijection between the natural 

transformations I:TA *.TJJ and the set {oe( j£(tRk,IR(-)0)*: y 
Jc.©q O(jgt) - 0 } . This bijection is given by 
I •I(Qn(jA(idk)) . 

Proof of Lemma 7.1. (a) " C " Consider u)eAdm(A,T^) . 

Let #-£©q i By Theorem 3.1 (since jA}T = jA0 ) we have 

that T ^ ( W ) - Tjo(co) , i.e UKjgfr ) - ^ Q ) ( 30 ( i d
q>

} = 

T^0(U3)( "^(id )) -lD(jg(0)) = 0 . 

(b) » D » Consider u)e( j£(Pk,[Rq)bf i Suppose that w(j£r)=0 

for any T*-®1* Let cp: Rk • .Rk+1 be a mapping such that 

jAep =jAi , Of course £-ip- §*ik€(S)
q for any germ 

5>:(!Rk+\0) • (tRn,0) . Hence 0 - ̂ (^(pccp-y.^) ) =. 

ta(jS(?«T)) - w(^(?«>ik)) - Tjp(«o)(3gf) - -5ik(w)(jgS) . 
Therefore T^cp(co) = Tjik(u)) , i.eu>£Adm(A, Tj) . • 

B. Vector spaces of natural transformations of Weil 

fimntors into linear bundle functors. We shall start with 

the following definition. 

Definition 8:1 A bundle functor F:HL -M is called 

a linear bundle functor if im(P)CM. , where M is the 

category of linear fibre bundles and their morphisms. 

It is easily seen that if P is a bundle functor and 

G is a linear bundle functor, then the set Trans(P,G) 

of all natural transformations of P into G admits the 

following vector space structure: (a) V I,J€ Trans(P,G) 

I+J£ Trans(P,G) , where (l+J)(M):FM i»GM is given by 
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(l+J)(M)(v):= l(M)(v) + J(M)(v) > and (b)Y*e£R, KTrans(F,G) 

J>I € Trans (F,G) , where ( AI)(M):M *GrM is defined by 

( *I)(M)(v):= A(l(M)(v)) . 

Let F "be a linear bundle functor and A = E(k)/(A) 

a Weil algebra. It is easy to verify that the map J descri

bed in Theorem 5.1 is a linear isomorphism between vector 

spaces Trans(T ,F) and Adm(A,F). Moreover, Adm(A,F) is a 

vector subspace of FQ|R . Hence we have the following corol

lary. 

Corollary 8.1 Let F be a linear bundle functor and 

A= S(k)/@ a Weil algebra. Then Trans(T^F) and Adm(A,F) 

are finite dimensional vector spaces and dim(Trans(T , F)) = 

dim(Adm(A,F))4dim(F(:/R
k) . 

The- following example shows that there exists a linear 

bundle functor Gr such that dim(Trans(G-,Gr)) = oo ; 

Example 8:1 Let 

« - %* A"T 
where T is the tangent functor, A° is the inner product 

and ©is the Whitney product. We see that if q\dim M , then 

A^TM^MXjp} and therefore CM is finite dimensional. Con

sequently, G- is a linear bundle functor on Mf;- For each 

natural number k define IK6 Trans(GrfG) to be the family 

of maps Ik(M):G M *GM given by Ik(M)((vn-J) = (S£v-q} , 

where Sv i s the Kronecker delta. Of course, the set 

{lk : kfclNJ is linearly independent. Hence dim (Trans ((>,£) )=<xi 

A simple appX-lcation of Corollary 8.1. We fix a natu

ral number q . As a simple application of Corollary 8;1 we 

will determine all natural transformations of IT into 

APT . Since the classical tangent functor is the Weil func-

tor of the algebra of dual numbers D= E(l)x^Il) 9 the 

iterated tangent functor TT is the Weil functor of the 

tensor product D ® D = F(^j/^x2,y2^ , where x2,y2 is 

the ideal in E(2) generated by germs : x~:R~ • R -f 
y2:R2 •R given by x2(x,y)=x2 and y2(x,y)«y2 (see [9 1 

orC53)i We have two natural projections of TT onto T . 

Namely, T(pj$) :TTM •TM and p£M:TTM •TM , M£ JJt , 

where pM:TM *M is the bundle projection; It is easily 

seen that the above projections are natural transformations 
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p 
of TT into T . Let e^e^ be the canonical basis of IR 

and TJR2^E2. For each z€|R2 , we have translation by z 

denoted by <t^,.lR; • & given "by T^(y)=z+y . Consider 

vector vQ = [t *T<Xte ) (e?)3£TTR
2. We see that 

T (V ) (V = e1 and »!JR2
(To) = e2 * 

Therefore the above natural transformations of TT onto T 

are linearly independent. On the other hand, by Corollary 8.1, 

dim(Trans(TT,T)) ̂ dim(TQ!R
2) = 2. Hence the above natural tran

sformations form a basis of the vector space of all natural 

transformations of TT into T. Now, by using Corollary 8.1 

it is easy to verify that: (a) Any natural transformation 

of TT into AqT is the zero transformation, provided 

q\3 , and (b) Any natural transformation of TT into A 2T 

is of the form }\ T(pJJ)Ap^M , M€ Mf , where ^€[R J 

9;Proof of Pro-position 1:1 . (C8 1) Let F:M£ •EM 

be a bundle functor. By results of Epstein-Thurston [.3 ] f 

for any n € ttf Fn = F|Mf is a natural bundle in dimension 

n . In particular, the map 

Ft :IRnX mn >mn , (x,v) *Fr (v) 
(<fcx is translation by x) is a smooth action of (CRn,+) on 

HRn for any natural number n . Using this fact we- prove 

Proposition 1.1 in the following way: Let f:MXP *N 

be a smoothly parametrized family. By applying charts we 

can assume that M=IRm f N=R
n and P=Cr. Consider the fa

mily fif: H^XlRk *Mn given by (Br!) = F(f ) -f p£ E
ki 

s^*J * P P 

It is obvious that Ff is smoothly parametrized, provided 

k=0. So, assume that k>0. One can see that f =f o <v,n v«i 
where i: IRm *0rf XffT is given by i(y) = (yfO) and 

TT(0 x is the translation by (0fp)£ B^X B^ J Hence the 

family (Ff) =FfoF<t^0 )°Fi , p£ B^ is smoothly parametrized. 

This ends the proof of Proposition 1.1. • 
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