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NATURAL TRANSFORMATIONS OF WEIL FUNCTOR3 INTO BUNDLE FUNCTORS

Wrodzimierz M, Mikulski

Abstract, We deduce that the set of all natural transfor-
mations of the Weil functor TA of A-velocities into a bundle
functor P is bijectively related to the set

[verp® : Mre o@ 1) (3e=3t,==>Pr(v)=r1, (v) )},
provided A 1is a Weil algebra in k variables and where
ikzﬁk———*ﬁk+1 is given by ik(x)=(x,0). In the case where F
is a linear bundle functor we deduce that the dimension of

the vector space of all natural transformations of TA into F
is finite and is less than or equal to dim(Eka). We const-
ruct a linear bundle functor G such that the vector space of
all natursl transformations of G into G is infinite dimensio-
nal, We determine the spaces of all natural transformations
of Weil functors into linear functors of higher order tangent
bundles, Corollary 4.2 shows that any bundle functor has
@ocally) a finite order .

1.Bundle functors., Throughout the paper all manifolds are
assumed to be paracompact, without boundary, second countable,

finite dimensional and smooth, i.e of class C, In general
maps will be assumed to be C“’, unless the smoothness should
be proved.

Let Mf be the category of all manifolds and all maps, FM
be the category of all fibered manifolds and their morphisms
and B: F{—Mf be the base functor. Given a functor F:
Mf——FM satisfying BeF= i@Mﬁ , we denote by pS:FM————OM

TThis paper 18 in final form and no version of it will be
submited for nublication elsewhere."
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its value on a manifold M and by Fxf:FxM—st(x)N the rest-
riction of its value Ff:FM——FN in f:M—N to the fibres
of M over x and of FN over f(x), xeM,

Definition 1.1 ([81)A bundle functor on Mf is a functor
F:Mf——>FM satisfying BoF = ide and the localization condi-
tion: if i:U~—=M is the inclusion of an oren subset, then
Fi:FU—-(pl\F,;)"'(U) is a diffeomorphism,

Let M,N,P be manifold. A parametrized system of smooth
maps fD:M——oN ’ i»eP is said to be smoothly parametrized,
if the resulting map f:MXP——=N is of class C*= ,

Proposition 1,1 ([8]) %very bundle functor F:Mf——FM
satisfies the regularity condition: if f:MXP-—N is a
smoothly parametrized familv, then the family FE: Mx PN
defined ny (7F)_=7(f ) is also smoothly parametrized,

We will cite the proof of the provosition in Section 9,

2.Weil functors, Let E(k), ke IV be the algebra of all
germs at zero of smooth functions on R® into R, m(k) the
ideal of all germs from E(k) vanishing at zero and _U_l_(k)r+1
its (r+1) power. Any i‘deal@ in B(k) satisfying the condi-
tion _gl(k)D@Dm_(k)r"'1 (for some integer r}O) will be cal-
led a Weil ideal and the corresponding Weil algebra in k va-
riables is defined to be the factor algebra A = E‘(k%@.‘

Let M be a manifold and A = E(ky@ be a Weil algebra,
Let E(M,x) be the szet of all germs at a point xeM of
smooth functions on M into R, We recall the following
definition,

Definition 2,1 ©5) Two maps g,h:RE——sM, 2(0)=h(0)
= x, are sald to be A-eouivalent , if geg -q@h¢ @ for eve-
ry germ c{:eE(M,x).‘ Such an equivalence class will be denoted
by j‘Ag and called an A-velocity on M., The point g(0) will
be said to be the tarpget of jAg .

Denote by T™M the set of all A-velocities on M, The
target map is the projection pM:TAM —sV, Every chart (U,ep),
w=(q)1,..‘.,(pn) on M determines a chart ((pM)"1(TI),'€rf)
on ™M 1in the following way:

Fihe) = (3A(glog),..., 32 )€ A x... x A o[ (dIN A)
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Hence TAM is an (ndimA)-dimensional manifold, Further , for
every f:M—sN we define phe,ph Ay by TAf(jAg) =

3 (fog). Obviously, T is a bundle functor. We call T" a

Weil functor of A-velocities, The functor was described by

A. Morimotol]1] as another description of a Weil functor of
near A-points [{15] . For (:):_mjk)r+1 such a functor coinci-
des with the k'-velocities functor studied by C. Fhresmann
[2]. The kT-velocities functor maps a manifold M +to the
pundle TToKy = Jg(ak,M) of all r-jets at zero of maps of
Rk into M and a map f:M—-eN +to the extension Tr'kf :

pTo Ky — o779 Ky  defined by the composition of jets,

M ——T

3. An order theorem, The crucial point in our studies is
the following order theorem, From now on ik will denote the
map 1k:mk————-mk+1 given by ik(x) = (x,0).

Theorem 3,1 Let F be a bundle functor, k a natural
number, A = E(k)//C) a Weil algebra and ve FORk a point,
Suppose that jA¢ = ink implies F@(v) = Fik(v)’ for any
mamn q:mk———a-mk*1. Then for any two mans f,g:mk————»M
with 3f = 382 we have TFe(v) = Fg(v) .

Proof, Let F,k,A and v satisfy the assumptions of the
theorem, e shall nrove the fellowing lemmas,

Temmz 2,1 If f:R5—»® 1is a map such that j°F =

5844 , then Pf(v) = v . (Ve denote by id the identity map
on mk.)
Proof of Lemma 3,1, Let pk:mk+1=RleR—————»mk be the

canonical projection, Since jA(ikvf)= jA(ik) , we have that
Fik(v)= F(ikof)(v). Therefore Ff(v)= F(pkoikof)(v)'=
Fp o F(i,of) (v) = Fp oFiy (v) = Eid(v) = v, ;

Lemma 3,2 Suppose f,g: (R ,0) —— (R",0) are maps such
that Jacy(g) $ O and Jhf= 3z . Then Fr(v) = Fg(v) .

Proof of Lemma 3,2, Let h:(mk,O)————Lo(Rk,O) be a map
such that germo(goh) = germo(hog) = germo(id) . Of course,
jA(hof) = 3%(id). Therefore, by Lemma 3.1 and the localiza-
tion condition, we get TFf(v) = F(geh)ePf(v) = FgoF(hef)(v)
= Fg(v) .=

Lemma 3,3 If f,g:(ﬁk,o)—————b(ﬂk,O) are maps such that
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jAf=jAg , then Ff(v)=Fe(v) .

Proof of Temmg 3,3, Consider one parameter families
J‘.‘t = f + tid , gy =8 + tid , teR . Since their Jacobians
at O are certains non-zero polynomials in +t , ft and g,
are local diffeomorphisms in neighbourhoods of O except
a finite number values of t , Since jAft = jAgt for all t ,
Lemma 3,2 implies Fft(v) = th(v) except a finite number
values of t . Then the regularity condition (Proposition 1.1)
yields Ffy(v) = Fga(v) .

Lemma 3.4 Let f,g :(Rk,O)—’(IRm,O) be maps such
that jAf = jAg and m{k. Then Ff(v) = Fg(v) .

Proof of Temma 3.4, Tefine i:R"—R* by i(y) = (y,0) ,
0e BX™  and p: R¥= B"x R*""——R™ to be the obvious projec-
tion. Since 3*(jef) = 31(jog), Temma 3.3 imnlies F(iof)(v)
= F(jog)(v), Hence Ff(v) = F(pojef)(v) = FnoR(jof)(v) =
FpoF(Jjeg)(v) = Fg(v) . =

Lemma %,5 For every functions h1,...',hm:lR‘k—*!R
(m)k+2) such that jlxh1 = e = jAhm = jAO , we have
F(id+(h',..., 05,057 L 0™ (v)=F(id+(n’,... 1K) ,0,0%* ...,
n")(v) .

Proof of Lemma 3.5, Put h=(h',...,h%) . Define H: R
— 8" by H(x,y)=(x+h(x),y,hk+2(x),...,hm(x)) , where
xe RS and yER . Tt is obvious that Ho(id,n**!) =
(id+h,n**?, .. 0™) and Hety = (1d+h,0,n°*7,...,n™). By using
the equality 3°(id,n%*") = 3%, | we get P(id,n""")(v) -

Fi, (v) . Therefore F(id+h,n**T . . n™(v) = F(He(id,n**"))(v)
= FHoF(1d,05* 1) (v)=FHeF1) (v)= P(1d+h,0,0"*2, ., ,i")(v) . ®

Lemma 3,6 If h1,..,,hm: R — R (m >/k+9) are functions
such that 38n'=...=3"n"=320 , then F(id+h,n*1, ..., 0" (v)
= P(id+h,0,...,0)(v) , where h=(n',...,n%) .

Proof of Temma 3,6, By using the induction on s we shall
prove that F(id+h,n**!,...,n™)(v)=F(id+h,0,...,0,nK**1 ..
n") (v).

If s=1, then the assertion is given in Lemma 3.5. Assume
that the assertion is proved for s=s% , Guvpose k+g¥+1 ém.
Let g be the transmposition exchanging k+s¥+1 and k+1 in

the sequence (1,...,m) , Define S:R"——R" Dy
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Jy,-u,y) (x93 o, y8M)) . By Temma 3.5 with K10,

veey0y hds*w,...,h vlaying the role of hk+1,...,h we have
F (Seo (1d+h,o,...,o,hk+s*+1,...,hm)>(v) = F(id+h,0,...,0,
P2 Y (), Hence  P(id+h,nt!,...,0n")(v) = FSTbR(Se
(1d+h,0,...,0,05* 1 1™ (v)= 75~ b(14+h,0,...,0,nK*S"*2
e, ™) (V) = B(id+h,0,...,0,05" 2 4™ (v) as required. m

Lemma 3.7 Tet i™:RS— B (m >/k+1) be given by
iMx) = (x,0), 0e Rk, Suprose that f: R——R" is a function
such that jAf=inm . Then FPf(v)=ri"(v) .

Proof of Temma 3,7. If m=k+1, then im=ik and therefore
Pr(v)=71"(v). 3o, wp assume that m>k+? Je can choose func-
tions h',...,H:R—sR such that j*n'=...=3*n"=3%0 and
e=(id+n,n¥*1, ..., 0™) , where h=(h',...,h"). By Lemma 3.6 we
nave Fr(v)=F(id+h,0,...,0)(v). Since J*(id+h)=3"id, Temma 3.1
imnlies F(id+h)(v)=v, Tt is easily seen that (id+h,0,...,0)
=i"o(id+h). Therefore Ff(v) = P(id+h,0,...,0)(v)= P(1"o(id+h)))
= Pi" P(id+h)(v) = F (ﬂ

Lemma 3.8 If f,g ({R 0)———»([[2 ,0) (m>k+1) are two
maps such that rankOf = rankn,g = k and ,]Af j g , then

Fr(v) = Fg(v) .
Proof of Lemma 3,8, By the rank theorem there exist two
diffeomorphisms ;! (V O)——-»(‘*l ,0) , i=1,2, 1,l1€toan ,
9, 2e tonR ’ such That Yoo8ey, = i™ on some open neigh=-
bourhood of O(.[R (e recall that im'le—bem is given
vy i™(x)=(x,0).) Tet id__, be the identity map on B""X,.
1m=x1'1 = (y,""x 14, WM™ , we have that (y,xidy )oy,og
i" on some open neighbourhood of 0¢& R™, Let
R " be a function of class C® such that germy, F =
germy((y, X id _, Joy,ef) and Y: ®" ———»lR a function of
classANC“’ szcz}nl that germo(ty,, 1(y1 -1 )) grermov.y Sin-
ce jJ°f = j*i", Temma %.7 implies that F@'(v) = Fi"(v) . But
germo(\poN)= germyf and germo('\{TOi ) = germyg . Therefore,by
the localization condition, we have Ff(v) = F(Y oF)(v) =
FYeFt(v) = FYori™(v) = Pei™)(v) = Fg(v) . ®

Lemma 3.9 Let f,g: (\PR,O)-——‘(lRm,O) (m )k+1) be two
mavs such that jAf = jAg . Then Ff(v) = Fg(v)

Proof of Lemma 3,9, Consider one-parameter families ft =

By

¥
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= f+ t.i" y Bt = 8 + t.iM , t€¢R, Define p: R"=R fom"k———*R
to be the projection. Since p~ft = pef + t:-id and po 8y =
peg + t-id , so by using similar arguments as in the proof of
Lemma 3.3 , we obtain that pef, and peg, are 1023l diffeo-
morphisms in neighbourhoods of Oe[Rk except a finite number
values of +t. Therefore rankoft = rankogt = k except a finite
number values of t. Since jAft = jAgt for all t , Lemma 3.8
implies Fft(v) = Egt(v) except a finite number values of t.
Then the regularity condition (Proposition 1.1) yields
Ff,(v) = Fgo(v) . =

We are now in vosition to prove Theorem 3,1, Considnr
arhitrary functions ,_,,:le-—oM such that jk\f = j g .
Choose a chart (U,ef) on M satisfying up(U) dim M and
9(£(0)) = 0. Let F, F:(RY,0) —= (1™ M,0) be two functions
of class C% such that germ . f = p:ermo(? 1° f) and pnrmq, =
germy (9~ Te%). Since 1A‘f = 372, Lemma 3.3, Lemma 3.4 and Tem-
ma 3.9 yield Ff(v) = ¥'(v). Hence, by the localization condi-
tion, we get Fr(v)= F(g~1oF)(v) = Fg lor®(v) = qu‘1oF'g"(v) -
F(ff'1 N) (v) = Fg(v) . Theorem 3.1 is proved. m

4, Corollaries., From Theorem 3,1 we get the following
corollary.

Corollary 4,1 Let F: Mf——FM be a bundle functor,
r}O an integer, k¥ a natural number and Ve O[Rk a noint.
Suprose that qu =j€ik imolies F¢(v)= T’i (v) for any map
9:R*— B%*!, Then for any mavs f,g: B* K oH with 5ot =
jgg we have TFf(v) = Fg(v).

Proof. We apply Theorem 3.1 in the case where (8)= ~rg(k)r*".'.

Let F:Mf——FM Dbe a bundle functor on Mf. If we repla-
ce the category Mf by the category B of all m-dimensional
manifolds and their local diffeomorvohisms, we obtain the clas-
sical concept of a natural bundle in dimension m introduced
by Nijenhuis ,[12], and Palais- Terng ,[13]. Hence the rest-
riction Fm of F +to Em is a natural bundle in dimension
m . According to Palais=Terng ,[13], every natural bundle
has a finite order . Let Fm has a order r(m) . YWe recall

that r(m):= min'{re NUfpo}: 37 = 3Tz implies F f = Fg



NATURAL TRANSFORMATIONS OF WEIL FUNCTORS INTO BUNDLE FUNCTORS 183

for any two local diffeomorphisms f,g of m-dimensional ma-
nifolds and any xé€ dom(f)(\dom(o):j . (In [3], 0131 and
(el eqtimat,es of r(m) are given , )

I. T(olar and J., Slovak proved in [8] the following
result, .

Proposition 4,1 Let F be a bundle functor , M,Ne Mf .
Write m=dim M , n=dim N and r(m,n) = r(max(m,n)). Then
for any maps f,g:f—N, j;(m’n)f = ji m,n)g implies
FLf = Fg.

On the other hand we constructed in (¥0] a bundle functor
of infinite order , i.e with an unbounded sequence of r(m),
Therefore the following corollary is interesting.

Corollary 4.2 Every bundle functor F has locally a fi=-
nite order. More preciqelys for any maps f,g: M——N

v(dim M +1) r(dim M+1 . _
jx f = Jx g implies Fxf = Fxg .

Proof, Consider +two maps f,g:M——aN such that

r(m+1 f = ji(m”)g , where xe¢ M andi m= dim M , By using
a chart around x , we can assume that M= R" and- x= O,
By Prorosition 4.1 we get jr(m+1 )cp = r(m+1)i implies
Fop = Fol ~ for any map cf'lR —s /", (an independent
proof of‘ the last fact is the follow:mp‘. Define &: R gt
bV $ (x,v)= ?(‘C)*-(O,y) , xeR" , yeR , Recall that

s B"——p™ 45 given by i (x) (x N) . Since j‘(m+1)tp
- jor(m+1)i , we bave that _,O(m+1 & = jv*(m+1)ld . There-
fore Fotfv = Fyid . But t§°im= ¢. Hence Fy@ = ‘O@"im) =
= Fq®oFyi = Fyi, . ) Therefore , by Corollary 4.1 with
r=r(m+1) and k=m , we obtain that Fxf = Fxg . This comple=-
tes the nroof of the corollary. w '

An unsolved problem, According to Corollary 4.1 we ha=-

 ve the following unsolved problem, Let F be a bundle func-
tor such that ¥ has order r(m)., For each natural number

m , find the minimal number R(m) such that for any maps
f,g:M—aN, m=dim M , x €M, jR(m)f -jR(m)g implies Ff =
F.g . From Corollary 4.2 it follows that R(m) (r(m+1)
en the other hand it is obvious that R(m))r(m) Is R(m)
equal to r(m) ?

?
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Wej into bundl
functors. We recall the following definition.

Definition 5,1 Let F and G be two bundle functors on Mf.
A family of (™maps I(M):FM—sGM, M€ Mf is called a natural
transformation of F into G if for any f:M—sN I(N)eFf=GfoI(M),

Remark, One can show that for every natural transforma-
tion IT:F——=G and MENF pM°I(M) pM « A simple proof of this
fact is given in[?#].

From now on Trans(F,G) will denote the set of all natu-
ral transformations of F into G . (This is a set because
any natural transformation I:F—G is uniquely determi-
ned by the semuence I(R") , m=0,1,2,... .) If A= B(k) 1B
is a Weil algebra and F a bundle functor, then define
Adm(A,F) to be the set

[verg®s: Yreo™@ /") (3he=3t1, ==Fr(v)=F1, (v)} ,
where 1, .Rk-——bmcﬂ is given by i (x) = (x,0) . We prove
the following theorem. §

Theorem 5,1 Let F:Mf——FM be a bundle functor and
A= F‘(k)/@ a Weil algebra., Then the function
J: Trans(’[‘ y F)——= Adm(A,F) given bv J(I)=I(R )(jA(idk))
(where idy is the identity map on RX ) 1is a bijection, The
inverse bijection is of the form Adm(A,F)Bv—-rIveTrans(T »F)
where IV(M):TAM——tFM is given by V(M) (3 I‘) Fr(v) .

ngof, f‘ons1der T € Trans (1" F) If 3 Aro jAl then
Fi, (TR (3% (14, )))=T@ )0y (5 (1d,))= TR (51 )
Im 41 (gAe) o1 (@4 Tyorh f(aA(ldk)) Ff<1<mk>(jA<iak)>> Hence
1(B%) (3% (14,)) € Adm(A,F). Therefore J i3 vell-defined.

Now, suppose that I N I**€Trans (T ) are guch that
v @) (34(1a,)) =177 (&) (3 P(1a,)). hen () (3 f)—

17 (M) f(jA(id ))=FeoT (@) (3" (14, ))=Frol** (BF) (3% (14,))
-I”(M)(j f) for any j Ar e Ay, I—Tence J 1is a injection,

The main difficulty in proving Theorem 5.1 is to show
that J 18 a surjection. Consider v € Adm(A,F). By Theorem
3.1 the condition jAf=j‘A‘g imrlies TFf(v)=Fg(v). Therefore
V(M) ‘1‘ Ay 1s well-defined. For any h:M—N and
any 32 we have IV(N)ern(3£)=17(N) (5 (o)) <Tlnos) ()=
FheFe(v)= Fhol” (M) (3%£). Tt is clear that IV(®)(3%(1dy))=v:
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Hence the theorem is proved, provided I'(M) is of class C%®,

We have to show that I'(M) is of class C® . Since
IV(IVI)"'I?‘A‘ef"'1 = Ft?"uIV(an) for any chart @ on M, it
is sufficient to show that I'(R") 1is of class C® for every
natural number n, We shall use the following lemma, which
is a stronger version of Boman’s Theorem, [1] &

Lemma 5,1 Let f:M—-sN be a function of two positive
dimensional manifolds such that for every C% function
¥ :R——=M foy is of class C®, Then f is of class C%

Proof of the lemma; Recall that in the theorem of Boman
M and N are R" and R? respectively. At first we assume
that f 1is continuous, Consider x,€ M o Choose a chart
(U,9) on N near f(xo) such that cp(rl)d‘?dim N There
exists a chart (V,y) on M near x, such that l{}(V)-— dim M
and f(V)CU, By Bomars theorem and the assumption of Lem-
ma 5.1 we get that QPOfony"1 is of class 0% ; Therefore
f is of class C%®,

Hence we have to show that f is continuous, Suppose
that f is discontinuous in y € M, Choose a chart ('\7,"\?)
on M mnear y, such that '\"p(?f): rA™ ¥ g ?‘;’(yo)= 0, By
replacing f by fo'\.\f»"'1 we can assume that M= R" and ¥o=0-
There exist a senuence of points xiEIRm (i=1,2,...) and
a neighbourhood T of f£(0) such that x; —0 and
f(x].) k(’TT for all i , By vassing to subsequences we can
assume that |x;||{exp(~i) for all i ! By the “hitney ex-
tension theorem [14 ] there exist a function ‘G‘P——*Rm of
class C®such that Y(1/i) = x; for all 1 . But fofis
of class C®, Hence f(x;)= fo ¥'(1/1)——foy(0)=£(0). This
is a contradiction and the lemma is proved. =

Now, it is sufficient to show that I'(R%)e} is
of class C®™ for any C® curve Y¥:R ——nfg?, Suppose that
_rn.(k)r”C@ . Let X':R——»TAIRn be an arbitrary C%® curve,
There exists a linear section s:A -————oE(kyﬁ(k)r'"1 with
respect to the linear projection E(k/y_ﬂk)rﬂ———OA given
by 3t— she . Pt F(0)=34(£L,.0.,ED) and jg(F%F
s(jA(fi)) , i=1,...,n . There exist C*™ maps Qi:lRXIR —R
such that J5(F1)= 35(@(t,*)) for i=1,...,n. For example,
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et (t,x) = Zld:l( (1/oC D¢F‘i(0)x°c) It is obvious that

J @t,...,q)_t §(t) , where @t(x) @ (t,x). By Proposi-
tion 1.1, we have that the mapning I'(R™)s¥ is of class C%®
because I (R%)e ¥(t) = I"(Rn)(jA(éjc,...',ﬁ))=F(i>jc,;..,@’%)(v).
This finishes the proof of the theorem, m

As a special case of Theorem 5,1 ( =m (k)Y we
have the following corollary.

Corollary 5,1 Let F be a bundle functor on IMf such
that F ., the restriction of F to the subcategory of (k+1)
-dimensional manifolds and its local diffeomorrhisms, has or-
der r(k+1). Suprose that r>r(k+1) Then there is a bijec—

7 T
tion between Trans('[‘ ok ,F) and F‘OlR given by I————»I(IR )(J(jidk),

N , 3 Yei !
functors . Let 'A—F(ky@ and  B=E(p)/(B) be two Weil algeb-
ras, In [5] , I, Kola¥ in‘rroduced the following definition,

Definition 6.1 We sav that J fe TgrR is an A admisible
B velocity if 3J (q;of) j Bo  for all pe®.

It is easy to show that the set of all A admisible B
velocities is equal to Adm(A,‘I‘B). Therefore we have the fol-
lowing corollary. (™his corollary was deduced by T. Kolar[5 ])

Corollary 6,1 There is a bijection between the natural
transformations I:TA——»'[‘B and the A admisible B veloci-
ties given by _T(B?k)(jA(idk)).

mations of YWeil ctors into line
functors of higher order tangent bundleg. A class of well
known functors in differential geometry can be constructed
as follows, see e.g [4 ],[6]. Given two integers a,v) 1 and
a manifold M, we put Tr*M J°(M,RY)y , the set of all r-jets
of M into R? with target 0. One can see that T*M is a vec-
tor bundle with standard fibre JS(R ,R-)O, provided 4im M=m,
Let T'M be the dual vector bundle of Tﬁ*M. Given any r-=jet
A from Ji(M,N)v , the composition of jets determines a line-
ar map from the fibre (TE*N) over y€éN into the fibre
(Tr"M)x . Hence any smooth map f:M—N induces a linear
morphism Tg*f:f’TZ*N———uTﬁ*M , where f!Tg*N means the
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pull-back of T"*N with resvect to f , Then we define
Tgf:TrM—aTrN to be the dual map of T°*f and we obtain

a bungle fu%ctor T with values in the subcategory WM. CIM
of smooth vector bundles,

Tet A=E(ky® be a Weil algebra) r,q>1 two integers.
We have the following lemma,

Temma 7,1 The following equality is satisfied:

adm(A, 75)=f we (a5 (2F, R Vs We@T w(358)= 0f ,
where (A% =@®X... x@® , g-times .

Hence we have the following corollary.

Corollary 7,1 There is a bijection between the natural
transformations I:TA———gT: and the set {we(Jg(mk,Rq)o)*:v
f€®q W(IEY) = 0§ . This bijection is given by
r——»x(mngf*(mk)) :

Proof of TLemma 7,1, (2) * € # Consider \oeAdm(A,Tg) .
Let 3‘6@"1 . By Theorem 3,1 (since jAE’= jAO ) we have
that 108 @) = T0(w) , i.e W(IGE) =T ) (35(14)) =
T20(w@) € 351a)) = w(35(0)) = 0 . '

b) 1D " Consider  We(J5(RS,BU)) ; Surpose that W(3TH)=0
for any FE€@ " Let ¥: RE—— R e a mapring such that
3Ag =38, . of course 09-9ei, E@? for any germ

9:(!&k+ ,0) — (R?,9) . Hence O = u(jg(gmp-g-ik)) =
W(Ia(geP)) - w(I5(ge1,)) = MR(W)(359) - T, (W) (ige) .
Therefore Tgcp(w) = Tgik(w) , lie wendn(a, T7) [ m

8, Vector spaces of natural transformations of Weil
functors into linear bundle functors. We shall start with
the following definition,

Definition 8.1 A bundle functor F:Mf———FM 1is called
a linear bundle functor if im(F)CYM , vhere WM 1is the
category of linear fibre bundles and their morphisms,

Tt is easily seen that if F is a bundle functor and
G is a linear bundle functor, then the set Trans(F,G)
of all natural transformations of F into G admits the
following vector space structure: (a) ¥ I,J€ Trans(F,G)
T+J € Trans(F,G) , where (I+J)(M):PM—>GM is given by
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(T+3) (M) (v) := I(M)(v) + J(M)(v) , and (b)Y 4eR, Te¢Trans(F,G)
5I € Trans(F,G) , where ( AI)(M):MM—=GM is defined by
(ADY (M) (v):= A(T(M) (V) .
Let F be a linear bundle functor and A = E(x)/@®
a Weil algebra, It is easy to verify that the map J descri-
bed in Theorem 5.1 is a linear isomorphism between vector
spaces Trans(TA,F) and Adm(A,F), Moreover, Adm(A,F) is a
vector subspace of FOKR . Hence we have the following corol-
lary. :
Corollary 8,1 Let F be a linear bundle functor and
= E(k)/(® a Veil algebra. Then Trans(T*,F) and Adm(A,F)
are finite dimensional vector spaces and dim('l‘rans(TA',F)) =
dim(Adm(A,F)) {dim(FRE) .
The- following example shows that there exists a linear
bundle functor G such that dim(Trans(G,G)) =oo ;
Example 81 Let
¢ = ®q€fN ANl
vhere T is the tangent functor, A2 is the inner product
and @is the Whitney product, We see that if q>dim M , then
NATM=NMX[0} and therefore GM is finite dimensional. Con-
sequently, G is a linear bundle functor on Mf: TFor each
natural number k define IN¢ Trans(G,G) to be the family
of maps Ik(M):G M——»GM given by Ik(I"I)(vaq}) ={5f-{lvq} ,
where 8]‘% is the Kronecker delta. Of course, the set
{Ik : kelN} is linearly independent. Hence dim(Trans(G,G))=q
: C 1 8,1. We fix a natu-
ral number q . As a2 simple application of Corollary 8;1 we
will determine all natural transformations of TIT. into
AT . Since the classical tangent functor i1s the Weil func-
tor of the algebra of dual numbers D= E(1V_r_nj1)2 , the
iterated tangent functor TT is the Weil functor of the
tensor product D &D = E(?V(xZ,y;:)-, where x2,y2 is
the ideal in E(2) generated by germs : X:R——R
y2:lR2—-—»IR given by x%(x,y)=x* and yz(x,y)=y2 (see [9 ]
or[5]); We have two natural projections of TT onto T,
Namely, T(piﬁ) :ITM—>TM and ppy:TTM—>TM , Me ML ,
where py:TM——M 1is the bundle projection; It is easily
gseen that the above projections are natural transformations
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of TT into T . et e,,e, be the canonical basis of B’
and T R?“' [R2 For each ze ®® , we have translation by 2z
denoted by T, (R——s R? given by ¥ y)=z+y . Consider
vector v = [t——‘T(‘tte1)(e?)]€TTR2. Ve see that

Mpt)(vp) = ey emd po(r) e,
Therefore the above natural transformations of TT onto T
are linearly independent, On the other hand, by Corollary 8.1,
dim(Trans(TT,T))gdim(TolR?‘) = 2, Hence the above natural tran=-
sformations form a basis of the vector space of all natural
transformations of TT into T, Now, by using Corollary 8.1
it is easy to verify that: (a) Any natural transformation
of T into A9T is the zero transformation, provided
o>3 , and (b) Any natural transformation of TT into AT
is of the form A T(pM)/\pTM » MENE , where A€R

9:Proof of Proposition 1:;1 . ([87) Let F:Mf— M
be a bundle functor. By results of Epstein-Thurston [3 ],
for any ne N F, = Flbil_f_n is a natural bundle in dimension
n , In particular, the map

Fr :R%X RY— m" , (x, v)-——sF‘C’ (v)

(., 1is translation by x) is a smooth action of (®%,+) on

" for any natural number n ., Using this fact we prove
Propogition 1.1 in the following way: Let f:MXP —N

be a smoothly parametrized family. Bv anplying charts we

can assume that M=R" y N=R" and P=[Rk. Consider the fa=-

mily o mTx [Rk—-smn given by (?f) = F(f ) , pe le:

Tt is obvious that FF is smoothly ‘oaram'gtrizedp provided

k=0, 30, assume that k) O, One can see that f =fo T(O ) °i ,

where 1i: R™—» RPxRS is given by 1(y)—(y,0) and
T 0,p is the translation by (O,p)€ R"Xx R ; Hence the
family (F.t')p=Ffo F‘t(O’P)oFi s DE le is smoothly parametrized,

This ends the proof of Proposition 1.1. B
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