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SQUARE INTEGRABILITY OF GROUP REPRESENTATIONS ON 
HOMOGENEOUS SPACES AND GENERALIZED COHERENT STATES 

S.Twareque Ali, J.-P. Antoine and J.-P. Gazeau 

In previous papers [1,2], we have obtained coherent states for the Poincare 

group in 14-1 dimensions, a case where the standard methods do not work. It 

turns out that the technique used there is a special case of a much more general 

construction, that we will outline here. A detailed analysis will be published 

elsewhere [3,4]. 

1. THE STANDARD CONSTRUCTION OF COHERENT STATES 

Let G be a locally compact group (not necessarily unimodular), with (left 

invariant) Haar measure dg, and consider a strongly continuous, irreducible, 

unitary representation U of G into a Hilbert space 9t The representation U is 

said to be square integrable if there exists a vector T| G 9{ such that: 

J I<U(g)-q I(|)>12dg <oo,V(|>e H (1.1) 
G 

(equivalently, U belongs to the discrete series). Choose a fixed vector t| that 

satisfies the admissibility condition (1.1). Then the orbit of r| under U, 

© = {iig = U(g)Til g e G } , (1.2) 

is an overcomplete family of vectors, called coherent states associated to the 

representation U. Alternatively, the family 0 determines a resolution of the 

identity 

J lTlg><T|gldg = L (1.3) 
G 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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This is the familiar construction of coherent states [10,11]. A particularly 

interesting example is the affine group of the line (the "ax+b" group), in which 

case one obtain wavelet analysis (r\ is then called the analyzing wavelet) [9]. 

2. THE PERELOMOV CONSTRUCTION 

In many cases, the admissibility condition (1.1) is too strong, and one has 

to use the generalization due to Perelomov [11]. Given r\, define H as the 

subgroup of G that leaves r| invariant up to a phase (this is obviously 

motivated by Quantum Mechanics, where states are defined only up to the 

phase): 

« U(h)ri = eiatWn. (2.1) 

Let v be a (left) invariant measure on the coset space X = G/H. Then we say 

that the representation U is square integrable modH if the following 

admissibility condition holds : 

J I<U(g)r i I(>>12dv(x) < oo, V (|>E H (2.2) 
G/H 

(by (2.1) the integrand depends only on the coset x = gH). When this is the case, 

the construction proceeds as before. We denote again by © the orbit of r\ under 

U, but now the elements of © are indexed by points of the coset space X. Hence 

one obtains a set of generalized coherent states (GCS): 

© = {r|xl x = g H e X = G/H}, (2.3) 

which yields again a resolution of the identity : 

J lTix><Tlxldv(x) = I. (2.4) 
X 

Examples are plentiful; for instance : 

(i) when G is the Weyl-Heisenberg group, one gets the canonical coherent 

states, familiar in Quantum Mechanics [10]; 

(ii) G = SU(2) or a compact simple Lie group ; 

(iii) G = SU(1,1) or a noncompact simple Lie group, and U a representation 

of the discrete series. 

The last two classes are treated in detail in the monograph of Perelomov 

[11]. It should be remarked that GCS may be defined also for a representation 

that is not square integrable mod H, e.g. a principal series representation, but 

those vectors lack many of the nice properties of the square integrable ones [11]. 
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Now this method, however nice and powerful it may be, does not always 

work ; for instance, it is inapplicable in the case of the Galilei group or the 

Poincare groups 2+0,1) or 2+(l,3), more generally for a semidirect product 

G = S A V, where V is a vector space and S c GL(V) (this is the case treated by 

DeBi&vre [6]). 

We will discuss in detail the case of the 1+1 dimensional Poincare group 

2+(1,1), in Section 5 below. The natural representation is the familiar Wigner 

representation U w , but it is not square integrable. An obvious manifold X to 

consider here is the phase space T = fP|(l,l)/T, where T is the time translation 

subgroup, but T is not the stability subgroup under U w of any vector r|. Thus 

Perelomov's construction fails to give relativistic coherent states. The 

formalism we are going to develop will enable us to do so, but it is much more 

general than this particular example. 

3. REPRODUCING TRIPLES 

In fact, it makes no reference at all to a group representation. The only 

ingredient we need is a generalization of the resolution of the identity (2.4). 

Let (X, v) be a measure space and H a Hilbert space. Then we replace (2.4) by 

the following relation : 

J F(x)dv(x) = A, (3.1) 
X 

where A is a bounded, positive, invertible operator on 9{, F : X -» L(fH)+ is a 

v - measurable, positive operator valued function, and the operator integral in 

(3.1) is to be understood in the weak sense. Given such elements, we call 

{9{,¥,A} a reproducing triple . This is the central notion in the sequel. 

3.1. Coherent states 

For each x e X, we denote by IP(x) the projection on the orthogonal 

complement of KerF(x) : IP(x)#= (Ker F(x))-1, and define on \P(x)?{ the new 

scalar product: 

«»x I ¥x>x = «t>x I F(x)\|/X>#, V4fc,vxe Hx)9l (3.2) 

Let %L be the completion of IP(x).?/' with respect to the corresponding norm 

||. ||x, and {vi(x), i = 1,..., d(x) s dim IP(x)itf} an orthonormal basis in IP(x)^". 

Then one obtains an overcomplete family of coherent states 

® = { \ ' \ = FWvito / i = 1/2,..., d(x); x € X}, (3.3) 
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such that: 
d(x) . . 

F(x)= X l \ ><\l> OA) 
i=l 

d(x) J . 

J X ' \ > < ^x ' ^v^ = A (w^ak integral). (3.5) 
X i=l 

Overcompleteness means that ® is a total set in 9(\ (3-1- = 0. 

3.2. Reproducing kernel Hilbert space 
A nice feature of the usual construction of coherent states is the presence 

of a reproducing kernel Hilbert space. The same is true here. To see that, let us 

introduce successively : 

. the direct integral H = J %^ dv(x), 

. the map WK : tt-> H, defined by 

d(x) i 
(WK$)(x)= I <TIX I (|>>Vi(x) = IP(X)(|)G %,, (3.6) 

i=l 

. the operator FK(x) = WK F(x) WK , 

. A K , the self-adjoint extension of WK A WK I Ran(WK) , 

-1 -1 
. AK , the self-adjoint extension of WK A'1 WK I W^lZXA-1)] 

(of course, the existence and uniqueness of these two self-adjoint extensions 
requires a proof, see [3,4]). 

On WjJ^XA"1)], define a new scalar product 

«DI Y>K = <<D I A K T > -

and denote by Oi^ the completion of WjjUXA"1)] with respect to the norm 

||. ||K. Then it turns out that tt^ = Ran(WK) C H and WK : :#-> ?(K is a 

unitary map. As a consequence, we get a new reproducing triple { 9(K, FK, 

A K } , where ^ is a space of vector-valued functions , with a reproducing 

kernel K(x,y): %$ -» %*, enjoying the following properties : 
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. K(x,x) > 0, Vx G X; 

. K(x,y)* = K(y,x); 

. <3>(x) = J K(x,y) O(y) dv(y), V O G ^ (reproducing property). 
X 

3.3. Continuous frames 

All the results above simplify if Rank F(x) = n < oo, for every x e X, since 

then 9{ may be mapped unitarily onto L2(X,v;Cn). If, in addition, A-1 is a 

bounded operator, then { 9{, F, A} is called a (continuous) frame . In that case, 

indeed, (3.5) leads to the "frame" condition : Q 

n j 
m(A)||<t>||2 < X J I<T1XI^)>I2 dv(x) <M(A)| |^ | |2 , (3.7) 

i=l X 

where m(A) = inf o(A), M(A) = sup a(A) (the so-called "frame bounds"). The 

frame is called tight if m(A) = M(A), or equivalently if A = X I. The 

terminology used here is borrowed from the theory of nonorthogonal 

expansions [5,7], since the family {r|x } is a frame in the usual sense when X is 

discrete and v the counting measure. 

4. SQUARE INTEGRABIIITY OF A GROUP REPRESENTATION ON A COSET SPACE 

Now we apply the general formalism just developed to the situation 

described at the beginning. Let G be a I.e. group and H a closed subgroup of G 

such that the coset space X = G/H has an invariant measure v. Choose a 

(global) Borel section p : X -> G. Given a representation U : G -» H and an 

operator F G L(9i)+, define the function Fg : X —> L(9€)+ by covariance 

F[3(x)=U(P(x))FU(|3(x))*. (4.1) 

In this notation, the representation U is said to be square integrable mod(H,[i) 

if there exist F, A« G L(!tf)+ , with rank F = n, such that {H, F„, KA is a 

reproducing triple, i.e. A„ is invertible and the following operator integral 

converges weakly : 

J F(x)dv(x) = A^. (4.2) 
X p p 

This class of representations enjoys many properties analogous to those of the 

square integrable ones, in the standard sense. 
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4.1. Covariance 
If U is square integrable mod(H,P), then it is also square integrable 

mod(H,pg),Vg(=G, where Pg(x) = gP(g"1.x) (xeX) is the invariant measure 

obtained from P by the action of G on X. 

4.2. Coherent states 
Using the spectral decomposition 

n 
F = ] > > i | u i > < u i | , (4.3) 

i=l 

where X[ > 0 and {ui}.=1 is an orthonormal set, define the vectors : 

Tlj(x) = ?Li
1/2U(p(x))ui. (4.4) 

Then, as in Section 3.1, the vectors (4.4) constitute an overcomplete family of 

coherent states 

®P = {r|p(x) ' i = U , . . . , n , xeX) (4.5) 

and 

n 
Ap= J I lV) > < T lp (x) l d v ^ «-6) 

K X i=l 

the integral converging weakly as usual. 

4.3. Equivalent f amUies of coherent states 
Let P, p' two sections X -» G, such that U is square-integrable both 

mod(H,p) and mod(H,pi). Then the corresponding families of coherent states 

@p and @p«are equivalent , in the following sense : for every xeX, there exists 

an operator T(x) e IX9{), with T(x)"1 e UM), such that 

T!p,(x) = T(x)TiJ(x) and ^ = T C x T 1 ^ . (4.7) 

Thus, in this precise sense, we may say that the set of coherent states associated 

to the representation U does not depend on the choice of the section. 

Example : @o is equivalent to @ p , V g e G. 
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5. EXAMPLE: THE POINCARE GROUP fpj(l,l) = S00(1,D A IR2 

As an illustration of the general theory developed in Section 4, we shall 

now construct systems of coherent states for the Poincare group in one space 

and one time dimensions, -Pi(1,1) = SO0(l,l) A |R2 ( s e e also [1,2]). 
t The group is parameterized in the standard way : (a, Ap) e 2^(1,1), where 

a = (a0, a) = (a0, a) e [R2 (5.1a) 

л p = 

f£o V_\ 
m m 

\^m m J 

S00(1,1), with p 0 = (p2 + m2)!/2 , (5.1b) 

We consider the familiar Wigner representation : 

(Uw(a,A)<t>)(k) = eik.a (|)(Ap-lk), <|> e ^ = L W * , dk/k^) (5.2) 

where fVm = { k = (k0,k), k0
2 - k 2 = m2, k0 > 0 } and k.a = k0 a0 - k . a . A 

straightforward calculation shows that this representation Uw 1s not square 
T 

integrable over 2+(1,1)! 
T 

Instead we introduce the phase space T = !P+(1,1)/T, where T is the time 

translation subgroup. Notice that T is not the stability subgroup of any vector 

in 9(w, so that the method of Perelomov is indeed inapplicable here. 
T 

Using standard coordinates (q, p), one gets the -P+(l,l)-invariant measure 

dq dp on T. Define first the basic section p0 : T -> !pj(l,l) by p0(q,p) = ((0, q), Ap). 

Then a general section may be written as P(q,p) = P0(q,p) ((f(q,p), 0), I). We will 

consider, in particular, the class 5 A of affine sections defined by the two 

conditions : 

f(q,p) = (p(p) + q-9(p)/ (53) 

-*? <«»<-<£- (5-4) 
ry 

(condition (5.4) is equivalent to q^ - q2 < 0, where P(q,p) = (q, A£) and q> = 0). 

According to the general theory, a vector T] E H^ is admissible mod(T,P) 

for p e SA if 

A p = J Uw(p(q,p)) | Tl > < n | Uw(p(q,p))* dq dp (5.5) 
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is a bounded, invertible operator on .7/^. Then an explicit calculation yields the 

following results. 

(1) The vector r| e ir/"w is admissible mod(T,p), for any section P e SA iff 

r\ e 2XP0 ), where P 0 is the energy operator : 

P0ti(k) = k 0 r i(k). (5.6) 

(2) When r| is admissible, Ap = A^ is a multiplication operator given by 

(AjV)(k) = Aj(k)\|/(k) (5.7) 

Aj(k) = J ^p(k, p) | Ti(p) | 2 & (5.8) 

( Л kP)o 

where Jfa(k, p) = 2% : . (5.9) 
V k 0 -9(Apk).p 

The crucial fact is that the kernel .#p satisfies the following inequalities, 

which result from (5.4) : 

5 T ( P 6 - I p l ) < Atfbp) < ^ ( P o + l p l ) , (5.10) 

for all k . p e V^ and any 0 obeying (5.4), in particular, for any section p e 5A-

(3) As a consequence, every vector TI which is admissible mod(T,P) generates 

a reproducing triple fflw, F g , A^}, of constant rank n = 1, and in fact a frame. 

The frame bounds obey the estimates (independent of the choice of the section 

p e 5 A ) : 

m(Ag) > m(Ti) -E 2TC < TI I ^ ^ TI >, (5.11) 

M(Aj) < M(ti) = 2K < Tl I ^ p - T] >, (5.12) 

where P is the momentum operator : 

P(|>(k) = k<|>(k). (5.13) 

Furthermore, there exist sections p for which the frame is tight (sometimes, 

only for a suitable choice of r|, as in the case of the basic section p0) and other 

ones (e.g. the section p s used in [2]) for which the frame is never tight, that is, 

the spectrum of A|j is always purely continuous, whatever state r\ is used, 

i (4) It follows from the general theory developed in Section 4 that, for every 

affine section P e SA / any vector r\ which is admissible mod(T,P) generates a 

family of coherent states indexed by points in phase space : 
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@
P

 = ^ P ( q , p ) l ( < l ' P ) e r J - (5-14> 

Furthermore, all these systems of coherent states are equivalent. 
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