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ASPECTS OF AFFINE TODA FIELD THEORY 

H.W.Braden, E.Corrigan, P.E.Dorey, R.Sasaki 

1. Introduction 

The motivation for exploring the ideas contained in this talk came principally 
from the recent work of Zamolodchikov [27>281 concerning the two dimensional 
Ising model at critical temperature perturbed by a magnetic field. At critical 
temperature and zero magnetic field, the Ising model is known to be associated 
with a conformal field theory carrying a pair of representations of the Virasoro 
algebra L,L each with central charge equal to one half and primary field content 
(0,0), (?), 2) a n d ("16"> lei)- The perturbed Ising model is no longer conformal but 
Zamolodchikov argued that it is nevertheless an integrable theory of eight spinless 
bosons with masses in the ratio 

1 1.618 1.989 2.405 2.956 3.218 3.891 4.783 (1.1) 

The set of masses (1.1) were obtained by Zamolodchikov via a judicious use of 
information obtained by exploring the conserved quantities of the perturbed Ising 
model (for example, finding them to have spins 1,7,11,13,19,..., the exponents 
of E&), in conjunction with the bootstrap conditions satisfied by the S-matrix 
elements of the conjectured theory. 

Subsequently, Hollowood and Mansfield l17' pointed out that since Toda field 
theory is conformal the perturbation considered by Zamolodchikov might well be 
best regarded as a perturbation of a Toda field theory. The appropriate pertur
bation converts the Toda theory into an affine Toda theory which is known to be 
classically integrable. This work (and also that of Eguchi and Yangt13!) made it 
seem plausible that the theory sought by Zamolodchikov was actually affine E$ 
Toda field theory. However, this connection required an imaginary value of the 
coupling constant. Investigations reported below concerning exact S-matrices all 
use a perturbative approach based on real coupling and the results differ in various 
ways from those thought to correspond to perturbed conformal field theory. Work 
by Al. Zamolodchikov t30' and recently by Klassen and Melzer^18' confirms this. 
Hence, a connection if it really exists is not straightforward. 
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A dozen years or so ago, there was a lot of interest in the development of S-
matrix theory in the context of two dimensional integrable models t29J (such as sine-
Gordon theory, the Gross-Neveu model, cr-models and so on). In particular, the an 

affine Toda field theory was explored by Arinshtein, Fateev and Zamolodchikov 
W and its exact S-matrix conjectured. Several sets of authors l2~4'6~8'10'21~22J have 
set out to explore the full set of S-matrices for all these Toda theories in order to 
complete the pioneering work of Arinshtein et al and to enhance the store of in
formation concerning the two-dimensional quantum integrable theories. Certainly, 
there appears to be a collection of interesting observations and facts for which at 
present there is no ready explanation. 

A further motivation is to explore the connection between conformal and per
turbed conformal field theories in other contexts using similar ideas. For example, 
Fateev and Zamolodchikov t14l do precisely this, as do Christe and Mussardo l7-
and othersJ15'18'25! 

The rest of this talk will be devoted to properties of the affine Toda field theory, 
the intention being to highlight a selection of curious properties that we feel ought 
to be explicable in terms of the underlying group theory but for which in most 
cases we have no explanation. 

2. (Affine) Toda field theory 

Let us begin by summarising some of the properties of classical (affine) Toda 
field theoryi12 '20 '23 '26 ' The standard starting point is the lagrangian 

c=fa* .**-£ i ^ - ̂  v** •* (2i) 
= Co + C\, 

where C\ denotes the final term containing ao and Co represents the rest. The 
scalar field cf> is actually a set of r real scalar fields <\>a a = 1 , . . . , r and the vectors 
a\ i = 1 , . . . , r are a set of simple roots for one of the simple Lie algebras of rank 
r. (For much of this talk we shall restrict to members of the ADE series for which 
all the simple roots have the same length, taken to be y/2.) The extra root ao is 
the lowest root and is expressible in terms of all the other simple roots via 

r 

ao = ~Ylniai> 
i = l 

where the coefficients U{ are a set of positive integers particular to the Lie algebra. 
The integer no is always taken to be 1 and is inserted merely for uniformity of 
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notation. The coupling constant (3 plays no role classically (it may be scaled out of 
the classical field equations for the stationary points of the action associated with 
(2.1) ), but it is very important in the quantum field theory, as we shall see. The 
theory is formulated in Minkowski space-time. The piece £Q of the lagrangian is 
separated out because it is conformally invariant in the following sense. In terms 
of light-cone coordinates 

x± = (x ± t) (2.2) 

the conformal transformations are given by 

/ ( ± ) (x±) (2.3) 

and 

<f> - <f>'(x') = <f>(x) - I ln(d+/(+)0_/ (" ) ) , (2.4) 

where 6 = YZ=i ^i an<i ^i a r e the fundamental weights. Then 

6ai = l i = l , . . . , r (2.5) 

and it is easy to check that as a consequence of the transformations (2.3) and (2.4) 
£o is scaled overall by the product £>+/(+)#_/(-). The crucial feature is (2.4) and 
the property (2.5). It is equally straightforward to check that C\ is not scaled in 
the same way (and hence breaks the conformal symmetry), on noting that 

r 

-£-ao = ]Tn; = h- 1 
i=1 

where h is the Coxeter number of the algebra. 

The quantisation of the conformal part of (2.1) alone leads to a quantum field 
theory carrying representations L, L of the Virasoro algebra for which the central 
charge is given by 

c = c = r + 487r |5 | 2 ( i + £ ) . * (2.6) 

This is a story with a lengthy history of its own I1»-6,17,19] whi ch w e cannot go into 
here. However, there is an interesting fact to be observed namely that c given by 
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(2.6) has a symmetry between 'strong' and 'weak' coupling under the interchange 

By tuning /? and choosing the Lie algebra, a variety of unitary conformal theories 
can be found. For example, for E% the choice 

leads to c = h. (The fact, 

____Ҙ1 
4тr ~ 32 

rh{h + l) 

12 

is useful in this context.) Indeed, the whole unitary series of c < 1 representations 
of the Virasoro algebra can be obtained in this way. 

We have already mentioned the affine theory (i.e. all of (2.1)) is not even 
classically conformal. Nevertheless, it is classically integrable and enjoys the fea
tures associated with this status. For example, there are infinitely many conserved 
charges Qs in involution. These are labelled by their spin: i.e. transform under 
two-dimensional Lorentz transformations 

x± -> X±x± (2.7) 

via 

Qs -* X~sQз- (2.8) 

The conserved quantities for the affine Toda theory based on the Lie algebra g 

have spins which are precisely the exponents of g modulo its Coxeter number]1 2 '2 6] 

Each theory also has a Lax pair with all the structure implied by that classically. 

From a straightforward perturbative point of view, given the lagrangian (2.1) 
we are interested in data such as the masses and couplings of various kinds. Ex
panding the potential part of the lagrangian up to third order, we find 

P t=0 £ i=0 

, m2P V-< a b cjaibjc ( 2 - 9 ) 

+ ——^nia1a°ia
c
i<i><S>04r ' 

0 i=o 

+ ... 
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from which we can extract a mass matrix 

(M 2 r 6 = m 2 X > < a * (2.10) 
0 

and a set of three-point couplings 

cabc = ^m2j^nia
a

ia
h

ial (2.11) 
o 

The mass matrix has been studied before, in most cases long ago,-20- but the cou
plings of the mass eigenstates had not been computed until recently J 2" 4 ' 6 - 8- It 
turns out that these two pieces of data which are quite laborious to compute seem 
to contain the key to the quantum S-matrix. 

Even at this basic level, there are some interesting facts and observations. For 
example, it transpires that the set of masses computed as the r eigenvalues of 
the mass matrix (2.10) actually constitute the Frobenius-Perron eigenvector of the 
Cartan matrix of the associated Lie algebral3'4! In other words, if we set 

m = (rni,m2,... ,rnr) (2.12) 

then 

dm =. A„:_ro = ZIGITI-' 

2h 
Cm = Aminm = 4 sin2 — m (2.13) 

where C is the Cartan matrix 

^ 2ai • a, v 

Oij = — V 1 U = l,...,r. (2.14) aз 

We have no explanation for this fact. 

The masses are also related to the extended Cartan matrix in the following 
way. Let N be the diagonal matrix with entries nn,ni,... ,n r down the leading 
diagonal and let C be the extended Cartan matrix 

C = ai>aj ij = 0, l, . . . ,r 

(for the simply-laced cases each root has length Y/2), then it is not hard to verify 
that 

a. • (p2 - M 2 ) " 1 ^ = ((p2 - CN)-lC).. = (O(p2 - NO)-% (2.15) 

demonstrating that the eigenvalues of the (mass)2 matrix are also non-zero eigen
values of NC. (Note, the pole at p2 = 0 on the right hand side of (2.15) has a 
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residue annihilated by C). The identity (2.15) may well be important to the de
velopment of a perturbative approach to the quantum field theory based on (2.1). 

The values of the masses are listed below for convenience (for the other, non 
simply-laced, cases see for example ref[4]): 

o 2 2 ^^" 

an series ma = 4m sin (2.16) 

dn series m2 = ms, = 2m 

T n' = 8 m 2 s i n 2 2 ( ^ T ) ^ 

e6 m2 = m2 = m\ = (3 — y/3)m2 

m2
L = ml = 2(3 - V3)m2 

m2
h = m\ = m\ = (3 + y/3)m2 

m\ = m\ = 2(3 + Vs)m2 (2.18) 
2 ^ 2 • 2 fl" 

er m\ = 8m sm — 
I g 
2 rt / r o . 1 . 27T 

m% = 8v 3m sm — sin — 
2 ,-, 2 • 2 2TT 

m\ = 8m sm — 
2 o /.T 2 » ^7T • *K 

rrtA = 8v 3m sin — sm — 4 18 9 
2 o 2 • 2 x 

7TI5 = 8 m s in — 

2 ^ 2 - 2 47T 

Trig = 8rrr sinz — 

m | = 8\/3m2 sin — sin — (2.19) 

eg m\ = 4v/3m2 sin 7r/30 sin 7r/5 

m2 = 16v/3m2sin7r/30sin7r/5cos27r/5 

mj = 16 y/3m2 sin 7r/30 sin 7r/5 cos2 7r/30 

m\ = 64v/3m2 sin 7r/30 sin 7r/5 cos2 7r/5 cos2 77r/30 

m | = Ay/Zm2 sin ll7r/30 sin 7r/5 

m\ = 4-/3m2 sin 77r/30 sin 27r/5 

m\ = 4 v/3m2 sin 13TT/30 sin 27r/5 

ml = 256v/3m2 sin TT/30 sin 7r/5 cos2 27r/15 cos4 7r/5. (2.20) 

The eg masses are in the ratios (1.1) mentioned in the introduction. Zamolod-
chikov did not compute them this way, however. 
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The fact the classical masses can be thought of as the components of the 
Frobenius-Perron eigenvector of the Cartan matrix corresponding to the associ
ated finite Lie algebra enables us to assign the particles unambiguously to spots 
on the appropriate Dynkin diagram l 2 - 4 ! It then becomes tempting to associate 
the particle with mass ma with the corresponding fundamental representation of 
highest weight Aa satisfying 

^a • <*b = f>ab 6 = 1,2,... ,r. 

We shall see this identification appears sensible from another point of view in a 
moment but first we supply a list of the diagrams for the cases whose masses appear 
in the above lists (2.16)-(2.20): 

тni ГГІ2 ÍTli 

mв> 

O O — • • • — O O m n-2 
TTli 7712 ' m „ _ з 

mв 

Q m2 

m^ m 3 m 4 

Q m3 

m 6 m 4 

m 6 

Q m4 

m 8 
ÏÏІ5 771з TПi 

Actually, this is an interesting idea since the particles are not manifestly part of 
a multiplet; their associated representation is certainly well hidden from the point 
of view of the lagrangian starting point. There are mass degeneracies sometimes 
(in particular in the a-series where typically a particle has a conjugate partner), 
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corresponding to the symmetries of the Dynkin diagrams. Nevertheless the parti
cles are different, being distinguished by the conserved quantities, as we shall see, 
as well as by the representation to which they are tentatively associated. 

Once the masses are known, the couplings between mass eigenstates can be 
computed in all cases. The detailed coupling tables may be found elsewhere, for 
example in ref[4], and will not be reproduced here. There are some universal 
features, however, which are worth remarking. 

Firstly, it has been pointed out by a number of authors t7'3~4J that the magni
tude of the coupling satisfies a universal rule (modified slightly in some of the non 
simply-laced cases), which may be summarised as follows. Denote the masses of 
the coupling particles by m 0 , m^^mc. Particles never couple if their masses do not 
form a triangle of sides m a , m&, m c . If the three masses do form a triangle and the 
coupling is non-zero then its magnitude is given by 

\cahc\ = 4 = A a 6 c (2.21) 
y/h 

where Aa is the area of the triangle in question. Note, expression (2.21) is 
symmetric in the three labels. Note too, it is not sufficient for a non-zero coupling 
merely that the masses make a triangle. It appears the angles within the triangle 
must also be an integer multiple of ir/h. 

It is interesting to note that the assignment of representations to the particles 
is also reflected in the couplings though not in the most straightforward way. We 
note the rule (noted independently in ref[l8]), 

cabc _£ 0 ^ / a ) 0 (fe) D (g) (2.22) 

for the three fundamental representations (a), (6) and (c) associated with the 
particles a, 6 and c. The implication does not go the other way except for the 
members of the An series and for D4. For all other cases the coupling table is 
a subset of the Clebsch-Gordon series. The An cases are easily checked using 
the Young tableaux associated with the fundamental representations. For D\ the 
diagram is 

/' 8 . 

h 28 (2.23) 

I" 8,/ 

and the non-zero couplings are c^hh jih 1 //'/" • -Ai >r 1 x 

^ & > c and c" in agreement with the relevant 
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parts of the Clebsch-Gordon series: 

28 0 28 D 28 

8i ® 8i D 28 

8i <g> 8j D 8^ if i, j , fc = v , s , s ' 

For Z?5 it goes wrong as one may easily verify, but only for one coupling. The 
Clebsch-Gordon series allows 

(2) ® (2) D (2) (2.24) 

but the coupling table does not allow the particle corresponding to this spot on 
the Dynkin diagram to couple to itself (despite the fact that three equal masses 
always form a triangle!); it appears to be important that the fusing angle defined 
below happens not to be an integer multiple of n/h—in this case h = 8 and 
27r/3 = -^(7r/8). Typically, for Dni the relevant part of the Clebsch-Gordon series 
is 

(a) ® (b) D (a + b) © (a + b - 2) 0" . . . © (\a - 6|) (2.25) 

whereas the coupling table contains at most two possibilities for c given a and b. 
It is interesting, however, that the 'spinor' parts of the coupling table follow the 
Clebsch-Gordon series faithfully. 

For the £'-series the couplings are again a subset of the Clebsch-Gordon table. 
The relevant parts of these we have set out in tabular form together with tables 
giving the coupling data. The upper indices on the data in the Clebsch-Gordon 
part of the tables represent multiplicities; the representations are labelled in the 
same order as the masses (2.18), (2.19) and (2.20) which is ascending mass order 
left to right top to bottom in the tables. The upper indices in the coupling data 
tables give the phase of cabc in our favoured bases for the mass eigenvectors (where 
there are mass degeneracies there is a choice to be made). The second row in each 
box of the coupling data gives the set of fusing angles—in every case a multiple of 
n/h for the appropriate h. (In every case in which the C-G series is truncated the 
fusing angle for the absent entry would fail to be an integer multiple of ir/h). 

For the EQ tables the agreement is almost total. Apart from the multiplicity 
in the (H) ® (H) D (H)2 contribution, there is only one coupling chhL which is 
actually zero but which would otherwise be allowed by the Clebsch-Gordon series. 

We shall make a further comment on the C-G series versus fusing relations 
later, in the context of a perturbative approach to the quantum field theory. 
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3. Quantum field theory and properties of the S-matrix 

The classical theory, interesting though it is, is not our main concern and we 
now turn to some questions within the quantum field theory associated with the 
affine theories. 

The basic entities in field theory apart from the fields themselves are the (multi) 
particle states which we shall take to be labelled by the momenta and species of 
the particles. Thus, single particle states, two-particle states and so on will be 
denoted by 

| p « ) ; |pM,pm>, ... (3.1) 

where the superscript denotes the particle type and p represents its momentum. 
The two-dimensional momentum of a particle is given conveniently in terms of its 
rapidity 0a via 

p(a) = ma(cosh0a, sinh0a). (3.2) 

We have in mind the usual idea that the particle states (3.1) make sense in a limit 
in which the particles are spatially well separated (such as long before or long after 
scattering). One of the aims of quantum field theory is to compute the probability 
of a particular outcome (or set of outcomes) in a scattering experiment, starting 
with a given initial state (usually containing two particles) which is one of (3.1) 
and with the possible final states being a subset of (3.1). Typically, the picture we 
have in mind is 

(3.3) 
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and the task of computing the effects of the scattering process converting the ini
tial to the final state is generally extremely difficult. However, the affine Toda 
field theories are very special and indeed we hope they are quantum integrable. In 
particular, if the conservation laws survive into the quantum theory and serve to 
distinguish the particles in any given theory uniquely, then the scattering picture is 
much simpler than (3.3) would suggest. In fact, there can be no production of extra 
particles at all in the final state and momenta must be preserved individuallyi24l It 
is not even possible for the two initial particles to interchange momenta. Actually, 
this situation is even simpler than the sine-Gordon case (for a review see Zamolod-
chikov and Zamolodchikov -29-). There, the soliton and anti-soliton states are 
distinguished only by a conserved quantity with zero spin (the topological charge) 
which is not enough to forbid the exchange of momenta in soliton-anti-soliton scat
tering. This feature complicates the scattering theory considerably. In the very 
special case of affine Toda theory the only change in the two particle state as a 
consequence of interaction must be a phase. Thus, 

k(0)> p ( 6 ) / o u t = Sa^0a ~'») lp(0)' pib\ <3-4) 

where the phases 5a& are functions only of the rapidity difference of the two particles 
(to preserve two-dimensional Lorentz invariance). There will be one such phase for 
each pair of particles in the theory. The totality of the the phases is referred to as 
the two-particle S-matrix. On general grounds, the sets of phases satisfy a number 
of conditions or constraints which we summarise briefly: 

(a) Un i t a r i t y 

The scattering matrix element Sab{0) is a phase for real 0 (= 0a — 0b) 

Sab(0)S*ab(6) = 1. 

It is also a meromorphic function of complex 0 satisfying 

Sab(O)Sab(-0) = 1 (3-5) 

where, if 0 is real, 

S*ab(O) = Sab(-0). 

(b) Crossing 

The S-matrix element Sab{0) serves also to describe the 't-channel process' 



78 BRADEN CORRIGAN DOREY SASAKI 

(3.6) 

via analytic continuation: 

Sba(0) = Sab{ni - 0). (3.7) 

Note, the standard Mandelstam variables s and t are given in these special cases 
by 

s = (p(°) + p(6)) = ml + ml + 2mamb cosh 6 (3.8) 
ty 

t = (p(°) - p(6)) =ml + m2
b- 2mamb cosh 9 (3.9) 

As a consequence of (a) and (b) all S-matrix elements are invariant under 0 —• 
0 + 27ri and hence may be expressed in terms of trigonometric functions. 

(c) Fusing and the boots t rap 

The kinematically accessible region in s (3.8), corresponds to real 9 and s > 
{ma + mb)

2 (the s-channel) or to s < (ma - mb)
2 (the t-channel). However, the 

S-matrix may have bound state poles in real s at positions between the physical 
thresholds, corresponding in terms of 0 to pure imaginary values of 0 in the range 
0 < Im0 < 7r, the so-called physical strip. If two particles can bind or fuse to form 
a third c of mass m^, in the sense that their S-matrix element contains a pole, then 
they will do so at a particular value of rapidity i0ab defined by 

md = ma + mb + 2mamb COS 0%b (3.10) 

which we refer to as the fusing angle, 
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(3.11) 

We note that when a fusing ab —• c occurs so also can ac —* b and be —• a at the 
angles represented in (3.11). Clearly, the three participating masses form a triangle 

т - Гc 

(3.12) 

with internal angles as indicated. Equally, from (3.11) we note 

0lb + olc + 9l = 2w. 

When such a fusing is possible we expect the S-matrix to have a pole. Actually, 
for reasons explained later, the pole may be of quite a high order. Also, for reasons 
to be explained briefly later, some poles (those of even order) are not indicative of 
bound states. Poles in 0 on the physical strip correspond to s-channel or t-channel 
poles according to the sign of the residue. 
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The idea that particles can fuse below threshold to form a bound state has 
consequences for S-matrix elements besides the mere existence of poles in 0. 

We have in mind the following picture of three particle scattering 

(3.13) 

in which the effect of the scattering is reasonably assumed to be the product of 
the three two-particle S-matrix elements either from the point of view of the left 
hand picture or the right hand picture (think of time flowing up the page). This 
assumption can be justified on the basis of the existence of an infinite nuber of 
conserved quantities (see for example ref [29]). That the outcome of the scattering 
should be the same from either point of view implies 

Sca(0ca)Scb(9cb)Sab(0ab) = Sab(Oab)Scb(Ocb)Sca(0ca), (3.14) 

the Yang-Baxter equation. Ih the present context, since the S-matrix elements are 
phases for real 0, (3.14) is an identity. If some of the particles were not distin
guishable (3.14) would be a non trivial set of conditions on the scattering matrix. 

Now we add the following (heuristic) argument. Suppose we analytically con
tinue in 0ab to a pole position corresponding to the fusing ab —> J. Then the 
particle c in (3.13) has the option of scattering either before, after or 'during' the 
fusion to the fourth particle. The last part of the statement is to be interpreted 
loosely; in no sense is the particle d actually produced since the kinematic region is 
unphysical but rather the single particle state corresponding to it donrfnates the S-
matrix element at the unphysical value of the fapidity difference between particles 
a and 6. This idea leads to a strong condition which appears to be borne out by 
calculations in particular theories. We can use it to find a precise relation between 
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the S-matrix element 5 c j and the S-matrix elements Sac and Sbc. Specifically, it is 

sCd(e) = Sac{e - id\d)sbc{o + did) {9 = i*- e) (3.15) 

which is represented pictorially by 

(3.16) 

Eq.(3.15) defines a sort of algebra for the S-matrix elements since a similar relation 
must hold for every choice of three particles a, b and c and choice of fusing. The full 
set of this type of condition is a powerful tool for determining the S-matrix from 
a small set of input data. Indeed, this provided one of the main arguments used 
by Zamolodchikov in obtaining (1.1). One could envisage starting with (3.15) 
and attempting to classify all two-dimensional factorisable S-matrices. (See, for 
example, refsl 2 1 - 2 2-) 

Besides the conditions on the S-matrix the quantum theory ought to have a 
number of other features. Here we mention the conserved quantities. 

Classically, each of the affine Toda theories enjoys an infinite set of conserved 
quantities. If these survive into the quantum domain then we expect them to be a 
set of mutually commuting operators whose joint eigenstates are the set of particle 
states (3.1). Thus we expect, for example, to be able to write 

Q s | p ( a ) ) = ?°e s Є | ï> ( o )) .(3-17) 

where the factor containing the rapidity is necessary to ensure the correct Lorentz 
transformation property (2.8). Note, the charge qf corresponding to s = 1 is just 
the mass m a . The idea that the two particle state p(a),p(ft)\ can be dominated at 
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some unphysical value of the rapidity by another single particle state places strong 
restrictions on the eigenvalues of the conserved quantities given by (3.17). Thus, 
referring to the diagram (3.16), we note 

0b = 0d + i0~bd 

and hence, using (3.17)and 

Qs |p ( aW6>) » Qs | p W) when 0 » tfi, 

we obtain the set of relations t27-28! 

q« e-isBh
ad + qb eisS:d = qd^ (3 >18j 

which have to be satisfied by the quantum numbers of any set of three particles 
related by fusing. 

So far we have discussed two very different aspects of affine Toda field theory, 
the classical theory for which there is much detailed information including a set 
of masses and three (and higher) point couplings, and the quantum theory in 
particular the idea of the S-matrix. Classically, as we remarked, the coupling term 
cabc .jn fae lagrangian (2.1) is zero unless the masses of the three particles make a 
triangle and even then the coupling is non-zero only under certain circumstances. 
It is tempting to try to match the classical data with the S-matrix and see if a 
conjecture based on the classical information can satisfy the conditions (a), (b) and 
(c) above. In particlar, given the classical masses we are able to compute the fusing 
angles assuming the classical couplings are the relevant ones. Then it is necessary 
to check that the conjectured S-matrix elements satisfy the third condition (3.15). 
It is not difficult to carry out this procedure in all cases and we shall summarise 
some of the features below. What is not so easy however, is to calculate the S-
matrix elements from first principles starting with the lagrangian (2.1). This step 
at present remains an open question. A proper understanding may come from the 
direction of quantum inverse scattering; a perturbative approach is hardly likely 
to yield more than supporting evidence for the conjectures. 

One nice observation -11'18- which is worth making before we discuss the S-
matrices in detail is the following generalisation of (2.13). Using the classically 
allowed angles derived from the non-zero three-point couplings, it is possible to 
verify that if for a particular theory the eigenvalues of the conserved charges for 
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a given spin s solve the relations (3.18) and are assembled into a single vector (as 
we did for the masses (2.12)), 

<l* = (ql,...,qT
3), (3.19) 

then the vector qg is also an eigenvector of the Cartan matrix. That is, 

Cq s = Asq8 A5 = 4 sin2 — , (3.20) 

an elegant result. Eq(3.20) is only a statement about the ratios of the eigenvalues, 
the actual eigenvalues will be scaled by an (unknown) function of s and (3. 

4. S-matrices for the ADE series 

In this section we shall give some information about the exact S-matrices con
structed from the classical data via the bootstrap]2""4'6"8'10- It happens that each 
of the S-matrix elements for any member of the ade-series of affine Toda theories is 
constructible from a universal building block. Although the S-matrices are merely 
phases for real 0, they have an intricate singularity structure for complex 6 and to 
avoid the expressions becoming unwieldy we adopt a condensed short hand for the 
basic blocks, as follows. Let 

sinh ( | + f f ) 

M--4-K- <4-i) 
Then (x) is manifestly unitary, since it satisfies (3.5), but it is not crossing sym
metric. The crossed partner of (x) is —(h — x). Note too that the block (x) 
contains no dependence on the coupling constant /?. It is in fact possible to satisfy 
the conditions (a)—(c) for any of the ade theories to obtain what is called the 
'minimal' S-matrix, 5min, which contains no dependence upon /? at all. However, 
this S-matrix is not expected to follow straightforwardly from (2.1). For example, 
as /3 —• 0 we might expect the theory to be free, so that the S-matrix elements 
tend to unity in the limit. Arinshtein, Fateev and Zamolodchikov -°- postulated 
a coupling constant dependence for the theories belonging to the a-series. Their 
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conjecture can be recast in the form of a modified building block: 

fx} - (" + !)(« - 1) u 2) 
W ~ (x + i _ B)(x - \ + B) K*-£) 

constructed from the minimal block (4.1) and a function of /3 given by 

The function B(j3) is rather special, for example we note 

B $ ) - 2 - W 

and hence 

{X}B = {*}2-B. (4.4) 

The symmetry between the weak and strong coupling demonstrated by (4.4) is 
striking and reminiscent of the symmetry of the central charge exhibited earlier 
in (2.6). The function B(/3) has been chosen also so that no extra poles in 0 
are introduced into the physical strip. It is obvious from the definition (4.2) that 
{x} -> 1 as /? - • 0. 

In terms of the modified block (4.2) the conjectured S-matrices satisfying all 
the conditions (a)—(c) are: 

Sab(0) = {\a -b\ + !}{\a - b\ + 3} . . . {a + b - 3}{a + 6 - 1 } (4.5) 

dn 

a+ò-l 
Sab( )= П { P r ø * - 1 ) - - * } a , & = l l . . . , n - 2 

|a-Ь| + l 
•tep 2 

(4.6) 
Sss(0) = Ss>s>(0) = {1}{5}{9} . . . {2n - 3} 

5„.(tf) = {3}{7}{ l l } . . .{2n-5} 
2a-2 

Ss>a(0) = Ssa(0) = l[{n-a + p} a = l , 2 , 3 . . . n - 2 . 
0 

•tep 2 

In the d-series, notice that, for n even, all the S-matrices are crossing symmetric 
whereas, for n odd, the elements SS8 and S8S' exchange under crossing. This 
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emphasises that for odd n the particle s' should be regarded as the anti-particle of 
5. This also fits naturally with the representation assignment to s and sr mentioned 
earlier. 

In either case, the minimal S-matrices are obtained by deleting those factors 
containing the dependence upon the coupling constant (3. 

€n 

Consult the tables at the end of the article -

For the members of the e-series we have prepared tables. In each case there is 
one containing the minimal S-matrix (in conjunction with the relevant subset of the 
Clebsch-Gordon series) and one containing the complete S-matrix (in conjunction 
with the fusing tables). For the latter, we have employed a further notational 
device: a single integer represents the crossing symmetric combination 

x = {x}{h — x} 

in the full S-matrix tables, whereas the notation [x] represents the crossing sym
metric combination 

(x)(h - x) 

in the minimal tables. 

For a detailed example, it is quite instructive to inspect one of the cases more 
closely, say d±. There, we recall the diagram (2.23) illustrating the three equal mass 
particles (mass y/2m) and a heavier particle (mass y/Qm). The minimal S-matrix 
is 

Q ™ _ s i » h ( f + i ) s i " h ( f + f ) 
5 " ' W - s i n h ( f - f ) S i n h ( f - f ) 

Su(B) = Siv(9) 

_ sinh (f + g ) sinh (f + -gf) / s i n h ( f + f ) \ 2 

Slh{9) ~ sinh ( f - f j ) sinh ( f - t ) (sinh (f - if) ) ^ 

Shh(0) = (SU(9))3, (4-8) 

the full S-matrix being given by (4.6) for n = 4. It is not difficult to verify that 
poles appear in expected places, corresponding to the classically allowed couplings. 
However, there is one extra even order pole (in (4.7)) and a cubic pole (in (4.8)). 
From the point of view of the full S-matrix, the existence of these higher order poles 
is actually predicted [9>--4>7l on the basis of perturbation theory. For example, the 
Feynman diagram 
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(4.9) 

contributes a double pole at 0 = z7r/2. Note, there is no reason to expect this 
pole to correspond to a bound state. The cubic pole comes from a pair of triangle 
vertex corrections. Indeed it is likely that all higher order poles in any S-matrix 
element (and the order can get quite high in the e% table), can be explained on the 
basis of perturbation theory, although the checking of pole residues has not been 
carried out in complete detail in most cases. 

5. Further comments 

Having conjectured the S-matrices for the affine Toda field theories at least 
for the ade-series one has to find a proof. In the absence of a proper proof—and 
we do not expect to find one using perturbation theory—we can at least seek to 
demonstrate the plausibility of the conjecture by verifying certain features to low 
order in perturative field theory. We have mentioned the pole singularities already, 
but it is also necessary to check the absence of production (i. e. true compatibility 
with the conservation laws), the coupling constant dependence (this was originally 
conjectured by Arinshtein, Fateev and Zamolodchikov on the basis of the observa
tion that the a\ theory is also the sinh-Gordon theory whose S-matrix might be 
expected to be the same as the already known S-matrix for the lightest breather 
in the sine-Gordon theory; nevertheless, it is necessary to verify that the function 
B(/3) of eq(4.3) really is universal. This has been checked by two of us-5- to one 
loop order. It is fascinating to note that the classical mass ratios appear to be 
relevant in the quantum theory, giving the positions of the poles in the conjectured 
S-matrices. Once again it is necessary to check that finite renormalisation effects 
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do not spoil this feature. This has also been done to one loop and found to be 
correct.-3"4'8! 

Within the perturbation theory there are further interesting observations. For 
example, we mentioned earlier that the classical couplings are provided by a subset 
of the Clebsch-Gordon series. However, it is perfectly possible to find one loop or 
higher diagrams within the perturbation theory which appear to permit couplings 
disallowed at tree level. For example, in the case of d$ there was one coupling 
allowed by the Clebsch-Gordon series but actually absent, the 22 —• 2 coupling or 
fusing. There are several diagrams at order /?3 which would permit this: 

ІЗ,S 

г 
г J ^ j S ' 

However, they cancel precisely when all three momenta are on mass-shell (p2 = 
m\)\ In other words, the striking feature concerning the tree-level couplings is 
protected even at higher order. Presumably there is a deeper significance to the 
connection with the Clebsch-Gordon series than we have uncovered so far. This 
feature also persists in other cases where we have checked. 

Klassen and Melzert18' have pointed out another interesting fact about the 
minimal S-matrices and their Lie algebra connection. Suppose we define a matrix 
Nab by setting 

^ a 6 = " ^ [ l n 5 a 6 ( ^ = - -

then it transpires that for each of the theories we have discussed 

IV = 2C" 1 - / (5.1) 

where C is the Cartan matrix. For each of the theories in which all the particles axe 
self-conjugate, Nab simply counts the [x] blocks contributing to Sab. The intricate 
pole structure implied by the bootstrap (3.15) is clearly crucial to this result. They 
needed to make use of this fact in their computation of finite scaling effects. I 
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Finally, we remark briefly that the non simply-laced cases (i.e. those connected 
with the bcfg-series and those connected with the twisted affine diagrams-20*23]) 
certainly do not fall into the same consistent pattern as the ade-series- 2 - 4 ' 6" 8 ' 2 1]. 
The S-matrices that have been constructed on the basis of the classical data cannot 
follow from the lagrangian field theory. The situation in these cases must be more 
subtle and needs further clarification. 
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