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HARMONIC SPINORS ON RIEMANN 
SURFACES. 

Jaxolím BUREŠ 

1 Introduction 

The Dirac operator belongs to the most important objects in several parts of 
mathematics and mathematical physics. 

From the classical point of view the Dirac operator D is defined on oriented 
riemannian manifold with a given spin structure and its properties and the di
mension of the space of harmonic spinors (solutions of the equation D<f> = 0 ) 
depend in general on a given riemannian metric as well as on a spin structure-
There are several generalization of the Dirac operator. One of them, which is 
defined for an arbitrary complex hermitian manifold is decribed here. 

The comparison of the classical and generalized case is an interesting prob
lem, and comes out from the complex geometry. In the paper a review of the 
theory of Dirac operator and Harmonic spinors on real and complex manifolds is 
presented and special attention is paid to the compact 2-dimensional case (com
pact Riemann surfaces). It is a part of general program of description of spin 
structures, Dirac operators and Harmonic spinors on different types of manifolds. 
More results for Riemann surfaces will be published in some of next paper. 

2 Harmonic spinors on Riemannian manifolds. 

2.1 Spin structures. 
Let M be a differentiate manifold, denote by M (M) the set of all possible 
riemannian metrics on M and C (M) the set of conformal classes of riemannian 
metrics on M. 

Then M (M) can be considered as a subspace of sections r(M, S2(T)) of 
symmetric tensor fields on M, and we have the natural projection 

c : M(M) —> C(M) 

This paper is in final form and no version of it will be sub
mitted- for publication elsewhere. 
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which maps a riemannian metric to its conformal class. 
Let M be an oriented manifold, let B + —• M be the principal fibre bundle of 

oriented frames on M (with fibre Gl+(n ,R) ) 
For any riemannian metric g G M we have principal fibre bundle Pg of oriented 

orthonormal frames with respect to g and an embedding 

Pg-*B+ 

Spin structure on an oriented Riemannian manifold (M,g) is a principal fibre 
bundle Pg on M with structural group Spin(n) which is 2 — 1 covering of Pg. If 
i: Pg —> Pg is the covering map and Ao : Spin(n) -* SO(n) the standard covering 
map, the following diagram is commutative: 

Spin(n) x P — - P „ 

•lAo x i A V s* 
SO(n) xPg — Pg-^ M 

In other words P is 2-1 covering of Pgj such that after a restriction on fiber 
over any point x £ M it is isomorphic to the standard map ( on each fiber 
ix(r.g) = tx(r).\o(g)). 

LEMMA 2.1 Let Pg —> Pg be a spin structure on a riemannian manifold (Myg), 
then there exists uniquely defined 2-1 covering B+ ofB+, a principal fibre bundle 
on M with structural group Gl+ (n ,R) and embedding* 

Pg - • fi+ 

such that the following diagram is commutative. 

Of course, S (M,g) can be empty. The existence of spin structure and cardinality 
of S (M,g) depend only on the topological properties of M, not on riemannian 
metrics. The following theorem is well-known: 
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THEOREM 2.1 An oritnttd ritmannian manifold admits a spin structure iff 
its second Stitftl-Whitnty class w2 is ztro. Thtn tht numbtr of spin structures 
is cardH\M,Z2). 

DEFINITION 2.1 A ritmannian manifold (M,g) with fixtd spin structure is 
called spin manifold. 

Let S (M,g) be a set of spin structures on a riemannian manifold (M,g). It 
is an affine Z2-space with translation group HX(M, Z2). 

LEMMA 2.2 Let g,g' be two ritmannian metrics on M. Then there exists a 
natural one-to-one correspondence S (M,g) «-> S (M,gf) which is an Z2-affine 
map. 

Proof: A spin structure Pg corresponds to the spin structure Pgt iff they are 
included in the same covering B+ of B+. 

Notation: In the following text the following notation will be used: The elements 
of S (M,g), will be denoted by small letters, say s G S (M,g), the corresponding 
principal spin bundle by P8 or P* and also another objects constructed from s 
(as Spinor bundle,Dirac operator,etc) will have the index (upper or lower) s. 

2.2 Dirac operator. 

In this paper we suppose Spin(n) C C l n in a canonical way. (see e.g [9]). 
To any given spin-structure Pa on M corresponds so called fundamental spinor 

bundle Sa which is an associated vector bundle to Pa with respect to the represen
tation of the group Spin(n) which is the restriction to Spin(n) of the irreducible 
representation of Clifford algebra Cl n . 

The classical Dirac operator D8 associated to s £ S(M,g) is defined using 
Levi-Civita covariant derivative V9 on M. The covariant derivative V9 induces 
connection on Pa and also covariant derivative V* on Sa. 

The operator 
Da:T(M,Sa)^T(M,Sa) 

is composition of maps: 

r(M, sa) ^ r(M, sa ® T*) 4 r(M, sa®T)± r(M, s.) 

where g : Sa (8) T* —:• Sa ® T is identity times duality induced from riemannian 
metric g, \i is the Clifford multiplication. 
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A local expression for Da using a local orthonormal frame { e i , . . . , en} is 

The space of harmonic spinors for the spin structure s is 

H' = {(€T(M,S.);D't = 0}. 

Moreover in the even-dimensional case n = 2m the spinor bundle Sa decomposes 
with respect of the action of Spin(n) into direct sum of two (called halfspinor) 
bundles (corresponding to irreducible representations of Spin(n)) 

s. = s+®s-. 

The restriction of the Dirac operator D' to the half-spinor bundles gives us 
two operators (called again Dirac operators) Ds+ and Da~ 

D*:r(M,st)^r(M,s;) 

and 
D a - : r ( M , 5 7 ) - > r ( M , S ' + ) . 

We have also two following spaces of harmonic spinors called the space of positive 
harmonic spinors and the space of negative harmonic spinors: 

H ' + = Ker.D'+, H*" = KeiD8~. 

2.3 Harmonic spinors. 

DEFINITION 2.2 An oriented manifold M is called spin manifold if M admits 
spin structures (it is equivalent with w2(M) = 0). 

For any g G M(M) and s G S (M, g) we shall consider 
a) the corresponding spinor bundle S* , 
b) the corresponding Dirac operator D8

g and its space of harmonic spinors 
H ; = KerD'g 

and denote 
h' = dimH! 

9 9 

Moreover we define h(M) = sup{h*g\g £ M(Af),s G S (M,g)}. (h(M) G 
ZU{oo}). 



HARMONIC SPINORS ON RIEMANN SURFACES 1 9 

Fix some (let say standard) riemannian metric g0 on M, denote S M = 
S (M,go). Then for any. riemannian metric g € M(M) we have from the Lemma 
2.2 unique spin structure in S (M,g) which we denote again s. 

We shall say that M is of finite spin-type iff h(M) is finite, of null spin- type 
iffh(M) = 0 . 

Moreover we shall say that dimension of harmonic spinors on M depend on 
the metric iff there exist s £ S M such that h*g depends on g. 

If two riemanniam metrics g,g' G M(M) are conformally equivalent, then 
for any spin structure s the corresponding spinor bundles are isomorphic, the 
corresponding Dirac operators are related aas well as the spaces of harmonic 
spinors. Then we have a theorem: 

THEOREM 2.2 The dimension of harmonic spinors is conformal invariant ( 
depends only on the conformal class of metric). 

For any even dimension we have also the decomposition of spinor spaces into 
two subspaces given above and the spaces of positive and negative harmonic 
spinors. 

Let us denote /i*+ ( h*~) the dimension of the space of corresponding positive 
( negative) harmonic spinors. 

In some more concrete cases the notions defined in this and previous section 
will be shortened in a natural way. 

3 The complex spin structure. 

3.1 The Spin0 structure. 

Let (M,J,<7) be a complex hermitian manifold which is also spin manifold. Let 
us consider spin structures on M which correspond to the riemannian metric g 
related to the hermitian metric g. 

There is the following question: Are there relations between properties of M 
as a complex hermitian manifold (the operators 9, d,pariiar*), cohomology etc) 
and properties of M as a spin manifold (Dirac operator, harmonic spinors etc). 

To get an answer (which is strictly positive in the Kaehlerian case ) we shall 
introduce a notion of Sjwnc(n)-structure on manifold which is in some sense 
unification of both notions. 

Let us denote 
Spinc(n) = Spin(n) x%2 U(l) 
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where the action of Z2on Spin(n) x 1/(1) is given by: 

-l(A,*) = (-A,-t); - 1GZ 2 . 

There is the the exact sequence og groups 

0 -* Z2 - • Spinc(n) h SO(n) x 17(1) -+ 0 

where the map £0 is given by the projection, and it has a kernel Z2 = {[1,1], [1, — 1]}. 
The group Spinc(n) can be identified with a subgroup of Clc(n), namely 

because Spin(n)c Cl(n) and U(l) C C, after "tensoring" we get 

Spinc(n) C Cl(n) ® C = Clc(n). 

We have the following interesting commutative diagram of groups and homo-
morphisms. 

Spine(2n) -Љ SO(2n)xU(l) 

where the map A is defined in the following way (see e.g. [2]): let g € U(n) let 
{ci , . . . , en} be the unitary basis where g is diagonalized namely if 

g = diag(el0\...,el6n) 

then 
Jkr=n 

X(g) = T\(coslok + 3in
l-Ok.ekJek) x e1'2iX>"'>. 

*=i " -

in Spine(2n). Moreover we have also the following commutative diagram: 

Spin(2n) x U(l) 

Ml > . 
5o(2n)xt/(l)«*° Spine(2n) 

Let (M,g) be an oriented Riemannian manifold, Pg be the principal fibre 
bundle of oriented orthonormal frames of (M,<jr). 
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DEFINITION 3.1 A Spinc(n)-structure on (M,g) consists of a principal U(l) 
bundle Vu(i)&nd a principal Spinc(n)-bundle VSpinC/n\ with a Spinc(n)- equivari-
ant bundle map 

i.e. £(r.h = t(r).£0(h) for any r 6 VSpivp(n) and h G Spinc(n). 
An oriented Riemannian manifold with a Spinc(n)- structure is called a Spinc(n)-

manifold. 

DEFINITION 3.2 Let M be a Spinc(n) manifold with a Spinc(n)-structure s. 
By a Spinc(n)- spinor bundle with respect to sfor M we mean a vector bundle Ss 

associated to a representation of Spinc(n) by Clifford multiplication 

S' = PSpinc(n)*"V 

where V is an irreducible complex Clc(n)-module and v is a restriction of the 
Cl(n)-representation to Spinc(n) C C l c ( n ) . 

The Dirac operator on a 5pinc(n)-manifold (with the £pmc(n)-structure s) is 
a differential operator of the first order 

Da :T(M,Sa)-+T(M,Sa) 

given by a composition 

T(M, Sa) S T(M, 5 , <g> T£M) id9 T(M, Sa ® TCM) ™ T(M, Sa) 

where V9 is a covariant derivative induced from the Levi-Civite connection of g, 
g is an isomorphism between TcM and T^M given by hermitian metric h related 
to g and m is the Clifford multiplication restricted to mTcM. 

THEOREM 3.1 An orientable manifold M carries a Spinc(n)-structure if and 
only if the second Stiefel-Whitney class w2(M) is the mod 2 redution of an integral 
class. In this case Spinc(n) -structures on M are parametrized by the elements of 

2 f f 2 ( M ; Z ) e # 1 ( M ; Z 2 ) . 

Any orientable Riemannian manifold of dimension < 3 admits spin-structure, any 
orientable Riemannian manifold of dimension < 4 admits Spinc(n)-structure. 
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EXAMPLE 3.1 Any spin-structure s on (M,g) determines a canonically defined 
Spinc(n)-structure s. Namelyf let Pg be a spin-structure on M, put 

7V(1) = i-#(1) = M x t l ( l ) 

the trivial bundle and 

^*5pmCW = Psp,n(n) X Z 2 U(l) 

«EXAMPLE 3.2 Any complex structure J on (M,g) compatible with the metric 
g carries canonical Spinc(2n) -structure J in the following way. 

Let us recall, that we have in a canonical way defined principal fibre bundle 
Pu^on M consistiong of oriented unitary frames on M. Take 

and let Vu(i)be the determinant bundle of M (i.e. the principal fibre bundle of 
A2n(TM)). 

Then ^SptnCpn)'^1^ " 5J™C(2n) suture pn M. 

REMARK 3.1 We have seen that spin-manifolds and complex manifolds are all 
Spinc(n)-manifolds. Qge of manifolds which are Spinc(n) but neither spin nor 
complex is the real projective space P4n+1(i2).(see [9]). An example of a manifold 
which is not Spinc(n) is SU(S)/SO(S).See([9]). 

For a complex manifold M with its canonical 5pinc(2n)-structure, the Spinc(2n)-
spinor bundle is 

Sj = A*CTM = A0»*. 

If M is kaehlerian, then the corresponding Dirac operator DJ is possible to identify 
with the operator 

DJ = B + B* 

where the operator B* is adjoint to B with respect to the hermitian metric on M. 
The Clifford multiplication on Sj is given by the relation: 

fi(v)(<f>) = v A (/> - v*l</> 

for v e Tx(M),</> e Sj = A*CTM. where r* is the element of T*(M) which 
corresponds to v in the duality given by metric on M. 

Let us suppose that M is a complex hermitian spin-manifold and denote by 
K the canonical holomorphic line bundle on M (K = An,°). From the equality 

ci(/f)mod2 = ci(M)mod2 = -w2(M) = 0 
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it follows that C\(K) is an even number, and there exist holomorphic line bundles 
L on M with I? = L® L = K (so called square roots of K.) The number of square 
roots L of K is card(Jf 1(M, Z 2 ) . 

T H E O R E M 3.2 Let (M,g,J) be a complex hermitian spin manifold. There is 
natural 1-1 correspondence between spin structures on (M,g) and square roots L 
of the canonical line K. 

Proof: The proof follows from the commutativity of the following diagram: 

П»»(2») X Z - ^ X D Í ^ Г 1 ) 

^•»c(2„) — *W»> * *V)((^T2 

where (L')~2 = K'1. 

3.2 Spin-structures on complex manifold. 

Let on a riemannian manifold (M,g) a complex structure J compatible with the 
riemannian metric g and a spin-structure s be given. 

We try to compare two Spinc(2n) structures on M, namely J and S, their 
spinor bundles and Dirac operators. 

For any spin-manifold , the bundle S; is the usual complex spinor bundle. 

T H E O R E M 3.3 The relation between the spinor bundle Sj for M as a complex 
manifold and the spinor bundle S9 for M as a spin manifold is 

Sj = S,®(L')-1 

and 
SM = Sj®La 

where L* is the square root which corresponds to the spin structure s. 

If moreover (M,g) is spin-manifold and s spin structure on it with the cor
responding line bundle L8 (holomorphic square root of K) then the associated 
Dirac operator can be identified with 

Ds = 8 + 9* : A°»* ® L, -> A0'* ® U 
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It is the standard operator on (0,*)-forms with values in the holomorphic line 
bundle L*. 

The splitting of the spinor bundle 

SJ = S+@S-J 

corresponds to the decomposition to the even and odd forms 

y^O,* = ^O.et/en ^ ^O,odd 

and the Dirac operators defined above can be (after restriction) taken as operators 
from even (odd) forms into odd (even) forms. 

The solutions of the equation Da^> = 0 are called harmonic spinors (with 
respect to the 5pinc(n)-structure s ) on M. Let us denote: 

H+ = {4>€r(M,S+),D.<l> = 0} 

n- = {<l>eT(M,s;),D.<f> = o}. 
Let us demote by O (L) the sheaf of germs of holomorphic sections of the 

holomorphic bundle L. 
Then we have a theorem which gives a summary of preceding results: 

THEOREM 3.4 Let (M,J,g) be a Kaehler spin-manifold ,then 

- Spin structures on (M,g) are in one-to-one correspondence with holomorphic 
line bundles L on (M,J) which are square-roots of the canonical line bundle 
KM. (i.e L satisties L®L = K.) 

- For the corresponding spaces of (odd and even) harmonic spinors there are 
isomorphisms 

H + - # c v c n ( M , 0 ( L ) ) 

W ~ Hodd{M,0{L)) 

4 Spin structures on Riemann surfaces. 

A Riemann surface M is a one dimensional complex manifold. We restrict our
selves only on compact Riemann surfaces, so in the following text we use the 
notion Riemann surface only for compact Riemann surface. 
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Let g be a Riemannian metric on M compactible with complex structure J 
on M. Then (M, J, g) is Kaehler manifold. Every two metrics compatible with J 
are conformally equivalent. 

There is one-to-one correspondence between the set of complex structures on 
a two dimensional manifold M and the set C (M) of conformal classes of metrics 
on M. 

Every oriented 2-dimensional manifold M is a spin manifold since w2(M) = 0, 
so that any Riemannian surface is also spin manifold. 

REMARK 4.1 : If(M,g) is an oriented Riemannian manifold, then there ex
ists a uniquely defined complex structure J on M such that (Af, J) is Riemann 
surface and g is its compactible metric. 

LEMMA 4.1 ; Let M be of genus g. There are 

N(g) = cardH1(MJZ2) = 22& 

different spin structures on M. 

Let K be a canonical line bundle of Riemann surface M. From the Theorem3.4 
it follows: 

THEOREM 4.1 ; 

(a) Spin structures on M are in one-to-one correspondence with holomorphic 
line bundles L on M such that L2 = K. 

(b) There are isomorphisms 

Hl~H°(M,0(L)) 

H-L~H\M,0{L)) 

Let us denote h% = dimH*(M^ O(L)) , then from the Serre duality follows that 

H°(M,0(L)) ~ H\M,0(L)) 

and h° = h1. 

Fix for any Riemannian surface M a riemannian metric and spin structure. 
Then we can associate to every element a 6 Hr(M, Z2) 

a) spin structure sa on (M^g) (a principal Spin(2)-bundle Pa which is 2-1 
covering of Bg. 
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b) holomorphic line bundle La on (M,g) satisfying L2

a := La ® La = KM-
The element a G // 1 (M g ,Z2) then determines spin structure for any metric 

g' on M. 
Let us denote h^ = dimJ/0(M,O(LO f), then 

ng - z.n 0 ^ 

THEOREM 4.2 For any metric g and a G HX(M, Z2) on a surface of genus g 
we have an equality: 

Ф *&,<£(•+-)] 
THEOREM 4.3 ([1]) Let M be a Riemann surface of genus g. Then for any 
metric g there is precisely 2g _ 1(2g + 1) spin structures a on M for which A°^ is 
even number. We call these spin structures even spin structures on M. 

For the other 2g""1(2g — 1) spin structures a on M A°^ is odd number. These 
spin structures are called odd spin structures. 

From these two theorems immediately follows : 

THEOREM 4.4 ([8]) If the genus g of Mis less then 3 thenthe dimension of 
the space of harmonic spinors on M is independent on the metric. 

Proof: We shall study the situation for different these genera separately. 
0) For g= 0 , M = -P1(C) = S2 which is simple connected. There exists just 

one spin structure on M which does not admits nonzero harmonic spinors. So 
h° = h1 = 0 . 

1) For g = 1, there exist altogether 4 spin-structures on M, namely 3 even 
spin-structures which does not admit nonzero harmonic spinors (h° = 0) one 
odd spin structure (the trivial one) has space of positive harmonic spinors one 
dimensional. 

REMARK 4.2 Riemann surfaces of genus g = 1 can be represented by regular 
cubic curves in P2(C), they are also known as the elliptic curves. 

2) For g = 2 there exist altogether 16 spin structures on M, there are 10 even 
spin structures with no nonzero harmonic spinors (h° = 0) and also 6 odd spin-
structures with one-dimensional space of positive harmonic spinors (h° = h1 = 1). 

REMARK 4.3 Riemann surfaces of genus g = 2 are all hyperelliptic. 
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For the case of genus g > 3 we have the following results. 

THEOREM 4.5 ([8]) The dimension of the space of harmonic spinors on a 
Riemann surface of genus g > 3 varies with the choice of metric. 

THEOREM 4.6 ([8]) If (M,J) is hyperelliptic, there exists spin structure a on 
(M,J) such that h°g = [|(g + 1)]. Moreover t / g is even, there are just 2(% -hi) 
such structures. 

THEOREM 4.7 ([10]) If there exist on Riemann surface spin structures a 
such that h^ = [|(g + 1)] then (M,J) is one of the following types 

(a) hyperelliptic 

0>)s = 4 
(c)e = 6 

In the nonhyperelliptic case ofg = 4 o.nd 6, there is at most one spin structure 
having h°atg = [\(e + l)UfS]] 

REMARK 4.4 From the theory of divisors, Jacobi manifolds and 0-functions 
for Riemann surface hold 

a)Harmonic spinors are in 1-1 correspondence with holomorphic sections of 
line bundles associated to the divisors D of order g- 1 and satisfying the equality 
2.D = K = meromorphic functions on M having divisors greater or equal to D ) 

b)Spin-structures are in 1-1 correspondence with 0-characteristics 

REMARK 4.5 a) Compact Riemann surfaces are possible to study also as com
plex projective algebraic curves. 

b) Compact Riemann surfaces (algebraic curves) are divided into two class
es, the first class consists of so called hyperelliptic surfaces, the others are called 
nonhyperelliptic ( see next section). There exist as hyperelliptic as well as non
hyperelliptic surfaces for all genera gwith g > 3. 

4.1 Hyperelliptic Riemann surfaces. 

4.1.1 Genera l theory . 

From the results of a complex projective algebraic geometry we can get the com
plete description of spin-structures and harmonic spinors for all hyperelliptic sur
faces (see e.g. [10]). 

We shall use in the following text the correspondences betweem Riemannian 
surfaces and complex algebraic projective curves and other results from [5] . 
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DEFINITION 4.1 : A hyperelliptic curve C is a complex projective curve, 
which admits a rational surjective map ic onto the projective line -P1(C) which is 
2-1 up to finite set of point, which are called branching points ofir. 

Any hyperelliptic curve C can be describe as follows. 
There is a covering . 

C = Ci u c 2 

where Ci,i = 1,2 are regular (affine) complex curves in C2: 
Ci is given in the plane C 2 with coordinates (t,s) by the equation: 

s2 = /(.);/(*) = !!(*-«.);«. e c 

iesp 

and C2 is given in the plane C 2 with coordinates (t',s') by the equation: 

s2 = h(t') 

where h(t') = JJ(1 - ai.t')\ip = 2Jfeeven 
ieSp 

or 
h(t') = J ] t'.(\ - ai.t')\ip = 2k- lodd 

ieSp 

with relations on Ci D C2 : 

t' = 1/t, s' = s/tk] fort ^ 0, t' ^ 0. 

The points in infinity of Ci are: 

oo! ~ (*',*') = (0,1); oo2 «-> (t',s') = (0 , -1) 

for even p 
00 <->(*',*') = (0,0) 

for odd p. 

The map n : C -* -Pi(C) is given by: 

(t, s) h-• tonCi; (t\ s') •-> t'onC2 

which is 2-1 except of the set of branching points B c C . 

B : = { i * , i = l,...,2ife} 
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where 
Pi «-> t = aiforp = 2fceven, 

or 

Pi <-> t = a,-, P2k = oo,forp = 2k — lodd. 

The genus gof C is 

g=i(carrfB)-l = fc-l. 
There is an involution t: C -* C with TT(P) = n(i(P) for any P e C, having the 
set of fixpoints equal to the set of branching points B and divisor class 

Lc:={P + i(Py,PeC}. 

Let KQ be the canonical divisor class of C (i.e class of divisors of abelian 
differentials on C ). 

Let 
5 3 = {divisorclassZ?;2.D = KQ} 

be the set of divisor classes on C , called set of 0- characteristics. 
For any divisor class D (or divisor D) we denote by L(D) the line bundle on 

C which corresponds to the divisor class D (or to the divisor D) and L (D) the 
space of all holomorphic sections of L(D). For more details see e.g [6, 7]. 

THEOREM 4.8 [11]: 

(i)Kc=(g^l)Lc, 

(ii) Any 0-characteristics has a form 

/ T : = ^ P + i ( g - l - c a r d T ) . Z c o 
PET 

where T C B, with cardT = g + 1 mod 2 

(Hi) We have 
fTl = fT2 &Tt= T2or Tt = cT2 

J ^ = {T C -8; cardT = (g + l)mod2}/T - cT 

(iv) For all such T there exist points Pu ...,-Pg-i of C with fT = £ ! '=?^ Pi iff 
cardT^ g + 1 and if cardT < g, then 

dimL(fT) = - ( g + 1 - cardT) 

(if card T> (g + 2) we change cT for T itself). 
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(v) L ( / T ) — { The set ofpolynoms in t of degree < | ( g — 1 + cardT) vanishing 
in all points P € T} . 

Following this theorem we get the following facts: 
(1) Spin-structures on hyperelliptic curve C correspond in one-to-one way 

to ^-characteristics. Let L ( / T ) be the spin structure corresponding to the 0-
characteristics / r , where T is a subset of B with card T < g+ 1 , with an 
equivalence relation T ~ cT. 

(2) The dimension of positive harmonic spinors for spin-structure L ( / T ) we 
have the equality : 

h°HM = 1(6 + 1-cardT) 

(3) The set of positive harmonic spinors for a given spin structure L ( / T ) is 
Hj/y * = The set of all polynoms in t of degree less or equal | ( g — 1 + cardT) 

vanishing in all points P G T. 

4.2 Nonhyperelliptic Riemann surfaces. 

All Riemann surfaces of genera g < 2 are hyperelliptic, there exist nonhyperel
liptic surfaces of all genera g > 3. 

Let us present some results on nonhyperelliptic Riemann surfaces and their 
examples for smaller genera 3 < g < 6. 

A. In the case of nonhyperelliptic Riemann surfaces genus g= 3 the situation 
is simple. 

We have N(3) = 64, Nodd = 28,Nev = 36, A0 < 1. For arbitrary nonhyperel
liptic Riemann surface and any odd spin-structure on it we have h° = 1, and for 
any even spin-structure on it we have h° = 0. 

Let us remark that nonhyperelliptic Riemann surfaces of genus 3 are just 
regular quartics in P2(C). 

There is one interesting geometrical relation: The 28 different double tangent 
to a regular quartic Q are in one-to-one correspondence with odd spin structures 
on Q. 

B. The case of nonhyperelliptic surfaces of genus g= 4 is very interesting. Let 
us state a theorem 

THEOREM 4.9 ; For a nonhyperelliptic Riemann surfaces of genus g = 4 one 
of the following conditions is satisfied 
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I. There is unique even spin structure with h° = 2, other 135 even spin struc
tures have h° = 0. 

77. All 136 even spin structures have h° = 0. 

In both cases all odd spin-structures have h° = 1. 

A nonhyperelliptic Riemann surface will be called of type I or II if it satisfies the 
corresponding condition I or II from the preceding Theorem. 

The Theorem follows from the theory of special divisors on a Riemann sur
faces, for reference see [4]. 

Both classes I and II are nonempty as show the following examples: 

EXAMPLE 4.1 Let M be a Riemann surface given as a curve in P2(C) by the 
equation in C2 

w3. = z(z - \)(z - Xx)(z - X2)(z - A3) 

with At, i = 1,2,3 distinct points in C — {0 ,1}. 
The holomorphic line bundle L which corresponds to the divizor 3.Qi where 

Q\ = 2r-1oo is the spin structure on M with h° = 2. 

EXAMPLE 4.2 Let M be a Riemann surface given as a curve in P2(C) by the 
equation in C2 

w3 = z(z - \)(z - Xx)
2(z - X2)

2(z - A3)
2 

with At-,i = 1,2,3 distinct points in C — {0 ,1}. Then M has genus 4 and is of 
type II. 

C.The case of nonhyperelliptic Riemann surfaces of genus g= 6 is much more 
complicated. 

There are several possible classes of these surfaces with respect to the possible 
dimensions of the spaces of harmonic spinors for different spin structures. 

A complete classification is needed, at present there is the following example: 

EXAMPLE 4.3 There exists a system of nonhyperelliptic curves C of genus 6, 
namely regular quintics in P2(C) with the canonical line bundle K = 0(2)/C ,and 
spin structure L = 0(1)/C with h°L = 3. (0(k) is the k-th power of the dual of 
tautological bundle on P2(C). 

Further results will be presented in some of next paper. 



32 JAROLÍM BUREŠ 

References 

I] Atiyah M.F.; Riemann surfaces and spin structures, Ann.scient. Бc. Norm. 
Sup. t.4, 47-62, 1971. 

2] Atiyah M.F.,Bott R., Shapiгo A.A.: Clifford modules, Topology 3 (Suppl.l), 
1964, 3-38. 

3] Farkas H.M. Special divisors and analytic suЫoci of Teichmueler space, 
Amer.J.Math 88, (1966) ,881-901 

4] Farkas H.M.,Kra I. : Riemann Surfaces, Spгingre Veгlag,1980. 

5] Gгiffiths P.,Harris J.: Principles of algebraic geometry I, Pure and Applied 
Mathematics, Wiley Interscience Publication, 1976 

6] Gunning R.C.: Lectuгes on Riemann suгfaces, Princeton Math.Notes 1966. 

7] Gunning R.C.: Lectures on Riemann surfaces,Jacobi varieties, Math.Notes 
Princeton University Press, 1972. 

8] Hitchin N.: Harmonic spinors, Advances in Mathematics 14, 1-55, (1974) 

9] Lawson B.L, Michelsohn M.-L : Spin Geometry, Princeton University 
Press,Princeton N.J.,1989 

10] Martens H.: Varieties of special divisors on a curve II, J.Reine Angew.Math 
233 (1968) , 89-102. 

II] Mumford D. Tata lectures on Theta II, Progress in Mathematics 43, 
Birkhauser 1984. 

Jarolim BUREŠ 
Math. Institute 
Charles Univeгsity 
SokolovskáвЗ 
186 00 Praha 
Czechoslovakia 


		webmaster@dml.cz
	2012-09-18T11:08:16+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




