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THE DOUBLE COVERING OF THE Q U A N T U M GROUP SOq(3Y 

Mathijs S. Dijkhuizen 

A quantum analogue of the double covering of SO(3) by SU(2) is formulated and 
proved. Here the quantum group SOq(3) is defined by means of the R-matrix given 
by FRT for root systems of type B. An explicit basis for the deformed function 
algebra of SOq(3) is constructed as well as an algorithm to reduce any expression in 
the generators to a linear combination of basis elements. 

1. The adjoint group of SUq(2) 

We shall make use of both the language of Hopf algebras and that of quantum groups. We 
view a Hopf algebra A = 0(G) as the algebra of polynomial functions on an (algebraic) 
quantum group G = Spec(.A). Hopf *-algebras then correspond to real forms of quantum 
groups. A morphism (/>: G —• G1 of quantum groups resp. real quantum groups is by definition 
a morphism 0: A1 -+ A of Hopf algebras resp. Hopf *-algebras. In order to be able to 
distinguish formally between these two kinds of morphisms, we shall usually write <jfl for the 
Hopf algebra morphism dual to the quantum group morphism 0. 

We recall the definition of the quantum group SUq(2). Let q 6 R, q # 0. The algebra 
Aq = 0(SUq(2)) is the complex unital associative algebra generated by a, /?, 7, 6 subject to 
the following relations: 

aP = q@a, 0.7 = 070., 01 = 70, 06 = q60, i6 = q6y, (1.1) 

0a — q~~x&l = 1 , a6 — qfii = 1. 

By using the diamond lemma one can prove that a linear basis of Aq is formed by the 
elements akpl7m ( M , m > 0) and 6kplym C* > 1, h™ > 0). See [B], [Kl]. 

t This paper is in final form and no version of it will be submitted for publication elsewhere. 
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The comultiplication A and counit e are defined by: 

<- iH'iH'i)- •(; !)•(.?)• M 

this being shorthand notation for A (a) = a ® a + /? ® 7 etc. 
The antipode 5 and the Hopf algebra involution * are defined by 

«(;.)-U-c*)- GSH-^T)- M 
Let us recall that a mapping * : Aq —• Aq is called a Hopf algebra involution if (Aq, *) is a 
unital *-algebra such that A and e are *-homomorphisms. 

We recall that a (matrix) corepresentation of Aq is a matrix (Uj) with coefficients in Aq 

such that 
A(*y) = $ > * ® **i, efoi) = «y - (1.4) 

fc 
A corepresentation (Uj) is called unitary if t*j = ^ j , ) . Corepresentations of Aq are also 
called representations of the quantum group SUq(2). The finite-dimensional representation 
theory of SUq(2) is known to be exactly analogous to the classical theory. With respect to 
a suitable basis the corepresentation of Aq corresponding to the adjoint representation of 
SU(2) is given by (see [Ko]): 

- ( • 
a2 (l + í-2)ia/3 -01 \ 

Ad 4 =( (l + g - 2 ) ia7 l + fo + r 1 ) / ^ - ( l + fliii • (1-5) 
- 7 2 - ( l + 92)*«7 Í2 / 

It is easily checked that the subalgebra Bq of Aq generated by the matrix coefficients 
Uj of Adq is spanned by all afc/3*7m, 6kPlim such that /: + / + m is even. Bq is obviously 
invariant under S and *. Moreover, A(£?9) C Bq® Bq, since B9 is generated by the matrix 
coefficients of a corepresentation. We conclude that Bq is a Hopf *-subalgebra of Aq. The 
quantum group corresponding to Bq is called the adjoint group of SUq(2) and denoted by 
Ad(St7,(2)). 

We define an algebra anti-automorphism a of Aq and an algebra isomorphism r: _49 —• 
Aq-i by putting 

- ( ; .)•(-> ? ) • ' ( ; « - ( - ; «')• ^ 
It is obvious that a leaves Bq invariant and that r maps Bq onto Bg-i. On the generators 
Uj the mappings a and r are given by 

ÍЗЗ Í32 Í 3 l \ tíзз Ѓ23 

.23 Í22 Í21 1 , r(T) = t32 Í22 

•13 Í12 tuj Víзi Í21 

<r(T) = I t23 t22 t2i ) , r(T) = I t32 t22 ti2 I , (1.7) 
\ t i 3 ti2 t n / \t31 t2i t i l / 

T being shorthand notation for (Uj)- Note that a2 — r2 = id and Tare = id. 

í i 3 \ 
Í12 , 

t u / 
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Tablel 

1. ťцťi2 = -f2ti2ťц 

*32*33 = *2*33*32 

*21*11 = *~2*11*21 

*33*23 = •" *23*33 

3. tцťiз = -f4tiзtц 

ťзiťзз = *4ťззtзi 
tззtiз = -f~4ťiзtзз 
tзiťц = -»-4ťцťзi 

4. ť22tц = ťцt22 + («- 2 - ^)tnt%l 

Í33*22 = ť22ťзЗ + (*"2 — Ѓ)t2ätэ2 

6. t2lťi2 = tiгťгi 

*32*23 = *23*32 

8. *23*11 = в"2*ll*23 + (*"2 ". ЃЏldЫ 
*зз*2i = в~2ť2iťзз + (*~2 - ^jťaзťзi 
tз2ťц = 8~2tцt32 + -Г 2(*" 2 - «2)tl2tзi 

ťззtl2 = в~2ťl2ťзЗ + «~Ҷ«~2 - в2)tlзť32 

10. ť2iťiз = в2ťiзt2i 
ťзitад = Я2*23*31 
*31*12 = *~2*12*31 
*32*13 = *~2*13*32 

14.ťi2ti2 = -в2(-1 + в-1)ťiзtii 

t2lt21 = -*" 2 (« + в- tцtзi 

ťз2tз2 = -*Ҷ« + *~1)ťззťзi 

t2зť23 = -«~2(« + -Г1)tlзťзз 

15. tцť2з = --fti2 + в4*13*21 

*21*33 = —вťз2 + *4*23*31 
tцťз2 = —**2i + Л и ť з i 
*i2*зз = -**23 + «2tiз'ťз2 

17. tгitзг = ťзi + -t^tггtзi 
Í12*23 = ťlЗ + -t2ťlзt22 

2. ťiгtiз = -^ťiзťu 
ťзiťз2 = Лз2*31 

*23*iз = *~2*iз*23 
tзit21 = *~2*21*31 

5. ť23ťl2 = ti2ť23 + (*~
2 - «2)ťl3t22 

*32*21 = ť2lť32 + («~
2 " «2)ť22ť31 

7. ť22ťi3 = tist22 
*31*22 = *22*31 

9. *22*12 = *12*22 + '(í2 - *~2)*13*21 
*32*22 = ť22ť32 + «(-^ " *~

2)*23*31 
*21*22 = *22*íl + rX{ť* - «2)*12*31 
*22*23 = *23*22 + -T" 1^" 2 - «2)ťi3t32 

11. *33*11 = ťnt33 + (• - *"1)*23*21 + (* " *~1)*12*32 

12. ťsitis = ťisťsi 
13. t2lť23 = *

2*23*21 + * ( * ~ 2 - a2)tist3l 
t32tl2 = *~

2*12*32 + « ~ V " «~2)*13*31 

16. *23*22 = *23 " * ~ 2 ( * + *-1)tl3ť32 
ť22t21 = t2l - 8-2{8 + *-1)ťi2t3l 
ťl2t22 = ti2 - *2(-l + -f-^tisfal 
ť22Í32 = ť32 - «

2(« + *"1)t23t31 

18. ťnť22 = tu" + 02*12*21 

*22*33 = *33 + *2*23*32 

19. Í12Í32 = * - «*22 - «2(* + OÍ13Í31 20- *11*33 = (1 - «2) + «2*22 + ^ÍSÍSI 
*23*21 = 8-1 - a-^22 - *-2(« + 0*13*31 21. *22*22 = 2t 2 2 - ! + (• + O H u í n 
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Lemma 1.1 — The Uj E Bq satisfy all the relations listed in Table 1 with 8 = q. 

In order to minimize the amount of calculation we use the symmetry inherent in the relations 
of Table 1. In fact, in a given cluster i, one can obtain all the relations by repeatedly applying 
<T and r to the first relation of that cluster (in some cases one has to work modulo linear 
combinations of relations of clusters k < i). It suffices therefore to check only the first 
relation of each cluster. This is straightforward using (1.5) and (1.1). 

Theorem 1.2 — The Uj € Bq satisfy no other relations than those listed in Table 1 (s = q). 
A linear basis of the vector space Bq is formed by the elements 

*i3*22*3i ( m , n > 0 ) 

*i3*i2*ii*2i*3i (rn,j,n> 0, 0 < i ,k < 1) (1.8) 

*13*23*33*32*31 ( ™ , J > > 0, 0 < i,k < 1, i + j + k > 0) 

It is clear from (1.5) that the elements (1.8) span Bq. Their linear independence immediately 
follows from (1.5) and the fact that the elements akPl7m (k9lt7n > 0) and 6kPl7m (k > 
0,/,m > 0) are linearly independent in Aq. Let now D be the abstract algebra generated 
by the Uj subject to the relations in Table 1. It follows frbm [1.1]* that there is a unique 
algebra homomorphism (p:D —• Bq sending Uj 6 D to Uj € Bq. This homomorphism is 
surjective, since the Uj generate Bq. We prove that the elements (1.8) span D. To this end, 
we introduce a total ordering on the generators by putting U3 < £12 < *n < *23 < *22 < 
*2i < *33 < *32 < *3i- We then order any two given monomials in the Uj by length and, 
if they are of equal length, lexicographically with respect to the above ordering on the Uj. 
Inspection of the relations in Table 1 shows that all of them express a monomial / in the Uj 
as a linear combination of monomials strictly less than / . This implies that any monomial 
in the Uj can be expressed as a linear combination of monomials U^ • • • *in such that for all 
l<j<n—l the monomial UjUj+i does not occur on the left-hand side of any equation in 
Table 1. It can be easily read off from the relations in Table 1 that the monomials satisfying 
this last condition are precisely the ones listed in-(1.8). This proves that the elements (1.8) 
span D. So <j> maps a family of vectors that span D to a linearly independent family of 
vectors in Bq. This implies that <j> is injective, which concludes the proof of the theorem. 

The relations in Table 1 thus form a presentation of the algebra Bq. One easily derives 
from (1.5) and (1.3) that the involution * is given on the generators Uj by 

(1.9) ( *33 9*32 92*31 \ 

9"X*23 *22 9*21 I 
9"2*13 9_1*12 *il / Remark 1.3 — We use the terminology of [B], The semigroup ordering on the monomials 

in the Uj defined in the proof of [1.2] clearly satisfies the descending chain condition and is 
compatible with the reduction system specified by Table 1. It follows from [1.2] (without 
actually resolving a single ambiguity!) that all the ambiguities are resolvable. Therefore, 
the diamond lemma applies and we get an.algorithm to reduce any monomial in the Uj to 

t Numbers between square brackets \\ refer to lemmas, propositions, theorems etc. 
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its (unique) expression in terms of the basis elements (1.8). This algorithm can be easily 
implemented on a computer using a computer algebra package for symbolic manipulation. 
We found that the package Reduce (version 3.4) was best suited to our purposes. In this 
way, one can perform explicit computations in the algebra Bq that would have been tiresome 
to do by hand. 

We shall now briefly deliberate upon notions such as quantum subgroup, kernel and 
short exact sequence (cf. [PW]). 

Let A be a Hopf algebra. A subspace a is called a two-sided coideal if A (a) C AOa+aOA. 
A subspace a is called a Hopf ideal if a is a ideal and an 5-invariant two-sided coideal. If a 
is a Hopf ideal, then A/a naturally inherits a Hopf algebra structure from A. A quantum 
group H is said to be a quantum subgroup of G if O(H) is the quotient of 0(G) by a Hopf 
ideal a, which is then called the defining ideal of H. So the quantum subgroups of a given 
quantum group G are in 1-1 correspondence with the Hopf ideals in 0(G). 

Suppose </>: G —• G1 is a morphism of quantum groups and let </>*: 0(Gf) —• 0(G) be the 
corresponding morphism of Hopf algebras. Define a to be the ideal in 0(G) generated by 
the image under (ft of ker(e') C 0(Gf). It is trivial that a is a Hopf ideal. The quantum 
subgroup of G corresponding to a is called the kernel of the morphism 0 and denoted ker(0). 
A sequence of morphisms of quantum groups 

1 — H-i-G-^G' — 1 (1.10) 

is called exact if <fl is injective and t* surjective, and if ker^) is the defining ideal of ker(^). 
We now apply the above terminology to the adjoint group of SUq(2). We have a mor

phism <t>: SUq(2) —• Ad(SUq(2)) such that <ft is the canonical injection. 

Proposition 1.4 — The ideal in Aq generated by ker(e\Bq) is equal to the ideal generated 
byP, 7, a2- 1, a -6. 

Let us write a for the ideal generated by /?, 7, a2 — 1, a — 6. It follows from (1.2) that ker(e) 
is spanned by the elements ak -l,6k-1, ak0l'ym

1 6k/3lym (k > 0, l+m > 0) and generated 
as an ideal by /?, 7, a—1, 6—1. So ker(e\Bq) is generated as ideal in Bq by a2 -1, 62 — 1, a/?, 
0J7, /?7, 6/3, 67. This implies that a contains ker(ejBg). On the other hand, multiplying a2 — 1 
on the right by 6, we get a(a6) —6 = a(l + q($i) —6=a—6+qa0y. Hence a - 6 lies in the 
ideal generated by ker(e\Bq)- Multiplying a/3 on the left by 6, we obtain 6a& = 0 + q~lP2/y. 
This implies that /5 lies in the ideal generated by ker(e|s4). One reasons similarly for 7. The 
assertion follows. 

The quotient A/a is generated by a subject to the relation a2 = 1. This implies that it 
is a two-dimensional Hopf *-algebra. In fact, A/a is the Hopf *-algebra of functions on the 
finite group Z2. We now have proved:. 

Theorem 1.5 — There is the following short exact sequence of quantum groups: 

1 —> Z2 —+ SUq(2) --U Ad(SUq(2)) —> 1. 

This justifies our writing Ad(SUq(2)) = SUq(2)/{l, - 1} . 
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2. The quantum group SOq(3) 

We adopt the definition of 50,(3) given in [FRT] with the one exception that we add a 
determinant relation (see also [T2]). , In fact, the quantum group defined in [FRT] is a 
quantization of Oq(3) and not of 50,(3). 

Let (Uj) (1 <iyj < 3) denote a family of formal indeterminates and let C(Uj) denote 
the free associative unital complex algebra generated by the Uj- It will be convenient to 
arrange the indeterminates Uj in matrix form T = (Uj). We can then define 9 x 9 matrices 
Ti resp. T2 with coefficients in the algebra C(Uj) by putting Ti = T ® I resp. T2 = I®T. 
Here I denotes the 3 x 3 identity matrix. 

Let ei,e2,e3 be the canonical basis of V = C?. Then V ® V has the basis e{ 0 e; 
(1 < hi < 3). Let e»j denote the linear endomorphism of V sending ej to ê  and e* (k ^ j) 
to 0. Let 9 > 0, 9 ^ 1. We define a linear endomorphism Rq of V ® V or, equivalently, a 
9 x 9 matrix (~?J>ifcj) with complex coefficients by putting: 

Rq = 9 5Ze« ® e" + e22 ® e22 + 5^ Ci* ® C« + 

+ 9"1 53e"' ® evi + (^-9"1)~C c# ® e" ~ fa ~ 9_1) 539Pi~Piei'j ® e-i'-
i / t ' t>j »>j 

Here i' = 4 — i and the sequence (#) is defined as (pi,p2,P3) = (I.O.—§)• ^ote t n a t *^e 

matrix (-ftyiW) is symmetric and hence diagonalizable. Straightforward computation shows 
that the eigenvalues of Rq are 9, — q~l, 9~2 and that a basis of eigenvectors for V ® V is given 
by: 

W, : ei ®ei- e3®e3 

9ei $ e2 + e2 ® ei, qe2 ® e3 + e3 ® e2 

9ei ® e3 - (9-* + 9~*)e2 ® e2 + 9
-1e3 ® ex 

W-g-i : ei ® e2 - qe2 ® ei, e2 ® e3 - 963 ® e2 (2.1) 

ei ® e3 + (95 - 9~')e2 ® e2 - e3 ® ei 

Wq-2 : 9~-"ei ® e3 + e2 ® e2 + 9*e3 ® ei 

We consider the two-sided ideal Iq in C(Uj) generated by the relations (called commu
tation relations) coming from the matrix equation 

i29TiT2=TiT2i2g. (2.2) 

Equating the 9x9 coefficients on both sides yields the following explicit form for the defining 
relations of Iq: 

£ ^ , m n t m k t n i = £U m t i n B? m n M for 1 < i,3,k,l<3. 
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Let V* denote the linear dual of V with dual basis e*. We define a linear mapping 
0: V* ® V* ® V ® V -+ C{Uj) by putting 

e(e* ® e] ® efc ® e,) = t^ty. (2.3) 

Let HJ: V* ® V* -* V* ® V* denote the transpose of Rq. It is clear that it is diagonalizable 
with the same eigenvalues as Rq. Since the matrix (Rijikl) is symmetric, bases for the 
eigenspaces W£ of Rq are obtained by replacing e* by e* in (2.1). We now have: 

Proposition 2.1 — The ideal Iq is generated by the subspace © A - ^ 0(W{ ® W^) of C(ty). 

Let us write { = 0 o (id ® Rq — Rq ® id). On the one hand, Iq is generated by the image of 
£ since £(ej ® ej ® efc ® ez) = £ m n Rq

mnMUmt3n - £ m n ^mntmktnh On the other hand, 
£(WJ ® Wg = (/x- A)0(WjJ ® w j . We conclude that Iq is generated by 0 A # / i e(W£ ® WM), 
since RJ is diagonalizable. 

The quotient algebra Mq = C(Uj)/Iq is called the algebra of polynomial functions on 
the complex orthogonal quantum matrix space of rank 3. We indifferently write Uj for the 
generators in C(Uj) or their canonical images in Mq. 

There are unique algebra homomorphisms A : Mq —• Mq ® Mq and e : Mq —• C such 
that 

*(*-;) = Z>-fe®**;. e(*y) = «y (i,j = i,2,3). 

With these mappings M9 becomes a bialgebra. 
We now define the quantized orthogonal exterior algebra AqV to be the tensor algebra 

over V divided out by the ideal generated by the subspace Wq = Wq © Wq-* C V ® V. It 
follows from (2.1) that a basis of Wq is formed by 

ei®ei, e3®e3, (q* -q~*)e\ ® e3 - e 2 ®e2 (2.4) 

qe\ ® e2 + e2 ® ei, qe2 ® e3 + e3 ® e2, ei ® e3 + e3 ® e\. 

So AqV is the algebra generated by ei, e2, e3 subject to the relations 

e? = 0, el = 0, e2ei = -$eie2, e3e2 = -qe2e3, e3ei = -eie3 , e| = (q* - g~->ie3. (2.5) 

An application of the diamond lemma shows that AqV is an 8-dimensional vector space with 
basis e^ . . . ejn (1 < ii < . . . < tn < 3). It can be shown that there is a unique algebra 
homomorphism 6: AqV —• Mq ® AqV such that 

*(e.) = I > ; ® e ; (i = 1,2,3). (2.6) 
3 

The mapping 6 defines a left coaction of Mq on AqV, i.e. it satisfies the properties: 

(A®id)o£=(id®$)o£, (e®id)o£ = id. (2.7) 

It follows from (2.6) and (2.5) that there is a unique element detqT € Mq such that 

£(eie2e3) = det^T ® eie2e3. (2.8) 
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The equalities (2.7) then imply that 

A(detgT) = det,T <g> detgT, e(detgT) = 1. 

An explicit expression for detgT is: 

detqT = *ll*22*33-tf*12*21*33 ~ 9*11*23*32 + 9*12*23*31 (2-9) 

+ 9*13*21*32 - 92*13*22*31 ~ q(<l* ~ 9~*)*12*22*32-

We introduce a 3 x 3 matrix C given by 

0 0 q~*y ( 0 0 g - ł \ 
0 1 0 

q* 0 0 / 

It satisfies C2 = I. The so-called orthogonality relations are: 

T(?TC = C*TCT = /. (2.10) 

It can be proved that the two-sided ideal Jq in Mq generated by the relations det9 T = 1 and 
(2.10) is a biideal. We can now define the algebra Cq = 0(SOq(3)) of polynomial functions 
on the quantum group 50,(3) as the quotient of Mq by the biideal Jq. Cq is a bialgebra by 
definition. It becomes a Hopf *-algebra by putting 

( *33 9~**23 9 ~ 1 * i 3 \ 
9**32 *22 9 " J * i 2 l and T* = *S(T). (2.11) 

9*31 9**21 *11 / 
Theorem 2.2 — The algebra Cq is generated by the Uj subject to the relations listed in 
Table 1 with s = q*. 

The proof is completely elementary, although not entirely trivial, since one easily gets bogged 
down in a quagmire of relations. For this reason, we shall carefully indicate the line of 
reasoning to be followed, but not explicitly perform all the calculations. The proof consists 
of two parts. 

We first prove that the linear span Zq of the relations (2.2) in the free algebra C(Uj) is 
equal to the linear span of the relations (1) till (14) in Table 1 plus some extra relations (see 
below). To this end, we apply [2.1]. Let us identify V and V* via the bases (e») and (e*). 
Under this identification W\ coincides with W£. It now follows from [2.1] that 

Zq = 0(Wq ® W_q-i) © 0(W_q-i (8) Wq) © 0(Wq (8) Wq-2) © 6(Wq-2 (8) Wq). 

The following remark may be of use. If u:C(Uj) —• C(Uj) denotes the unique algebra 
homomorphism such that u(Uj) = *j. then u o 6(W\ ® W^) = 0(Wtl ® W\). We use the 
bases of Wq resp. Wqi W_g-i, Wq-2 given in (2.4) resp. (2.1). Let us call the basis vectors 
in (2.1) Wi (1 < t < 9) and those in (2.4) Wj (1 < j < 6), in the order in which they are 
introduced. Thus, w\ = e\ ®ei, W2 = e30e3 etc. Straightforward calculation shows that the 
tensor products (in either order) of tDi, w^ and we, wj (meaning w\ ® w^ w$ ® w\, w\ ® wyt 
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tB7 ® wi, w2<8> WQ etc.) yield precisely the relations (1) and (2) in Table 1. Similarly, from 
the tensor products (in either order) of 104,1D5 and WQ, 107 one derives precisely the relations 
(4), (5), (6) and (7). The relations coming from the tensor products (in either order) of i~i, 
w2 and w& together with the relations coming from the tensor products of w\9 w2 and wg are 
easily seen to be equivalent to relations (3) and (14). The tensor products i~4 ® Ms, we ® 103, 
WQ <g> we and w$ 0 wg lead to the following four equations: 

9*11*23 + q(q^ - 9~*)*12*22 - 9*13*21 + *21*13 + (9* ~ 9~*)*22*12 ~ *23*11 = 0 

(9* - 9~*)*11*23 - q{q^ ~ 9~*)*21*13 - *12*22 + 9*22*12 = 0 (2.12) 

*11*23 - 9*21*13 + *13*21 - 9*23*11 

9**11*23 + 9*12*22 + 9**13*21 + 9~**21*13 + *22*12 + 9**23*11 = 0-

We can eliminate 123*11 from the first and fourth equations of (2.12) by using the third 
equation. From the resulting two equations one can eliminate *n*23 by using the second 
equation of (2.12). One then obtains: 

(9* +9~*)*12*22-(9* +9"*)*22*i2-(9 + 9"1)*i3*2i + (92 + l)*2i*i3 = 0 (2.13) 

(9* + 9~*)*i2*22 - (9* + 9~*)*22*i2 + (q + q'^iq- l)*i3*2i + (<?-q-q~1 + I)*2i*i3 = 0, 

from which one deduces (lO.a). Resubstituting (lO.a) in the first equation of (2.13) resp. the 
third equation of (2.12) one obtains (9.a) resp. (8.a). Using (9.a) and (lO.a) we can rewrite 
the second equation of (2.12) as 

*11*23 = —9**12*22 - 9*13*21i (2-14) 

and (8.a), (9.a), (lO.a) and (2.14) are in fact equivalent to (2.12). In an. exactly analogous 
way, one derives all the (other) relations of (8), (9) and (10) by using the tensor products 
w4 0 w8) w5<8) w8> we® we, we®wj, 103 ® wg, W4® wg and their images under the flip 
v ® w »-> w ® v. The analogues of (2.14) are: 

*21*33 = —9**22*32 — 9*23*31 

*22*21 = (9* - 9~* - 9~*)*12*31 - 9~**11*32 (2.15) 

*23*22 = ( 9 * ~ 9 ~ * - 9~*)*13*32 ~ 9~**12*33-

Finally, the tensor products W3 <8) w&, WQ <8> Wg, w5<8> wg and their images under the flip give 
rise to six equations which can be seen to be equivalent to the relations (11), (12), (13) plus 
the following relations: 

*23*21 = 9_1*12*32 + q~^{q- 9_1)*13*31 (2.16) 

*22*22 = *11*33 + (9* ~ --9~*)*12*32 + 9_1*13*31-

Summarizing, we have now proved that the relations (2.2) are equivalent to the relations (1) 
till (14) plus the relations in (2.14), (2.15) and (2.16). 

In the second part of the proof we shall make use of the terminology laid .down in [B]. 
As generators we take the Uj. We order the monomials in the Uj as in the proof of [1.2]. As 
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reduction system we take the relations (1) till (14) plus the relations in (2.14), (2.15) and 
(2.16). Note that this reduction system is compatible with the ordering of the monomials 
in the Uj. Given any relation a in the Uj we can first reduce it to an irreducible expression 
and then rewrite it in the form / = ~3i c%fi where the fi are monomials strictly less than the 
monomial / . If a- is of degree at most two the result of these two operations on a is uniquely 
determined. We call it the reduced form of a. It clearly is compatible with the ordering of 
the monomials in the Uj- If we apply this procedure to the orthogonality relations (2.10) we 
end up with a single relation: 

*11*33 = 1 " 9*13*31 - 9**12*32- (2.17) 

We add (2.17) to our reduction system. Given any ambiguity, it either is resolvable or gives 
rise to a new relation which can be written in reduced form and added to the reduction 
system. Starting from the ambiguities £32*23*111 *33*22*i2> *33*2i*n» *32*22*iii *33*23*n And 
*33*22*n we get: 

*12*23*31 = *13*21*32 

*12*23*32 = (9 + 1)*13*22*32 + q(q* + 9~")*13*23*31 

*11*22*32 = 2q2(q$ +9~*)*13*21*31 + 9J(9* +29_i)*12*22*31 - 9**21 (2.18) 

*12*21*32 = q(q^ +9"")*13*21*31 + (9 + -0*12*22*31 

*12*22*33 = %q2(q^ + 9"*)*13*23*31 +q*(q* + 29~*)*13*22*32 - 9**23 

*11*22*33 = (9~~ - 9" - 9*)*12*22*32 — 9*13*22*31 ~ 2g(g - 9_1)*13*21*32 + *22-

We add these relations to our reduction system. The reduced form of the relation det9T = 1 
(see (2.9)) then becomes: 

*12*22*32 = 9* ~9**22+92(9* +9"*)*13*22*31 -29(9* + 9"*)*13*21*32- (2.19) 

We add (2.19) to our reduction system too. We then get new ambiguities £12*12*22*32 and 
*12*22*32*32 from which one derives (16.c) and (16.d). We add these last two equations to 
our reduction system. (Prom now on, this will be done automatically every time we derive 
a new relation in Table 1.) The new (inclusion) ambiguities *n*22*32 and £12*22*33 then lead 
to (15.c) and (15.d). Since (2.19) is not irreducible anymore, we should rewrite it as: 

*13*21*32 = (9 + I)"1 " q~l(q* + 9~i)"1*12*32 + 9*13*22*31 - (9 + l ) " 1 * ^ (2.20) 

The ambiguities *22*32*2i and £21*22*32 lead to (17.a) and then the ambiguity £13*21*32 leads 
to (19.a). Using the new reduction rules (19.a), (16fc/d) and (15.c/d), one sees that the 
relations (2.17), (2.14), (2.15) and (2.16) can be rewritten as (20), (15.a), (15.b), (16.b), 
(16.a), (19.b) and (21) respectively. The ambiguities £23*12*221 *n*i2*32 and £i2£32£33 now 
lead to (17.b), (18.a) and (18.b) respectively. It is easy to see that the reduction rules (2.18) 
and (2.20) can now be discarded. This concludes the proof of the theorem. 

Corollary 2.3 — There is a unique algebra homomorphism y}\ Cq2 —> Bq such that 

(l + q~2)ìаß -ß2 > 
X ' ( Г ) = | (1 + <Г2)*07 1 + tø + ç - 1 ) / ^ -(l + q2)iôß 

- ( l + ?2)*57 S2 , 

l rf 

>= (1 + 9"2] 

V - т 2 



THE DOUBLE COVERING OF THE QUANTUM GROUP SOqQ) 5 7 

The mapping x* is an isomorphism of Hopf *-algebras. 

It follows from [2.2] and [1.2] that x ' is well-defined and bijective. That x* is a Hopf algebra 
morphism follows from the fact that Adq (see (1.5)) is a corepresentation. Finally, x* respects 
the *-operations because of (1.9) and (2.11). 

We identify .50,2(3) and Ad(SUq(2)) via x- We then have a morphism <j>:SUq(2) -• 
SOq2(3) (see above [1.4]) and [1.5] can be restated as 

Corollary 2.4 — There is the following exact sequence of quantum groups: 

1 — z 2 — SUq(2) -*-> 50,2(3) — 1. 

During the winter school in Zdikov O. Ogievetsky pointed out to me that the quantum 
analogue of the classical isomorphism A\ ~ B\ had already been proved in [JO] in a more 
general context. In [Tl] a result similar to [2.3] was announced, but to my knowledge a proof 
of this claim has never been published. 
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