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ISOSPECTRAL, NON-ISOMETRIC RIEMANNIAN MANIFOLDS 

(Lectures given at the "13th Winter School of Geometry and Physics" 
in Zdikov/ Czech Republic, 9.1. - 16.1.1993) 

By Dorothee Schueth* 

ABSTRACT: First we give a survey of the history of isospectral manifolds 
that are not isometric., especially the first example by Milnor, the examples 
by Marie-France Vigneras, Sunada's method of constructing isospectral ma
nifolds and its generalization by DeTurck and Gordon (Chapter 1). Then we 
describe some applications of these methods: the construction of continuous 
isospectral deformations (as introduced by Gordon, Wilson, DeTurck et al.), 
including some new examples (Chapter 2), and on the other hand the 
construction of isospectral plane domains due to Gordon, Webb and Wol-
pert (Chapter 3). 

CHAPTER 1: Introduction, First Examples, General Methods 

1.1 Introduction 

Let (M,g) be a compact Riemannian manifold with metric g, possibly with boundary. 
Let A = - div grad be the Laplace operator associated to g, acting on functions. 

Consider the eigenvalue problem 

Af = X-f 

with either Dirichlet or Neumann boundary conditions on dM (resp. empty boundary 
condition if dM is empty). 

It is well known that in each of the three cases the occurring eigenvalues form a 
discrete series ' 

0 < \ £ X2 -* . . . -> oo 

* Partially supported by Sonderforschungsbereich SFB 256, Bonn 
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in which each X< occurs with finite multiplicity, the sum of all eigenspaces is dense 
in L2(M,Vg), the eigenspaces corresponding to different eigenvalues are L2-orthogonal, 
and all eigenfunctions are actually C°° . Zero is an eigenvalue (with multiplicity 1) if 
and only if 3M=0 . (Basic references for these facts are e.g. [BOM] or [Bel].) 
Denote the eigenvalue series, counting multiplicities, by 

spec(M,g) resp. speCpCM-g) resp. specN(M,g) 

for empty resp. Dirichlet resp. Neumann boundary conditions. 

A natural question arising in this context is the following: To which extent does the 
spectrum of (M,g) determine its geometry? For the special case of a bounded domain 
in R 2 this was formulated by M. Kac ([Ka]) in 1966 as "Can one hear the shape of 
a drum?" 

Examples of partial answers to this question in the "positive" sense are the following 
well-known results: 

a) The spectrum of a manifold (M,g) determines its dimension, its volume, and its 
total scalar curvature (hence also its Euler characteristic if M is 2-dimensional without 
boundary). This follows from the asymptotic expansion of the heat kernel by Minak-
shisundaram-Pleijel. (See e.g. [BOM].) 

b) Some examples of Riemannian manifolds which are distinguished (i.e. uniquely de
termined) by their spectrum are the standard spheres in dimension £6, the standard 
real projective spaces in dimension --6, and compact 3-dimensional manifolds with con
stant positive sectional curvature (see [BOM], [Ta], [Tn]). 

e) There exists at most a finite number of flat n-dimensional tori isospectral to a 
given flat torus (this is a result due to Kneser; see also [Pel] for an explicit bound 
for the number of such tori); the analogous result is true for compact hyperbolic sur
faces ([McK]). 

d) Compact closed manifolds with negative sectional curvature are infinitesimally spec
trally rigid: There are no nontrivial continuous isospectral deformations of them ([GK1], 
[GK2], [MO]). 

e ) On Riemann surfaces the Laplace spectrum and the length spectrum (i.e. the 
collection of lengths of shortest closed geodesies in different free homotopy classes) 
determine each other mutually ([Hu]); for similar results in more general, but generic 
situations see [CV]. 

1.2 First Examples 

In spite of the above and other "positive" results, the answer to the question whe
ther the spectrum of a Riemannian manifold determines its geometry completely is ne
gative: In 1964, J. Milnor gave the first example of isospectral, non-isometric Rie-
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mannian manifolds, namely, a pair of two 16-dimensional flat tori. 

1.2.1 The Milnor Example ([Ml]) 

A flat torus is a quotient T \ R n of R n by a lattice T c R n of rank n where the 
quotient is endowed with the metric induced by the standard euclidean metric on R n . 
The T-invariant eigenfunctions of A on R n are precisely those of the form 

fT =- exp (2ni <T , . » 

where T ranges over the "dual lattice" 

T* := <T£Rn | <T,r> e Z V / e r } . 

The eigenvalue corresponding to fT is 4I I 2 | |T | | 2 . 
Thus isospectrality of r t \ R n and r 2 \ R n is equivalent to the condition 

V t > 0 : # treiy | ||T|| = t} = # {Ter2* | ||T|| = t} . 

This is in turn, equivalent to 

(.) v t > o : # (rer.! | ||r|| = t} = # <rer2 | ||7|| = t} 

by the Poisson summation formula. 
On the other hand, r 1 \ R n and r 2 \ R n are isometric if and only if there exists 

T e O n such that T2 = TT1 . 
Thus if T1 and T2 satisfy condition (*) (i.e. have the same length spectrum), but are 

not congruent, then Î N^R11 and T 2 \ R n provide an example of two isospectral, non-
isometric Riemannian manifolds. 
The two tori found by Milnor are quotients of R1 6 by two lattices with just this 

property. 

Remark: Today there is also an example of two flat isospectral, non-isometric tori in 
dimension four (see [CS]). 

1.2.2 Isospectral hyperbolic surfaces (Marie-France Vlgneras 1980; [VI]) 

After the example of Milnor in 1964, fifteen years passed until, at the end of the 
seventies, new examples of isospectral, non-isometric manifolds were found. An impor
tant one of these examples is the following: 

Let O := PSL(2,R) be the group of positively oriented isometries of the hyperbolic 
plane H2, i.e. the upper half plane endowed with the metric (dx2+dy2)/y2 . 

Let r be a discrete subgroup of O such that T\H2 is a compact Riemannian mani
fold. In particular, T-{id} can contain no elliptic or parabolic but only hyperbolic 
isometries. Let r \ H 2 be endowed with the metric induced from H2. 
By a theorem of Huber ([Hu]), the length spectrum of T\H2 determines its Laplace 

spectrum. 
The length spectrum can be described as follows: 
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The directed closed geodesies of T\H2 are in one-to-one correspondence to the T-
conjugacy classes in .T; the closed geodesic which corresponds to the conjugacy class 
Mr e [H n a s length 

Sy := min {dist(z,7z) | z e H2} . 

The number s-j- can be computed as ŝ - = ln(|X|2) where X is the bigger (with respect 
to absolute values) eigenvalue of a representant of 7 in SL(2,R). Hence Sy is deter
mined by the number 

trace(7) := |X| + |X|_1 > 2 . 

Because of these facts, isospectrality of T1\H2 and T2\H2 is equivalent to 

(••) V t > 0 : # { [ r ] r i <- [rt] I trace(7) = t) = # { [ 7 ] ^ e ITa] | trace(7) = t) 

On the other hand, Tt\H
2 and T2\H2 are isometric if and only if r t and T2 are 

conjugate in POL(2,R). 
What Vigneras constructed were examples of Tt and T2 which are not conjugate, but 

nevertheless satisfy (**). 
She obtained T1 and T2 as the images of certain subgroups of a quaternional algebra 

over an algebraic number field under its embedding into M(2,R); this number theore
tical part was the difficult part of her construction. 

Remarks: 

(i) Vigneras also constructed isospectral, non-isometric examples of compact hyperbo
lic manifolds in higher dimensions. In these examples, not even the fundamental 
groups are the same (by the Mostow Rigidity Theorem) which shows that the spectrum 
does not determine the topology of a manifold. 

(ii) Note that in spite of Vigneras' examples, spectral rigidity holds for compact hyper
bolic manifolds (i.e. there are no continuous isospectral deformations of them) by the 
results of Ouillemin/Kazhdan ([OKI], [OK2], see also [MO]) which hold for arbitrary 
compact Riemannian manifolds with negative sectional curvature. Moreover, MacKean 
([McK]) showed that the number of hyperbolic surfaces isospectral to a given one is 
always finite. 

(iii) Note a certain community between the Milnor and the Vigneras examples: 
There exists a bijection 

* : Tt -> T2 (in the Milnor example), resp. 

* : [ r t ] -> [r2] (in the Vigneras example) 

such that 

<KTi) is conjugate to j \ in Iso(Rn) =- On D< R n (in the Milnor example), resp. 

$([7i]r<|) G [^2] an(* -Tl^ri E [^1] a r e suhsets of the same conjugacy class 
in POL(2,R) (in the Vigneras example), 

although Tt and T2 are not conjugate in Iso(Rn) resp. PGL(2,R). 
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1.3 Systematical Methods 

1.3.1 The Sunada Theorem 

The first systematical method of constructing isospectral manifolds was found by T. 
Sunada in 1985 (see [Su]) and is based on the same kind of principle as in the 
above Remark (iii) in 1.2.2: 

THEOREM (Sunada): 
Let G be a finite group acting by isometries on a compact Riemannian manifold 

(M,g) without boundary; let T1 and T2 be subgroups of G acting freely on M and 
satisfying 

(S) V h e G : # (I^nChlo) = # (r2n[h]G) . 

Then (.TjNM-g) and (r2 \M,g) (where g denotes the induced metrics again by abuse 
of notation) are isospectral. 

In 1991, P. Berard generalized this theorem to the cases M with boundary and Tv 

T2 not necessarily acting without fixed points (see [Be3] and Theorem 3.1 below). 
We will give a sketch of Berard's proof in Chapter 3 where we will also describe 

how Berard's version of Sunada's Theorem was used by Gordon, Webb and Wolpert 
for the first construction of isospectral bounded plane domains ([OWW1], [GWW2]). 

For examples of isospectral, non-isometric Riemannian manifolds that can be construc
ted by using Sunada's Theorem (and many of which can be realized as paper models 
using scissors and paste) see [Bui] and [Bu2] by P. Buser, also [Br] and [BT] by R. 
Brooks and R. Tse. 

One of Buser's examples will play an important role in Chapter 3. 

1.3.2 A more general Theorem by DeTnrck and Gordon 

In 1987 Dennis DeTurck and Carolyn Oordon proved a strong generalization (see 
[DG3]) of Sunada's Theorem which recovers also the previous examples described in 
1.2 above. 

THEOREM (DeTurck/Oordon): 
Let G be an arbitrary Lie group acting by isometries on a Riemannian manifold 

(M,g) without boundary. Let Tx and T2 be discrete cocompact subgroups of G that 
act freely and properly discontinuous!/ on M such that T1\M and T2\M are com
pact. 
Then if the following condition (DG) is satisfied, (I^NM.g) and (T2\M,g) are iso

spectral (where g denotes the induced metrics again by abuse of notation): 

(DO) V h e G : rCG-iy-h) = r(G,r2;h) 

where (for h^G and a cocompact discrete subgroup T of O) 
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r(G,r;h) := £ p[h](rr\Gr) ; 
[ r ] r

c [ h - o 
here, G r and T r denote the centralizers of rGT in O and T respectively, and the 
p>-hJ are biinvariant Haar measures on every G5 (bE[h]0) which are chosen in 
such a way that the maps 

h : ° b "> °aba-i 

are measure preserving (compatibility condition). 
r(G,r;h) := 0 if [ h ] 0 does not meet T at all. 

Note that T r \ O r is compact if T\0 is compact, thus the G r are unimodular and 
there exist indeed biinvariant Haar measures on these groups. 

For the proof of this theorem see [DG3]; it makes use of a trace formula for the 
heat kernel on the manifolds (I^W.g) and (r2\M,g). 

Remarks: 

(i) O is not assumed to be connected. G is also allowed to be O-dimensional (dis
crete). 

(ii) The above theorem can be used to construct continuous isospectral deformations. 
See Chapter 2 for this. 

(iii) We shortly sketch how the Theorem of DeTurck and Oordon can be applied in 
order to recover the examples of Milnor and Vigneras and the Sunada Theorem: 

(a) Tori: G :» On K Rn, T C R n C O, T r = T, G r = Stab0n(r) IX R n . 

Choose p [ h ] such that p [ h l ( r r \ G r ) =- l O ^ I • | r \ R n | (these p [ h ] satisfy the com
patibility condition required in the theorem). Then 

r(o,r;h) = lOn.-j.|r\Rn|. #(m[h]G) = lo-^i-|r\Rn|- #(rer nirll = ||h||) 

for h € R n c o ( r(G,r;h) - 0 for h e O - R n ) . 
For all heG these numbers are equal for T:~rt and T:=r2 if r1 and T2 satisfy 
condition (*) from 1.2.1. Thus condition (DO) is satisfied. 

(b) Hyperbolic surfaces: O :-= PSL(2,R), r C O such that T\H2 and hence also 
r\G is compact; G r corresponds to the transvections along the axis of the isometry 
r . 
Choose p [ h ] such that p [ h ] ( r r \ O r ) = Sy as in 1.2.2 (these p [ h ] satisfy the com
patibility condition). Then, since ay = s n for all r G t h ] 0 : 

r(G,r;h) = sh • # <[r] r I tr lr c -*--0> - *h ' * < M r I trace(r) = trace(h)} 

for h£G hyperbolic ( r(G,r;h) = 0 for the others since T contains only hyperbolic 
isometries). 
For all hEG these numbers are equal for T\^T1 and r:=T2 if Tt and T2 satisfy 
condition (••) from 1.2.2. Thus condition (DG) is satisfied. 
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(c) Sunada's Theorem: G finite; choose p**1* := # (the counting measure). Then 

p [ h l ( r r \ o r ) = (#o r ) / (#r r ) = ( # o - . # [ r ] r ) / ( # [ r ] G • #r) 

and hence 

r(G,r;h) = ((#G) / ( # [ h ] G . # r ) ) • £ # [ 7 ] r 

[ r ] r C [ h ] 0 

= ( ( # o ) / ( # [ h ] G - # r ) ) - # (r n [h]G) . 

For all h e G these numbers are equal for T:-T1 and r :=T 2 if T1 and T2 satisfy 
the Sunada condition (S) from 1.3.1. Thus again condition (DO) is satisfied. 

CHAPTER 2: Continuous Isospectral Deformations 

As already mentioned above, the Theorem of DeTurck and Gordon (see 1.3.2) is a 
tool for the construction of continuous isospectral deformations. The first examples of 
such deformations were given already in 1984 by Gordon and Wilson (see [OW1]) 
where a different isospectrality argument (using Kirillov Theory of unitary representa
tions) was applied; in [D03], DeTurck and Gordon proved the above Theorem and 
applied it to obtain a generalization of the first construction of continuous isospectral 
deformations. 

In this context, the notion of "almost inner automorphisms" ([DOl], [Oo2], [DG3]), 
first introduced in [OW1] in a slightly different way, plays a central role. 

2.1 Definition 

Let O be a Lie group and T a subgroup of G. Then 

AIA(G;r) := (*eAut(G) | V r e r 3 aeO : * ( r ) = ara
_1> 

is called the group of almost inner automorphisms of G relative to T . 

2.2 Proposition ([DG3]) 
Let G be a Lie group, g a left invariant metric on O, T a cocompact discrete 

subgroup of G, and let $€AIA(G;.T) be such that the following additional condition 
is satisfied: 

Whenever r e r , and aeO is chosen such that 4 ( r ) = I a(r) , then 

Then (*(r)\G,g) and (r\G,g) are isospectral. 

The proof of this proposition is an application of the Theorem of DeTurck and Gor
don (1.3.2): In order to establish condition (DG), it only remains to show that the 

diffeomorphism * : Qr -> G$( r) which descends to the quotients Tr\Qy and 
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*(n$ (7) \°$ (7) k measure preserving with respect to the measures p. But this is the 

case because I a
- 1 : 0$(y-\ -> Qj is measure preserving by the choice of the measures 

(compatibility condition) and Ia
_1 o 4 : Q^ -> Q is also measure preserving by 

condition (*) in the proposition. 

2.3 Observation ([DG3]) 
If O is simply connected and nilpotent, T a cocompact discrete subgroup of G and • 

E AIA(G;r) , then condition (*) of 2.2 is automatically satisfied. 

(All the (Ia
-1°4)se M *n (*) c a n D e s n o w n t o D e unipotent automorphisms of TeG in 

this case. Hence they have determinant 1 on every invariant subspace.) 

Remarks: 

(i) If the automorphism • is not only almost inner but inner, then the manifolds 
(r\G,g) and ($(r)\G,g) are isometric, and their isospectrality is trivial. 
But in general AIA(G;r) is bigger than Inn(G), the group of inner automorphisms, 

and for * E AIA(G;r)-Inn(G) the two manifolds are not isometric in general. 

(ii) In some Lie groups G one can find continuous families 4>t in AIA(G;T), not 
contained in Inn(G), with $o s id and all 4>t satisfying condition (*) of 2.2. By such 
families, examples of continuous isospectral deformations can be constructed (see be
low). Note that obviously, (*t(r)\G,g) is isometric to (r\G,$t*g); so the deformation 
can indeed be interpreted as a deformation of the metric on a fixed manifold. 

2.4 Examples 

We now describe three explicit examples and in this context discuss also some approa
ches to the description of the geometrical changes occurring during the deformations. 

2.4.1 The -standard- example ([GW1]) 

In this first explicit example of a continuous isospectral deformation ever given (in 
[OW1], studied also in [DG1], [DG2], [DGOW1]) the Lie group G is two-step nilpo
tent. Such groups provide the "simplest" kind of groups in which almost inner but 
non-inner automorphisms can occur. 

Let G be the simply connected Lie group corresponding to the Lie algebra g which 
is spanned by {Xlt Y t , X2, Y2, Z lf Z2) and whose nontrivial Lie brackets are given 
by [Xb Yil = Zt (i = 1, 2) and [Xt, Y21 = Z2 . 

Let r be the subgroup of G which is generated by {expXj, ... , expZ2), where exp : 
0 -> G denotes the exponential mapping, r is a cocompact discrete subgroup of G. 

Define * t E Aut(G) by requiring that ($t)*e m a P s Y i t o Y1+tZ1 and equals the 
identity on spaniXj, X2, Y2, Z1? Z2). One can check that * t E AIA(G;T) (indeed * t 
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e AIA(G;G)). Moreover, by the above Observation 2.3, all 4>t satisfy condition (*) of 
Proposition 2.2. 

Let g be the left invariant metric on G which makes the left invariant vectorfields 
Xv Yv ... , Z2 orthonormal, and let gt := *t*g. Then {Xv Y1-tZ1, X2, Y2, Z l f Z2} 
is an orthonormal frame for gt . 

Now by Proposition 2.2, 
(r\o,gt) 

is a continuous isospectral deformation. 

Note that topologically, T\G is a nontrivial T^-bundle over T4 ( T2 and T4 denote 
the two- resp. four-dimensional torus). The fibers are integral manifolds of the left 
invariant distribution span{Z1, Z2} and are totally geodesic for each gt . 

Why is the above deformation nontrivial? 

The manifolds occurring during the deformation have many communities, for example 
all of them have the same volume'(see 1.1 a)), they are pairwise locally isometric 
because (T\G,gt) is isometric to (*t(r)\G,g) which is locally isometric to (T\G,g), and 
they all have the same length spectrum by a theorem of Carolyn Gordon ([Go2]) 
which holds for a wide class of examples constructed by using Theorem 1.3.2. 

Nevertheless the deformation is nontrivial, as guaranteed for example by a result of 
Gordon and Wilson (see [GW1]) about the isometry classes of the metrics {**g | • e 
Aut(G)} where G is a simply connected solvable group with only real roots and g is a 
left invariant metric on G. 
Their result implies in particular that if G and g are as just mentioned, if T is a 

cocompact discrete subgroup and * t a continuous family of automorphisms of G start
ing from id, then a deformation of the form (r\G,$t*g) can not be trivial if not all 
of the $ t are inner automorphisms. 

But this is easily seen not to be the case in the above example, so the deformation 
must be nontrivial. 

This approach is rather abstract and does not really shed light into how the geometry 
changes during the deformation. 

In [DGGW1] this question was studied thoroughly for the above example. It turned 
out that the geometrical change during the deformation can be detected by consider
ing the relative position of shortest closed geodesies in different free homotopy classes. 

More explicitly, in this example the situation is the following: 
The gt-shortest geodesic loops in the two free homotopy classes corresponding to 

the T-conjugacy classes [expY1]f and [expY2]r* foliate two submanifolds Mt(t) resp. 
M2(t) of T\G whose gt-distance equals dist(t,2Z) =1= const. 
Now by the countabillty of the set of all free homotopy classes of T\Q the defor

mation must be nontrivial. (DeTurck/Gluck/Gordon/Webb in [DGGW1]) 
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Note that the two-dimensional direction span{Y1, Y 2} which plays an important role 
in this geometrical argument is just the two-dimensional space on which the automor
phisms ($t)*e r e v e a - their non-innerness: Indeed, an inner automorphism which maps 
Y t to Y1+tZ1 would necessarily map Y 2 to Y 2 +tZ 2 . 

There is a series of papers ([DGGW1] - [DGGW6]) by the same authors where 
they study the geometry of numerous examples of continuous isospectral deformations 
using the above and other similar approaches. 

A natural question which was not considered in those papers is the following: 

I How long is the interval [0, tg) during which all the (r \G ,g t ) are pairwise non-
isometric? 

Or more strongly: 

I What is the parameter of the isometry classes of the manifolds ( r \ G , g t ) ? 

We will now exhibit a method of determining a "strong isometry invariant" for the 
above example, i.e. a geometrically defined number, depending on t, which distin
guishes different isometry classes. 

This number is obtained by an appropriately chosen geometrical algorithm. A similar 
algorithm, serving the mentioned purpose, can be formulated in all examples where G 
is two-step nilpotent and also in many other examples. 

For the example considered above, we define a number dt, depending on t, as fol
lows: 

Step 1: Determine the Killing vectorfields of (r\G,g^). These are precisely those in
duced by the central left invariant vectorfields of G. 

Step 2: Divide ( r \G,gt ) by the flow of the Killing vectorfields. The basis manifold 
is the four-dimensional torus T4 . The only metric on T 4 for which the 
projection becomes a Riemannian submersion is the flat standard metric. So we 
have obtained a geometrically defined Riemannian submersion from ( r \ G , g t ) 
onto (T4, standard). 

Step 3: Consider all shortest closed geodesies of T 4 and determine those gt-horizontal 
lifts of them to (r\G,g|) which remain closed (with the original length). 
Observe that the closed geodesies in (r\G,gt) obtained in this way belong 
to 4 free homotopy classes ([expX1]p, [expY1]p, [expX2]p, [expY2]p) and 
that each of these 4 subfamilies of geodesies foliates a submanifold Mtft) (i 
= 2, 2, 3, 4) of (r\G,gt) . 

Step 4: Determine the six gf distances between the Mj(t). They turn out to be 0, 0, 
0, 0, 0, and dt := dist(t,Z) . 

Since the number dt is thus geometrically defined, we can conclude for t, t' e R : 



ISOSPECTRAL, NON-ISOMETRIC RIEMANNIAN MANIFOLDS 2 1 7 

| If dt * dt> then ( r N G ^ is not isometric to (r\G,gt>) . 

On the other hand, it is not very difficult to write down an isometry between 
(r\G,g t) and (r\0,g t>) if dt • dt> (i.e. isometries between g t and g t + 1 and between 
g t and g.j). 
Thus dt is exactly the parameter of the deformation in the example considered, and 

[0, 1/2) is the biggest interval during which the manifolds (rNG.g^ are pairwise non-
isometric. (See also [Schl] for details.) 

2.4.2 An example with O not nllpotent but exponentially solvable 

Introducing Remark: 
The first continuous isospectral deformations, constructed by Gordon and Wilson, date 

back to 1984, as mentioned already at the beginning of this chapter. 
They were of the form (r \0,$ t*g) with O simply connected and exponentially sol

vable and with an almost innerness condition for the automorphisms 4>t on the dual 
of the Lie algebra. 

However, in all explicit examples that were given O was actually nllpotent, except in 
one example ([OW1], example 2.4(iv)) where O was solvable; but nevertheless the 
deformation that was constructed in this example and the corresponding family of al
most inner automorphisms were interesting again only on the nilradical of O . 
The following is an example in the solvable case which can not be reduced - as the 

first solvable example just mentioned - to a nllpotent situation. 

Let O be the simply connected Lie group corresponding to the Lie algebra 0 which 
is spanned by {X1, Y l f X2, Y2, Z} and whose nontrivial Lie brackets are given by 
[Xj, Yj] - Z (i - 1, 2) and [X l f X2] - X2, [Xv Y2] =- -Y 2 . Note that O is 
unimodular (otherwise there would be no hope to construct a cocompact discrete sub
group). 

Let r be the subgroup of O which is generated by {exp(t0X1), exp(Y1/t0), expQ, 

expU, exp(Z/2)}, where tg is chosen such that exp(ad(t0X1)) is similar to (_ ..) on 

span{X2, Y2} and {Q, U) is a basis of span{X2, Y2} with respect to which exp(ad(t0X1)) 
has this form. Then T is indeed a cocompact discrete subgroup of O. (This construc
tion of T is analogous to the one in the solvable example 2.4(iv) in [OW1] which 
was mentioned above. 

Define * t e Aut(O) by requiring that ($ t)«e maps Y1 to Y1+tZ and equals the 
identity on span{X1, X2, Y2, Z}. One can check that 4>t e AIA(G;r) and all 4>t 

satisfy condition (•) of Proposition 2.2 (note that here, this last fact does not follow 
from Observation 2.3). 

Let g be the left invariant metric on O which makes the left invariant vectorfields 
Xt, Y l f ... , Z orthonormal, and let g t :=- *t*g. So {Xv Yj-tZ, X2, Y2, Z} is an 
orthonormal frame for g t . 
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By Proposition 2.2, 
(r\o,gt) 

is a continuous isospectral deformation. 

Topological^, r \G is a T^-bundle (with fibers that are integral manifolds of the left 
invariant distribution span{Ylf Z}) over a T^-bundle (with fibers that are integral ma
nifolds of the left invariant distribution span{X2, Y2) in the basis manifold of the 
first bundle) over a circle. In both bundles, the two-dimensional fibers are not totally 
geodesic with respect to the gt resp. with respect to the metric associated to the gt 

on the basis manifold of the first bundle such that the submersion becomes a Rie-
mannian submersion (for every t). 
Note that the 3-dimensional Lie-group O := G / exp(span{Y1, Z}) is just the group 

E(l, 1) of rigid motions of the plane with respect to the pseudo-metric with signature 

Nontrivlallty of the deformation in this example: 

One can show, for example, that the gt-shortest geodesic loops in the two free ho-
motopy classes corresponding to [exp(Y1/t0)]p and [expQ]p foliate two submanifolds 
M^t) and M2(t) of T\Q which have non-constant gt-distance dist(t, tgZ). Thus the 
deformation is nontrivial by the same countability argument as in the previous ex
ample 2.4.1. 

But here it turns out that the number dist(t, tgZ) is not yet the parameter of this 
deformation; instead dt : • dist(t, W2(-Z) -* t n e parameter. The reason for this is that 
the gt-shortest geodesic loops in [expQlr* can not be distinguished geometrically from 
the gt-shortest geodesic loops in [expUlr* ; only the union of these two families of 
geodesic loops can be defined geometrically. 
A geometrically defined algorithm that yields the number dt = dist(t, W2'- z ) an<^ 

thus shows it to be a strong isometry invariant is the following: 

Divide (T\0,g t) by the flow of its Killing fields (these are the central fields 
again) and consider the closed gf-horizontal lifts of the integral curves of the Killing 
fields of the quotient which is endowed with the unique metric that makes the 
projection a Riemannian submersion. (These lifts are closed integral curves of 
the left invariant vectorfield Y1-tZ1 .) 

Observe that they foliate a submanifold Mt(t) of T\G. 

Divide (T\0,g t) twice by the flow of the respective Killing fields ("first Z, then 
Y}") and consider the closed gt-horizontal lifts of the (globally) shortest geodesic loops 
of the three-dimensional quotient. (These lifts are closed integral curves of the 
left invariant vectorfields Q and U .) 

Observe that they foliate a submanifold M2(t) of (rVJjg.j) . 

The gf-distance between Mt(t) and M2(t) is just dt • dist(t, W 2 ' z ) • 

Thus dt is indeed a strong isometry invariant 
Since on the other hand it is not difficult to write down explicitly an isometry 
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between (r\G,gt) and (r\G,gt>) if dt = dt> , we conclude that dt is exactly the 
parameter of the deformation. 

For more details about this example see [Sch3]. 

2.4.3 An example of an isospectral deformation on a manifold that is dif-
feomorphic to a Heisenberg manifold 

Introducing Remark: 

In 1991, He Ouyang and Hubert Pesce proved independently: 

If G is 2-step nilpotent, then all continuous isospectral deformations of the type 
(r\G,g t) with left invariant metrics g t are obtained by the method of almost inner 
automorphisms, i.e. there is a continuous family of automorphisms $ t e AIA(G;T) 
with *0=id and g t = *t*go . (See [Ou], [Pel ] , [Pe2], or [OP].) 

This implies in particular that if G is 2-step nilpotent and does not admit nontrivial 
almost inner automorphisms, i.e. if AIA(G;r) = Inn(O), then for every left invariant 
metric g, (r\G,g) is inftnitesimally spectrally rigid within the family of left invariant 
metrics. 
This is the case, for example, for the classical Heisenberg groups H m which have 

Lie algebra $ m generated by {Xv Yv ... , X m , Y m , Z) with nontrivial Lie brackets 
given by [Xb Y{] = Z (i = 1, 2, ... m). 
Thus every compact Riemannian Heisenberg manifold of the type ( r \H m , g ) (where 

g is a left invariant metric on Hm) is infinitesimally spectrally rigid within the family 
of left invariant metrics. 

But the following example will show that nevertheless there are nontrivially isospec-
trally deformable Riemannian manifolds diffeomorphic to and arbitrarily "close" to cer
tain Heisenberg manifolds. 

More precisely, we will exhibit a (non-isospectral) continuous deformation of a cer
tain Heisenberg manifold ( r \H m ,g ) such that every manifold occurring in this defor
mation, except the initial manifold, is nontrivially isospectrally deformable: 

The underlying manifold will be r \ H m , and we will construct a continuous two-
parameter family of metrics on it with the following properties: 

Hm-left invariant not Hm-left invariant ( a e [ V 2 » U) 

8i »g« » horizontal arrows: continuous deformation, 
non-isospectral 

81 ««« 

vertical arrows: 
continuous isospectral deformation, 
non-trivial for <x<l 
(trivial for a = l ) 
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All of the metrics gg* will be left invariant with respect to some other (not nilpo-
tent, but solvable) group structure on the manifold Hm, but only g1 = g1

t will be Hm-
left invariant. 
We give the construction explicitly for m=2: 

Let 6 := &2 be the five-dimensional Heisenberg algebra which is spanned by {Xlf 

Yv X2, Y2, Z} and whose nontrivial Lie brackets are given by [Xj, Yj] = Z (i = 1, 
2). 
Let 0 be the five-dimensional Lie algebra which is spanned by {Xv Y t , X2, Y2, Z} 

and whose nontrivial Lie brackets are given by [Xj, Yj] = Z (i = 1, 2) and more
over [Xj, X2] = Y2, [X l f Y2] = -Xj . 

Let H2 resp. O be the simply connected Lie groups corresponding to these Lie alge
bras. 

Note that O is solvable but not exponentially solvable (unlike the group in example 
2.4.2), i.e. exp : a -> G is not bijective, since adXt has nontrivial purely imaginary 
eigenvalues. Note furthermore that the 3-dimensional group G := O / exp(span{Y1, 
Z}) is just the group E(2) of rigid motions of the plane endowed with the standard 
euclidean metric. 

Let h resp. g1 be the left invariant metrics on H2 resp. O that make the left 
invariant vectorfields Xv Y1, ... , Z orthonormal in both cases. 

Let f C H2 resp. T £ O be the subgroups generated by {exp(2iiX1), exp(Y1/2n), 
expX2, expY2, exp(Z/2)}. These groups can be shown to be indeed discrete and co-
compact in H2 resp. O. 

It is not difficult to see that there is an isometry F from (0,g) to (H2,h) which 
equals the "identity" on the tangent spaces TeG = 0 and TeH2 = $ with respect to 
the names of the basis elements; moreover, this F satisfies F(r) = T and F(7*x) = 
F(r)'F(x) for all 7GT and xeG. Thus F descends to an isometry between the com
pact quotients (r\O tg t) and (f\H2 ,h). 

Note that r = f is nilpotent although it is cocompact in the non-nilpotent group O. 
Note furthermore that topologically, T \0 is - just like f \ H 2 - a- nontrivial circle 
bundle over T4. 

Let * t be the automorphism of O defined by requiring that (*t)*e maps Y t to Yj+tZ 
and equals the identity on span{Xly X2, Y2, Z}. One can check by somewhat tedious 
calculations that * t e AIA(G;r) and * t satisfies condition (») of Proposition 2.2. Thus 

(r\o,Vg) 
is an isospectral deformation for every metric on T \0 that is induced by a O-left 
invariant metric. 

- Now if we start with g := g1 s h, then the above deformation turns out to be 
trivial . 
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- But if we start with the slightly different metric g := g a (0<ot<l) which makes 
{Xv Yv X2, aY2, Z} orthonormal and set ga* := * t *g a , then the deformation 

(-"NOiga4) with a fix and t varying 

is nontrivial at least for (0.157... « ) (4u2+l)"1 / 2 < a < 1 . 
This can be shown by geometrical arguments similar to those in Examples 2.4.1 

and 2.4.2; the parameter of each of the deformations (for. a in the open interval 
written down three lines above) turns out to be dt := dist(t, nZ) . 

Remarks: 

(i) For more details about this example see [Sch3]. 

(ii) The question if there exists a nontrivial isospectral deformation of ( r \H 2 ,h) itself -
then necessarily with metrics that are not H2-left invariant - remains open. 

(iii) Another open question is whether the analogon of the above result of Ouyang 
and Pesce (which is valid for the 2-step nilpotent case) holds' also in the n-step 
nilpotent or in the solvable case. About this there are no results except the following 
which is a weaker one: 

2.5 Proposition: 
Let G be simply connected and nilpotent of arbitrary step or solvable with only 

real roots. If r t is a continuous family of cocompact discrete subgroups of O such 
that the quasi-regular unitary representations pp. of G on L2(Tt\G) (defined by 
((Ppt(h))(f))(x) = f(x*h_1) ) are pairwise unitarily equivalent, then there exists a 
continuous family of automorphisms * t e AIA(G,r0) with <->

0=id and r t = * t ( r 0 ) . 

(For the proof see [Sch2].) 

The reason why this result is weaker than a possible analogon for isospectral deforma
tions is the fact that equivalence of the quasi-regular representations implies isospectra-
lity of the (r t \G,g) if g is any fixed left invariant metric. This can easily be seen by 
expressing the Laplace operator on (r t \G,g) in terms of (Ppt)„ (see [OW1]). 

So Proposition 2.5 is at the same time a result about some isospectral deformations of 
(r0 \G,g), but a priori these might not be all. 

On the other hand: All continuous isospectral deformations of the form (r t \G,g) that 
are known until now are of the type (* t(r0)\G,g) , where the * t are in AIA(0;T) 
and satisfy condition (*) of Proposition 2.2. Thus the discrete subgroups T0 and Tt 

satisfy condition (DO) of Theorem 1.3.2 for all t. But this is in turn equivalent to the 
unitary equivalence of the corresponding quasi-regular representations, as shown by P. 
Berard in [Be4]. 

This means that in all known examples of continuous isospectral deformations of the 
form (r t \G,g) the quasi-regular representations Pp. are indeed pairwise equivalent. 
Thus Proposition 2.5 says also that counterexamples to the result of Ouyang and 
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Pesce in the higher step nilpotent or in the solvable case - if they exist - must be 
very "different" from the continuous isospectral deformations known until now. 

CHAPTER 3 : Isospectral Plane Domains 

In this chapter we describe the first example of isospectral, non-congruent bounded 
plane domains which was found by Carolyn Oordon, David Webb and Scott Wolpert 
in 1991. 

It is based on Berard's generalized version of the Theorem of Sunada (see 1.3.1): 

3.1 Theorem (P. Berard 1991; [Be3]) 
Let O be a finite group acting by isometries on a compact Riemannian manifold 

(M,g) (possibly with boundary) and let Tt and T2 be subgroups of O satisfying the 
Sunada condition 

(S) V h e O : # ( r ^ t h l o ) = # ( r 2 n [ h ] 0 ) 

Then the spectra of eigenvalues belonging to rj-invariant eigenfunctions of Ag on 
M with 

a) empty boundary condition if dM=0 
b) Dirichlet boundary condition 
c) Neumann boundary condition 

are equal for i = 1, 2 in each of the three cases a), b), c). 

Remarks: 

(i) Note that T1 and T2 are not supposed to act without fixed points. 

(ii) In case 3M=0 ( a)) and if Tt and T2 act freely on M, Theorem 3.1 implies the 
original Theorem of Sunada (1.3.1). 

(ill) If dM-l-0 and if T1 and T2 act freely on M, then Theorem 3.1 implies that 
(T1\M,g) and (r2\M,g) (where g denotes the induced metrics again by abuse of nota
tion) are Dirichlet- and Neumann-isospectral. 

(iv) Cases b) and c) will be exploited in a special two-dimensional example below 
where (T1\M,g) and (r2 \M,g) can be shown to be Dirichlet- and Neumann-isospectral 
although Tt and T2 act with fixed points and T t \M and T2\M have "additional" boun
dary arcs. 

Berard's Theorem follows from 

3.2 Proposition ( [Be3]) : 
Let O be a finite group and Tv T2 two subgroups of O which satisfy the Sunada 

condition (S). Let V be a Hilbert space on which O acts unitarily. Then there 
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I exists an isometry between the fixed point sets V^l and V r 2 . 

In order to prove the Theorem from the Proposition let in particular 

:« L2(M,vg) with the L2-metric 

H^MjVg) with the H^-metric for 8M«0 

H1j2(M,vg) : » | f e H1»2(M,vg) | f|8M - 0} with the H^-metric 

:= H^fMjVg) : » { f e Kx*2(M9vg) | 3 v f | a M

 s M with the H^-metric 

O acts unitarily on each of these spaces by f H f o h"1 (where h"1 is interpreted 
as an isometry of (M,g) on which O acts isometrically). 
The isometries between V r i and V**2 in the cases a), b), c) can be constructed as 

the restrictions (as maps) of the isometry constructed in case 0). This follows from the 
proof of the proposition (see a sketch of it below; indeed, once a certain operator T 
as in step (i) of the proof is chosen, the rest of the construction is "natural", i.e. 
respects inclusions). 

Oiven this, Theorem 3.1 follows immediately from the variational characterization of 
the eigenvalues of the Laplacian (see e.g. [Bel]): 

The k-th eigenvalue (with multiplicities taken into account) on V, 
where V is as in a), b), or c), is given by 

Xk = inf sup <R(f) I f E L-{0}} 
K L£U k 

where Uj- is the set of all k-dimensional subspaces of V, and 

H-1I2IT12 ll<tf||2T2 
R(f) := H1'2 - l -X " L 2 

Hf||2L2 imi2
L2 

is the Rayleigh Quotient 

We now give a sketch of Berard's proof of Proposition 3.2 (see [Be3]): 

Step (i): 
Consider the right regular representations p r . of O on L2(rj\G) = c * ( r i ^ ° ) (i = 

1, 2). One easily computes tr(pri(h)) =- # (r(n[hlo) for heO. Thus by (S), p F l and 
pr>2 are unitarily equivalent, i.e. there exists a unitary operator T : L2(r . | \0) -> 
L ' ( r 2 \ 0 ) which intertwines pp and pp . 

Step (ii): 
Denote the action of O on V by p . Then O acts on V0L2(r^\O) by atoPf. (i = 

1, 2). By purely algebraic methods one can establish a canonical isometry 

Fi : V r i -* (V^L^r^Q))0 . 

Step (ill): 
By the choice of T, id®T is an isometry from ( V a L ^ N G ) ) 0 to (V0L2(r2 \O))° . 

Thus F 2
- 1 o (idgiT) o F1 is the required isometry from V r l to V r2 . 
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3.3 Application: Construction of an example of two Dirichlet- and Neumann-iso-
spectral plane domains 
(Oordon/Webb/Wolpert 1991; see [GWW1], [OWW2]) 

3.3.1 First we review an example by P. Buser (see [Bu2]) of two isospectral, non-
isometric flat (but not planar) 2-dimensional manifolds with boundary, embedded into 
R3, which are constructed by applying the Theorem of Sunada/Berard in its version 
for manifolds with boundary; see Remark (ill) after Theorem 3.1. 

Let O be the group SL(3,2Z2) and let Vt resp. T2 be the subgroups consisting of all 

f\ • « \ f\ 0 0 \ 
matrices of the form I 0 « • J resp. I • * * I . One can check that rt and r< 

fO 1 1\ (\ 0 0\ 
tisfy the Sunada condition (S). Let A := 0 1 0 and B := ( 0 0 1 ) . 

U 0 OJ VO 1 \ ) 

Then the set {A, B} generates O. Construct a manifold M as follows: 

Take 168 identical flat tiles of the form \T_ XI labeled with the 

sa-

168 elements of O, where the arms are labeled with ingoing and outgoing arrows 
named A and B as shown in the picture. Now put all these tiles together according 
to the right actions of A and B on O: 

Whenever h' =- hA (h, h* € O), 
paste the corresponding tiles together 
in the following way: 

Make the analogous pastings for B and the edges labeled with B. 

O acts on the resulting manifold M from the left by isometries in an obvious way 
and without fixed points. Define M t := r t \ M , M2 := T2\M . 

Mt and M2 theirselves can be constructed in a similar way as M, by taking tiles 
labeled with cosets now instead of group elements: 
Let C := ABA"1B"1 . One can compute that {C°, ... , C6} is a representative set for 

the right cosets of T1 as well as T2 . Now for the construction of M1 take seven 
identical tiles as above, labeled from 0 to 6. Put them together according to the right 
action of A and B on Tt\Q : 

Whenever I ^ C J A = T1Ck 

(J, k E {0, ... , 6}) then paste the cor
responding tiles together in the follow- . . . . 
ing way: U J 

pЫv-
Make the analogous pastings for B and the edges labeled with B. 
The construction of M 2 goes analogously with T 2 instead of r\ . 
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The resulting manifolds Mt and M2 are Dirichlet- and Neumann-isospectral by Theo
rem 3.1 (see Remark (iii) after the theorem). 
They are shown in the following picture taken from [GWW2] : 

M, 

M, 
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3 . 3 . 2 Gordon, Webb and Wolpert constructed their first example of planar bounded 
isospectral domains using the above flat isospectral manifolds M1 and M 2 in the fol
lowing way: 

OBSERVE that M t and M2 each admit an isometric involution 
it resp. T 2 (see the above picture). 

One can compute that Tt and T 2 both are induced by a certain isometric involution 
T : M -> M which corresponds to the O-automorphism 

h h> ShS"1 with S 
(\ o 0\ 

0 1 0 
\0 1 l j 

(note that this automorphism of O maps A to A - 1 and B to B ' 1 , so it inverts the 
directions of the outgoing arms of the tiles). 

Now define O* := < T > ix G where T acts on O by h H ShS"1, 

-V := <T> DC Ti C O* for i - 1, 2 (note that SErtnr2). 

The subgroups Tt* and T2* of G* again satisfy the Sunada condition (S) in G*: 

In fact, G* 3 T k - h i-» (Tk, S k - h ) e < T > X G = 2 Z 2 X G i s a group isomorphism 

which carries r£ to 7L2 X V\ for i = 1, 2; but TL2 X T1 and 7L2 X T2 obviously 

satisfy (S) in 7L2 X G since T1 and T2 do so in G. 

efine M / := ГУЧM•- OiУЧMx 

and M 2 * : - Г 2 * \ M ' - < т 2 > \ M 2 

Define 

These are two bounded flat domains. Some of their boundary arcs are the images of 

corresponding boundary arcs of Mi under the projection Mi -> Mi* defined by Tj ; 

some other boundary arcs are "additional" and correspond to the fixed point set of the 

involution TJ . Denote the first part of the boundary (as just described) by djMi* and 

the "new" part of the boundary by 3 2M j* (i - 1, 2). 

Mr* and M 2 * are shown in the following picture, taken again from [OWW2], in 

which the arcs that belong to d2M* are depicted by double lines: 

/J 

U 
гь 

ť/ м 
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_п -* 

Zl 
By applying Berard's Theorem (3.1) to M and Tx* , T2* it follows that the eigen

value series belonging to r^*-invariant Dirichlet- (resp. Neumann-) eigenfunctions of 
A on M are the same for i = 1, 2; equivalentry The eigenvalue series belonging to 
Tj-invariant Dirichlet- (resp. Neumann-) eigenfunctions on the Mj are the same for i 
= 1, 2 . 

But every TJ-invariant eigenfunction on Mj descends to an eigenfunction on Mj* 
which automatically satisfies Neumann boundary conditions on d2M|* . 

Thus from the equality of the spectra of Tj-invariant Neumann-eigenfunctions on M1 

and T2-invariant Neumann eigenfunctions on M2 it follows that indeed M1* and M2* 
theirselves are Neumann-isospectral: 

And similarly. 

(1) 

specN(M!*) = specN(M2*) 

a^ecDfffi
Ax*^ = **ecD9rf&2*) 

where specjj j^(Mj*) denotes the series of eigennvalues belonging to eigenfunctions 
that satisfy Dirichlet conditions on d1M|* and Neumann conditions on 32Mj* . 

At last observe that 

(2) spec-^Mi) - specD(Mi*)^ U specp^(Mj*) 

where U denotes the disjoint union in the sense of series. 
To see* this, consider the canonical splitting of each Dirichlet eigenfunction on Mj 

into a Tj-invariant and a Tj-antiinvariant Dirichlet eigenfunction. These induce eigen
functions on Mj* which satisfy D,N- resp. D,D- boundary conditions on Mj* - and 
vice versa. (The inverse mapping is injective since a Dirichlet eigenfuction on Mj 
which is both TJ-invariant and Tj-antiinvariant can easily shown to be zero.) 
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Now it follows from (1), (2), and the Dirichlet-isospectrality of M t and M2 that 

specD(M1*) = speCjjfMj*) . 

Thus M1* and M2* are also Dirichlet-isospectral and hence yield the first example of 
two drums which have different shape but the same sound. 
(For more details see [OWW2].) 
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