Josef Mikeš; Galina A. Starko K-concircular vector fields and holomorphically projective mappings on Kählerian spaces

In: Jan Slovák (ed.): Proceedings of the 16th Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 1997. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 46. pp. [123]--127.

Persistent URL: http://dml.cz/dmlcz/701601

Terms of use:

© Circolo Matematico di Palermo, 1997

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

K-CONCIRCULAR VECTOR FIELDS AND HOLOMORPHICALLY PROJECTIVE MAPPINGS ON KÄHLERIAN SPACES

J. MIKEŠ, G.A. STARKO

ABSTRACT. In the paper K-concircular vector fields on Kählerian and hyperbolically Kählerian spaces are studied. Metric tensors of these spaces are found in explicit form. Metrics admitting K-concircular vector fields which are in holomorphically projective correspondence are found.

1. Introduction. S. Yamaguchi [14] investigated Kählerian torsion-forming vector fields which we call further K-concircular vector fields. K.R. Esenov [2], [3] deals with special cases of the above mentioned vector fields which we call further K-concircular vector fields.

This type of vector fields develops K. Yano's concircular vector fields [15] for the theory of Kählerian spaces (we understand by that both classic Kählerian spaces and hyperbolically Kählerian spaces).

In the paper we find metrics of Kählerian spaces in which K-concircular vector fields exist and we investigate holomorphically projective mappings of the spaces.

In this paper the concept of Kählerian spaces means a wider class of spaces in -accordance with the following definition.

A (pseudo-)Riemannian space K_n is called a Kählerian space if it contains, along with the metric tensor $g_{ij}(x)$, an affine structure $F_i^h(x)$ satisfying the following relations

$$F^h_{\alpha}F^{\alpha}_i = e\delta^h_i, \quad F^{\alpha}_i g_{j\alpha} + F^{\alpha}_j g_{i\alpha} = 0, \quad F^h_{i,j} = 0.$$
(1)

where comma denotes the covariant derivative in K_n , δ_i^h is Kronecker symbol and $e = \pm 1$.

If e = -1 then K_n is an (elliptically) Kählerian space K_n^- , if e = 1 then K_n is a hyperbolically Kählerian space K_n^+ .

The spaces K_n^- were introduced by P.A. Shirokov [13], the spaces K_n^+ by P.A. Rashevsky [11]. In their works these spaces were called *A*-spaces. Independently of P.A. Shirokov the spaces K_n^- were studied by E. Kähler [4]. In the available literature these spaces are mostly called Kählerian.

A vector field λ^h in K_n is called Kählerian torso-forming if the following condition

$$\lambda^{h}_{,i} = a\,\delta^{h}_{i} + b\,F^{h}_{i} + \varphi_{i}\,\lambda^{h} + e\,\varphi_{\alpha}F^{\alpha}_{i}\,\lambda^{\beta}F^{h}_{\beta},\tag{2}$$

¹⁹⁹¹ Mathematics Subject Classification. 53B25.

Key words and phrases. K-concircular vector fields, Kählerian spaces, hyperbolically Kählerian spaces, holomorphically projective mappings.

This paper is in final form and no version of it will be submitted for publication elsewhere.

Supported by grant No. 201/96/0227 of The Grant Agency of Czech Republic.

holds, where a, b are functions, φ_i is a covector (for K_n^- see [14]).

If the covector $\lambda_i (\equiv \lambda^{\alpha} g_{\alpha i})$ is a gradient, then for n > 4 condition (2) can be written in the form

$$\lambda_{i,j} = a g_{ij} + c \left(\lambda_i \lambda_j - e \overline{\lambda}_i \overline{\lambda}_j \right), \tag{3}$$

where $\overline{\lambda}_i \equiv \lambda_{\alpha} F_i^{\alpha}$, c is a function. These vector fields λ_i we called K-concircular.

In [2] formula (3) is proved for λ^h being gradient and nonisotropic. If $a \neq 0$ then λ^h is nonisotropic. When we investigate the conditions of integrability of (3) we can learn that a and c are functions of parameter λ which generates the gradient $\lambda_i = \partial_i \lambda$, $\partial_i \equiv \partial/\partial x^i$.

Metrics of all Kählerian spaces which admit covariantly nonconstant convergent vector fields, that is K_n , in which a vector λ_i satisfying $\lambda_{i,j} = a g_{ij} \neq 0$ (a - const) exists, were shown [6], [7], [9]. These spaces admit nonaffine geodesic and nonaffine holomorphically projective mapping.

2. Kählerian spaces with K-concircular vector fields.

Theorem 1. Let a Riemannian space have a metric defined by the relations

$$g_{ab} = g_{a+mb+m} = \partial_{ab}G + \partial_{a+mb+m}G; \quad g_{ab+m} = \partial_{ab+m}G - \partial_{a+mb}G, \tag{4}$$

where $G = G(x^1 + s(x^2, x^3, ..., x^m, x^{m+2}, x^{m+3}, ..., x^n))$; $G' \cdot G'' \neq 0$, $G, s \in C^3$ are functions of the given arguments, a, b = 1, 2, ..., m; m = n/2, $|g_{ij}| \neq 0$.

Then this space is the Kählerian space K_n^- which admits a K-concircular vector fields.

Proof. In coordinates x, in which conditions (4) are valid, we define the affinor $F_i^h(x)$:

$$F_b^{a+m} = -F_{b+m}^a = \delta_b^a, \quad F_b^a = F_{b+m}^{a+m} = 0.$$
 (5)

From (1) we get directly that $F_i^h(x)$ is the structure affinor K_n^- and that the vector $\lambda^h = \delta_1^h$ satisfies condition (3), where

$$a = \frac{1}{2} (\ln G')', \qquad c = \frac{1}{2} (\ln a)' / G''.$$
 (6)

It is obvious that always $a \neq 0$.

Theorem 2. Suppose a Kählerian spaces K_n^- (n > 4) admitting K-concircular vector field for $a \neq 0$. Then in K_n^- a coordinate system exists such that its metric has the given form (4).

Proof. Since K-concircular vector field λ^h in K_n^- is analytic, i.e. the condition $\lambda^{\alpha}_{,\beta}F^h_{\alpha}F^{\beta}_i = \lambda^h_{,i}$ holds, then on the basis of [6], [7] an adapt coordinate system x, in which the structure F^h_i is of the form (5), exists in K_n^- and $\lambda^h = \delta^h_1$. Then by an analysis of formulas (1) and (3) we get that the metric tensor K_n^- is of the form (4).

Theorem 3. Let a Riemannian space have a metric defined by the relations

$$g_{ab+m} = \partial_{ab+m}G; \quad g_{ab} = g_{a+mb+m} = 0, \tag{7}$$

where $G = G(x^1 + x^{1+m} + s(x^2 + x^{2+m}, \dots, x^m + x^n)), G' \cdot G'' \neq 0, G, s \in C^3$ are function of the given arguments, $a, b = 1, 2, \dots, m; m = n/2, |g_{ij}| \neq 0$.

Then this spaces is the hyperbolically Kählerian space K_n^+ which admits a K-concircular vector field.

Proof. In the coordinates x, in which condition (7) holds, we define the affinor $F_i^h(x)$:

$$F_b^a = -F_{b+m}^{a+m} = \delta_b^a; \quad F_b^{a+m} = F_{b+m}^a = 0.$$
(8)

Analogically from (1) we get directly that $F_i^h(x)$ is a structure affinor of the hyperbolically Kählerian space K_n^+ and the vector $\lambda^h = \delta_1^h + \delta_{1+m}^h$ satisfies condition (3), where functions a and c are given by (6).

3. Holomorphically projective mappings of Kählerian spaces with Kconcircular vector fields. An analytically planar curve of the Kählerian space K_n is a curve, defined by the equations $x^h = x^h(t)$, whose tangent vector $\lambda^h = dx^h/dt$, being parallely transfered, remains in the plane formed by the tangent vector λ^h and its conjugate $\overline{\lambda}^h \equiv \lambda^{\alpha} F_{\alpha}^h$, i.e., the condition

$$\nabla_t \lambda^h \equiv d\lambda^h/dt + \Gamma^h_{\alpha\beta} \lambda^\alpha \lambda^\beta = \rho_1(t)\lambda^h + \rho_2(t)\overline{\lambda}^h,$$

where ρ_1, ρ_2 are functions of the argument t, Γ_{ij}^h is the Christoffel symbols of K_n , fulfilled [10], [12].

The diffeomorphism of K_n onto \overline{K}_n is a holomorphically projective mapping (*HPM*) if it transforms all analytically planar curves of K_n into anlytically planar curves of \overline{K}_n .

Under HPM the structure of the spaces K_n and \overline{K}_n is preserved, i.e., in the coordinate system x, generally with respect to the mapping, the conditions $\overline{F}_i^h(x) \equiv F_i^h(x)$ are satisfied. To be more precise $\overline{F}_i^h(x) = \pm F_i^h(x)$ for K_n .

The necessary and sufficient conditions for the holomorphically projective mappings of K_n onto \overline{K}_n are the fulfillment of the following condition in a common coordinate system with respect to the mapping:

$$\overline{\Gamma}_{ij}^{h}(x) = \Gamma_{ij}^{h}(x) + \psi_{(i}\delta_{i)}^{h} - \overline{\psi}_{(i}F_{i)}^{h}$$

where $\overline{\Gamma}_{ij}^{h}$ is Christoffel symbol of \overline{K}_{n} , (ij) denotes a symmetrization without division, ψ_{i} is the covariant vector and $\overline{\psi}_{i} \equiv \psi_{\alpha} F_{i}^{\alpha}$. This relations are equivalent to the equation (see [16], [12], [10]):

$$\overline{g}_{ij,k} = 2\psi_k \,\overline{g}_{ij} + \psi_{(i} \,\overline{g}_{j)k} - e \,\overline{\psi}_{(i} \,\overline{F}_{j)k},\tag{9}$$

where $\overline{F}_{ij} \equiv \overline{g}_{i\alpha} F_j^{\alpha}$, \overline{g}_{ij} is the metric tensor of \overline{K}_n .

V.V. Domashev and J. Mikeš found for K_n^- [1], [12] and I.N. Kurbatova for K_n^+ [5] that the Kählerian space K_n admits of a nontrivial holomorphically projective mapping if only if the system of equations

$$a_{ij,k} = \xi_{(i}g_{j)k} - e\,\xi_{(i}F_{j)k}\,,\tag{10}$$

has a nontrivial solution for the unknown tensors $a_{ij} (= a_{ji} = -e a_{\alpha\beta} F_i^{\alpha} F_j^{\beta}, |a_{ij}| \neq 0)$ and $\xi_i \neq 0$, where $F_{jk} \equiv g_{j\alpha} F_k^{\alpha}, \ \overline{\xi}_i \equiv \xi_{\alpha} F_i^{\alpha}$. The solutions of (9) and (10) are connected by the relations

$$a_{ij} = \exp(2\psi) \,\overline{g}^{\alpha\beta} g_{\alpha i} \, g_{\beta j} \,, \quad \xi_i = -\exp(2\psi) \,\overline{g}^{\alpha\beta} g_{\alpha i} \, \psi_\beta \,, \tag{11}$$

125

where ψ is a function generated by the gradient $\psi_i = \psi_{,i}$, $\|\overline{g}^{ij}\| = \|\overline{g}_{ij}\|^{-1}$.

Let K_n be the Kählerian space shown in the Theorem 1 and Theorem 3. In these spaces K-concircular vector field λ^h exists, which satisfies (3), where $a \neq 0$.

Let

$$a_{ij} \equiv \alpha g_{ij} - \frac{\beta}{a} \left(\lambda_i \lambda_j - e \overline{\lambda}_i \overline{\lambda}_j \right), \qquad (12)$$

where α, β are nonzero constants such that det $||a_{ij}|| \neq 0$.

The constructed tensor a_{ij} satisfies the fundamental equations (10) from the theory of holomorphically projective mappings.

From here we get

Theorem 4. The Kählerian space K_n with K-concircular vector field λ^h (where $a \neq 0$) admits nontrivial holomorphically projective mapping.

For holomorphically projective mapping K_n with K-concircular vector field maps itself into \overline{K}_n with K-concircular vector field as well [2].

We will find metrics of two Kählerian spaces K_n and \overline{K}_n with K-concircular vector fields, such that holomorphically projective mapping exists between them. By an analysis of (11) and (12) we can see that the metric tensor \overline{g}_{ij} is of the form

$$\overline{g}_{ij} = \frac{1}{\alpha} \exp(2\psi) \left\{ g_{ij} - \frac{\beta}{a + \beta \lambda_{\alpha} \lambda^{\alpha}} \left(\lambda_i \lambda_j - e \overline{\lambda}_i \overline{\lambda}_j \right) \right\} .$$
(13)

By the covariant differentiation of (13) we get according to (3) and (9) that

$$\partial_i \psi \equiv \psi_i = \frac{-\beta a}{a + \beta \,\lambda_\alpha \lambda^\alpha} \,\lambda_i \,. \tag{14}$$

In the corresponding coordinates (3) or (7) we integrate equations (14) and find the explicit form of the following objects: λ^h , a, ψ , λ_i , $\overline{\lambda}_i$, $\lambda^{\alpha}\lambda_{\alpha}$.

On the basis of Theorem 1

$$\begin{split} \lambda^{h} &= \delta_{1}^{h}, \quad a = \frac{1}{2} (\ln G')', \quad \lambda_{i} = G'' \tau_{i}; \quad \lambda_{\alpha} \lambda^{\alpha} = G'' (\tau); \\ \overline{\lambda}_{a} &= G'' \tau_{a+m}, \quad \overline{\lambda}_{a+m} = -G'' \tau_{a}, \quad \psi = -\frac{1}{2} \ln |1 + 2\beta G'| + \psi_{0}, \end{split}$$

hold in K_n^- , where $G = G(\tau)$, $\tau = x^1 + s(x^2, \ldots, x^m, x^{m+2}, \ldots, x^n)$, $\tau_i \equiv \partial_i \tau$, ψ_0 is constant, $a, b = \overline{1, m}, m = n/2$.

Analogically on the basis of Theorem 3

$$\begin{split} \lambda^{h} &= \delta_{1}^{h} + \delta_{1+m}^{h}, \quad a = \frac{1}{2} \left(\ln G' \right)', \quad \lambda_{i} = G'' \tau_{i}, \quad \lambda_{\alpha} \lambda^{\alpha} = 2G''(\tau), \\ \overline{\lambda}_{a} &= G'' \tau_{a}, \quad \overline{\lambda}_{a+m} = -G'' \tau_{a+m}, \quad \psi = -\frac{1}{4} \ln |1 + 4\beta G'| + \psi_{0}, \end{split}$$

hold in K_n^+ , where $G = G(\tau)$, $\tau = x^1 + x^{1+m} + s(x^2 + x^{m+2}, \dots, x^m + x^n)$, $\tau_i \equiv \partial_i \tau$, ψ_0 is constant, $a, b = \overline{1, m}, m = n/2$.

4. Global aspects of the existence of K-concircular vector fields. Now we will study the existence of K-concircular vector fields on the compact Kählerian space K_n without a boundary. We suppose that a function $\lambda \in C^2$ is defined globally on K_n and determines the gradient K-concircular vector fields.

126

Theorem 5. Compact Kählerian spaces K_n with nondefined signature of metrics do not admit K-concircular vector field with $a \neq 0$ (Remark: K_n^+ has always a nondefined signature).

Proof. For any point $x_0 \in K_n$ a coordinate neighbourhood U_{x_0} can be find such that a positively defined form $A^{\alpha\beta}(x)y_{\alpha}y_{\beta}$, $A^{\alpha\beta}(x) \in C^0(U_{x_0})$, exists in it such that $g_{\alpha\beta}(x)A^{\alpha\beta}(x) = 0$.

After contracting (3) with A^{ij} we get

$$A^{\alpha\beta}\lambda_{,\alpha\beta}+B^{\alpha}\lambda_{,\alpha}=0,$$

where $B^{\alpha} \in C^{0}(U_{x_{0}})$ are components which can depend on λ .

These formulas hold in all U_{x_0} , that is why only trivial solution $\lambda \equiv \text{const}$ of (3) exists according to a modification of Hopf theorem [8]. It is a contradiction to $a \neq 0$.

References

- Domashev V.V., Mikeš J. On the theory of holomorphically projective mappings of Kählerian spaces. Mat. Zametki, 1978. 23, 2. 297-304; Math. Notes, 1978, 23.
- [2] Esenov K.R. On the properties of generalized equidistant Kählerian spaces that admit special almost geodesic mappings of second-type. Invest. in Topol. and General Spaces, Research Works, Frunze, 1988. 81-84.
- [3] Esenov K.R. On a certain properties of special Riemannian spaces. Abstract. IX. All Union Geom. Confer., Kishineu, 1988, p. 373.
- [4] Kähler E. Über eine bemerkenswerte Hermitische Metric. Abh. Math. Semin. Hamburg. Univ. 1933. 9. 173-186.
- [5] Kurbatova I.N. To the problem of quasi holomorphically projective mappings of K-spaces. Dep. in VINITI, 1979. No. 2429-79. P. 29.
- [6] Mikeš J. On equdistant Kählerian spaces. Mat. Zametki, 1985. 38. 4. 627–633; Math. Notes. 1985. 38.
- [7] Mikeš J. On Sasaki spaces and equidistant Kähler spaces. Dokl. AN SSSR, 1986. 291. 1. 33-36; Soviet. Math. Dokl. 1987. 34, 3. 428-431
- [8] Mikeš J. On global concircular vector fields on compact Riemannian spaces. Dep. in UkrNI-ITI(Kiev), 1988. No. 615-88. 10p.
- [9] Mikeš J., Starko G.A. On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces. Ukr. Geom. Sbornik (Kharkov), 1989. 32. 92–98; Sov. Math. 1989.
- [10] Prvanović M. A note on holomorphically projective transformations on the Kähler spaces. Tensor, N.S. 35. 1981. 99–107.
- [11] Rashevsky P.A. Scalar field in fibered space. Trudy Sem. Vekt. Tens. Anal. No. 6, Moscow State Univ. 1948.
- [12] Sinyukov N.S. Geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979.
- [13] Shirokov P.A. Selected works in geometry. Kazan State Univ. Press, Kazan, 1966.
- [14] Yamaguchi S. On Kählerian torse-forming vector fields. Kodai Math. J. 1979. 2. No. 4. 103-115
- [15] Yano K. Concircular geometry, I-IV. Proc. Imp. Acad. Tokyo. 1940. 16. 195-200, 442-448, 505-511.
- [16] Yano K. Differential Geometry of Complex and Almost Complex Spaces. Pergamon Press, 1965.

DEPT. OF ALGEBRA AND GEOMETRY, FAC. SCI., PALACKY UNIV. TOMKOVA 40, 779 00 OLOMOUC, CZECH REPUBLIC

KANATNAYA 100/3/30, ODESSA, UKRAINE