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RENDICONTIDEL CIRCOLO MATEMATICO DIPALERMO 
Serie II, Suppl. 54 (1998), pp. 101-111 

WEYL ALGEBRA AND A REALIZATION OF THE 
UNITARY SYMMETRY * 

Aleksander Strasburger 

1 Introduction 

The present paper is mainly expository, focusing on a presentation of the origins 
of the intrinsic unitary symmetry encountered in the study of bosonic systems with 
finite degrees of freedom and its relations with the fundamental structure of quantum 
mechanics, which is the algebra generated by the canonical commutation relations, 
called here the Weyl algebra. Its main source of inspiration was a highly original 
presentation of R. Howe in [11], who was aiming on elucidation of the role played 
in various physical theories by the concept of a dual pair. In distinction to Howe's 
article, we do not discuss here the dual pairs, but rather address ourselves the aim of 
explaining raisons d'ttre of the construction, usually atributed to Schwinger, of the 
representation theory of the SU(2) by the use of the formalism of bosonic creation 
and annihilation operators. The discussion here in some respects extends a similar 
account of the author given in [19], while entirely omitting the applications to special 
functions given there. 

We have tried to make the paper self contained and readable, so that some of the 
computations (mostly matrix algebra) are omitted and some explanatory material is 
included. 

To any given finite dimensional vector space V, complex or real, with a symplectic 
form CiJ:VxV->3K,3K = Cor)R,(a nondegenerate skew symmetric bilinear form), 
one assigns a certain associative algebra W with unit H, called the Weyl algebra, by 
the following construction, see [16] or [18].l W is the quotient of the tensor algebra 

TV = © T % where TnV = V <g>... <g> V, for n > 1, W = K • II, by the twosided 
n=o ' r ' 

n—times 

ideal J generated by the elements of the form v®w — w®v — (j(v, w) H. 
Recall that (vu . . . , Vd, W\> . . . , Wd) is said to be a symplectic basis of V if 

w(f«i wk) = Sik = -u(wu vk)} for i, k = 1, 2, . . . , d 

*This paper is in final form and no version of it will be submitted for publication elsewhere. 
lNote however that in the latter reference the description of the symplectic Lie algebra given in 

the Obung 16, page 218, is incorrect, cf. below. 
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ufa, vk) = u(wi, wk) = 0 , for i, k = 1, 2, ..., d, 

here fy* denotes the Kronecker delta. In other words the matrix of u> with respect to 
the basis (vu • • •, vdy wu ..., wd) has the standard form of the symplectic structure 

-(-! І) (1.1) 

where I is the d x d identity matrix. Assuming (vi} ..., vd, wu • • •, wd) is such a basis 
for V one can show without difficulty that W is the associative algebra with unit H 
generated by elements {vh ..., vdi Wi, ..., wd} and relations 

[VJ, wh] := VjWk - wkVj - Sjk 11, fa, vh] = 0 = [WJ, wk], j , k = 1, 2, . . . , d. (1.2) 

The following extention property for symplectic automorphisms immediately follows 
from the universality of the above construction: if g : V -» V is a symplectic auto
morphism, i.e. w(gV) gw) = u(v, w) for all v,w€V, then g extends uniquely to an 
automorphism of the Weyl algebra W. 

The significance of this purely algebraic structure derives from its abundant appli
cations and variety of analytic realizations — see [9] for a review of those. However, 
we shall not pursue the study of the Weyl algebra basing on purely algebraic premises, 
but rather adopt a reverse viewpoint and start with an easily understood analytic re
alization of the Weyl algebra in the form of the algebra of partial differential operators 
with polynomial coefficients and deduce the underlying symplectic structure and some 
of its consequences from this model, familiar to mathematicians by the study of the 
euclidean harmonic analysis and to physicists from the Schrodinger representation of 
quantum mechanics. 

2 Preliminaries 

For the following we fix a positive integer d (number of bosonic degrees of freedom) 
and employing the usual multi-index notation we set for any nonnegative integer k 

W(*} = { £ aa0x
ad0\aapeC}1 

M+lfl<* 

where the height \a\ of the multi-index a = (ai, . . . , a,*) is defined as |a| = £) otj — 

recall the indices a* are nonnegative integers. 
Spaces WW form a strictly increasing sequence 

# C W ( 1 ) C - C # C - (2.1) 

00 

The sum W = U W ^ is an associative algebra with unit II G W^ under usual 
*=q 

vector space operations and composition of operators as the multiplication — we shall 
envisage elements of W as operators acting on the Schwartz space S(Rd) of rapidly 
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decreasing C00 functions on Rd. For A E W the smallest k such that A 6 W*) is said 
to be the total degree of A. Further note that the sequence (W^) defines an algebra 
filtration of W, i. e. 

yy(*).>V(-) c W ( H , ) . 

By slight abuse of language we shall refer to W as the Weyl algebra in d indeterminates 
and ocasionally use the notation W = W(Rd). Moreover W is closed under the 
operation A H-» A* of taking adjoints, defined by means of the formula 

(Af,g) = (f,A*g), f,geS(R% (2.2) 

where (/, g) = JRd f(x)g(x) dx is the usual inner product. An element A e W will be 
called hermitean, antihermitean, respectively, if A* = .A, A* = -A, resp. 

The commutator associated with the multiplication in W, [A} B] = AB - BA for 
any elements A, B € W, will be used to define the Lie algebra structure in W. The 
map W 3 X h-> [P, X] G W for P G W will be denoted ad(P) and termed the adjoint 
of P while P i-r ad(P) — the adjoint representation of W. By the general algebra 
ad(P) is a derivation of the associative as well as of the Lie structure of W. 

Following a long standing tradition we shall denote qj = ixj and pj = dj the 
standard generators of W — here j = 1, . . . , d and i = y/^1 is the imaginary unit! 
The complex, respectively real, span of p's and <j's will be denoted by JV1 c, respectively 
MR. In view of the canonical commutation relations (CCR) 

bi> Qk] = iSjk -U, bj> Pk] = 0 = [%, qk], h k = 1, 2, . . . , d, (2.3) 

it is clear that the formula 

[X, Y] = iB(X, Y) H, X, Y G JMC (2.4) 

defines a symplectic form B on Mc, which is real on MR. The symplectic basis 

(Pi, ..-.A-, 0i, •••>&.) (2-5) 

will be used to coordinatize the space MK-
To do this we first establish notations, mostly standard, related with the symplectic 

structure on K2'*. A vector v e M?d (K = C or R) will be written in the form v = (a, /?) 
with a = (ai, . . . , ad) and /? = (/3i, . . . , fa) defined by a,- = ^ and ft = vd+i for 
t = 1, . . . , d and the symplectic structure is introduced by setting 

u(v, w) = v*Jw = a„ • pw- j3v- aw, 

where J is given by (1.1) and v = (av, A,), w = (aw, pw). 
By Sp(d, K) we shall denote the matrix Lie group2 consisting of square 2d x 2d 

matrices g with entries in K satisfying 

</'J<7 = J. (2.6) 
2Here we are following the notation of Helgason [8], where other authors, e.g. [1], [5], use in this 

context notation Sp(2d,K). 
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Corresponding to the splitting v = (a, /?) of vectors in K2^ we shall consider splitting 
of square matrices of the size 2d x 2d into square blocks of size dxdy 

(A B\ 
g=[c D) 

what enables us to reformulate the condition (2.6) as 

g e Sp(d, K) <==> AlC = ClAy BlD = DlB, AlD - ClB = I. (2.7) 

The Lie algebra of Sp(d,K) is denoted sp(d,K) and consists of derivations of the 
symplectic structure, i. e. 

L € Bp (d, C) <=> LlJ + 3L = 0 (2.8) 

or in terms of the block splitting 

9 = { c D)e$P^C) *=* D=Z~A^ B = Bt> C = CK (2-9) 
Now we set up a correspondence between 2d x 2d matrices and endomorphisms of MR 
by means of the basis (2.5). 

Letting P = (pi, . . . , pd), Q = (qi, . . . , qd) we can write vectors in MK uniquely 
in the form 

X(v) = a.P + p-Q = £ ^ + EAfc- (2-10) 
i=l i=l 

Thus to each square 2d x 2d matrix g with coefficients in K there corresponds a unique 
endomorphism of MK, denoted by X(g), such that 

X(g)X(v)=X(gv), ^ K 2 d . 

Clearly if g is a symplectic matrix, then X(g) leaves the form B invariant and con
sequently extends to an automorphism of W. Similarly, if L is a derivation of the 
symplectic structure, then X(L) is a derivation of B and thus satisfies 

[X(L)X, Y] + [X, X(L)Y] = 0, X, Y e MK. 

It follows that X(L) extends uniquely from Mc to a derivation of associative algebra 
W. 

From the commutation relations (2.3) it follows readily that W ^ is a Lie algebra 
with respect to [•, •] containing W^ as an ideal. Moreover W^ acting on W^ by 
the adjoint representation annihilates the center W^. Clearly W^ is isomorphic to 
the complex Heisenberg algebra and its real form is spanned over R by {pi, . . . , p<j, 
<7ii • • • > %i * ---}• Actually the structure of W® can be fully described as follows. We 
set 

S = spanc{K2 | X e Mc} (2.11) 

and taking notice of the proposition to follow, we shall refer to S as the quadratic Lie 
subalgebra of W. 
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Proposition 1 S is a Lie subalgebra of the Lie algebra W(2) and the latter decomposes 
as the semi direct product 

W(2) = W(1) 8 S. (2.12) 

Moreover for any P G S the map ad(P) leaves invariant the space Mc and is a 
derivation of the symplectic form (2.4) and conversely, every derivation of this form 
can be obtained this way. 

Proof (sketch). We have pointed out above that W(1) is a nilpotent ideal of the 
Lie algebra W(2). Using further the Jacobi identity we see that for Ti, T2 € VV(1) and 
P £ W<2) 

[ad(P)Tlf T2] + [Tu ad(P)T2] = 0. (2.13) 

If S is defined as above, then S H W(1) = {0} and clearly S and W(l) together span 
the Lie algebra W(2). Using the fact that ad(P) for any P e W is a derivation of the 
associative algebra W we find that for any X € Mc and P 6 S ad(P)K E Mc and 
using it twice we see that for any X, Y € Mc 

[X2, Y2} = 2iB(X, Y){XY + YX). 

In view of the identity 

XY + YX = {X + Y)2 - X2 - Y2 (2.14) 

this implies that S is a Lie subalgebra of W(2). What we have actually shown above 
can be rephrased now as saying that Mc is invariant under the adjoint action of the 
Lie algebra S. Moreover from (2.13) it follows that for P G S the restriction ad(P) 
to Mc is a derivation of the symplectic form P(-, •) and so can be represented with 
respect to the basis (2.5) by a matrix from sp (d,C). 

By induction with respect to d one can deduce from the identity (2.14) that 
dime S = d(2d+ 1), what agrees with the well known expression for the dimension 
of the symplectic Lie algebra sp (d, C). Therefore the proof of the proposition will be 
completed if we can show that the map S 9 P i-> ad(P)|Mc is injective (since then 
bijectivity will follow by equality of dimensions) and this assertion will follow from the 
analysis given in the subsequent section (cf. also [14], Chapter 1). • 

3 The unitary part of the oscillator representation 

Our analysis of the structure of the Lie algebra S will employ in a decisive manner a 
particular second order element of the Weyl algebra, namely the operator 

n = -\h?}+<8) = \('*-*), (3-i) 

usually called the Hermite operator, which in physics is better known as the quantum 
mechanical hamiltonian of the d-dimensional isotropic harmonic oscillator. Here A = 
EjLi ^ i is the usual Laplace operator in Rd and r2 = Y^=i %] is the (euclidean) square 
of the length function. 
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By direct verification using the basis (2.5) we find that (a.d(H)\Mc)
2 = —Id, i. e. 

the restriction of ad(II) to Mc is a complex structure. ±i eigenvectors of ad(II) 
obtained by means of the standard construction from the basis (2.5) are the familiar 
creation and annihilation operators 

at = fyxf-a& aJ = ^ ( * ; + ^)> i = l , 2 , . . . , d . (3.2) 

Clearly these form another set of generators of >V, this one subject to the relations 

[aj,at] = 6jk1L9 [ah ak] = 0 = [at, a+], j , k = 1, 2, . . . , d (3.3) 

and satisfying moreover 

(a ; r = at, j = l , 2 , . . . , d . 

Now, ad (II) leaves S invariant and is a derivation of W. It follows that its eigen
values on S are ±2i and 0 and in fact one has the decomposition 

s = s+2ies0es ,_2i, (3.4) 

where 

S+2. = spanc{ata£ 11 < j < k < rf}, 

So = spanc{|(aifeat + atafc) | 1 < fc, j < d}, 

S-2i = spanc{ajajfc 11 < j < k < d} 
are the corresponding eigenspaces. The validity of this decomposition can be estab
lished by counting dimensions. 

Now it is a trivial exercise in linear algebra to compute for P belonging to each of 
the summands in (3.4) the matrix of &d(P)\Mc with respect to the basis 

(a+, a) = (a^, . . . , a£, a b . . . , ad). (3.5) 

There is no need nor place to reproduce here these computations in the full extent 
— we shall need their results only for the case of P £ SQ — but it is worth to point 
out that they imply the asserted injectivity of the map P i-> ad(P)|^c, what then 
completes the proof of the Proposition 1. 

We have seen before that the derivations of B are of the form X(g) for g 6 
sp (d, C) and we have just checked that every derivation of B is necessarily of the 
form ad(P)|juc for a unique P € S. Combining these two conclusions we arrive at a 
specific parametrization of the Lie algebra 5, which is nothing else but an infinitesimal 
(i. e. Lie algebraic) version of the so called oscillator (or metaplectic) representation. 

Definition 1 Given g € sp (d,C) let wc(9) € S be the unique element such that 

X(g) = ad(u,c((/))|A<c. (3.6) 

Then the map 
sp (d}C) 3g>-> uc(g) eScW 

is a faithful representation of the Lie algebra sp (d, C) by differential operators belonging 
to the quadratic Lie algebra S C W(Rd) called the oscillator representation ofsp (d, C). 
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Remark. Although it is of no direct concern to our subject, we recall that the restric
tion of the oscillator representation to the real Lie algebra sp (d, R), denoted g i-> -J(_/), 
maps the latter upon antihermitean differential operators and can be exponentiated to 
the double covering group — the metaplectic group Mp(d,R) — of Sp(d,R). This is 
a classical theorem of Shale - Weil. Moreover R. Howe in [12] have shown that one can 
exponentiate a certain cone in S 0 C whose closure contains u(sp (d,R)), the image 
of the real symplectic algebra, to a contraction semigroup acting on the Hilbert space 
L2(Rd). 

Coming back to the computations alluded to above we should point out that they 
are refered to the basis (3.5) rather then the originaly chosen symplectic basis (2.5) of 
MQ. In effect we get another parametrization of the Lie algebra S, u>'c : sp (d, C) -* 5, 
related to the previous one by 

u/c(s) = ̂ (WgW-1), W-^(_"fl J ) . 

where W is the matrix of the base change. 
Recall that the subspaces 

Mc = spanc^!-, . . . , CL}}, MQ = spanc{ai, . . . , ad} 

are the eigenspaces of &d(H)\Mc corresponding to the eigenvalues i and — i respectively, 
and so the decomposition 

Mc = M£(BMc. (3.7) 
is preserved by the operator ad(P)|^c for each P £ So, s m c e -° commutes with H, 
and hence its matrix has a block form compatible with this decomposition. To be 
more precise let us consider the following elements of S_, 

rJk = 2 ^ 4 + ataj) = ataj + 2Sih j , * = 1, 2, . . . , d 

and let R = (r^) denote the d x d matrix with entries r^. Then a routine calculation 
proves the following. 

Proposition 2 The elements rjk, j , k = 1, 2, . . . , d, are linearly independent and 
span over C a Lie subalgebra So C S isomorphic to the Lie algebra gl(d,C) via the 
map 

d 

7i:Q\(dX)3 9>-+ ti(gQ) = £ gjkrkj € 0, g = (gjk). (3.8) 

Moreover 
d d 

*d(r)(g))af = £ ^of , adfafo)^ = - £ $*<-*, j = 1, 2, . . . , d. (3.9) 
k=i k=i 

In other words, by taking matrices with respect to the basis (a+, a), the map 
P »-> ad(P) provides a Lie algebra isomorphism of S0 with the Lie algebra spo(d,C) 

consisting of matrices ( _ . t ) , A € $1 (d, C). 
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We also note that the centre of So is one dimensional and consists of scalar multiples 
of 

H=\ hfil't + «/«.) = \(r2 ~ ̂  (3-10) 

This clarifies to some extent the role played by that operator in the above develop
ments. 

To better orient the reader we write down the matricial counterparts of the other 
summands of the decomposition (3.4), which can be obtained by analogous arguments. 
We have 

-P+2.(d,C) = { (J o ) | B t = 4 

*P-2.KC) = {(C J)|C-.o}. 
These are the ±2z eigenspaces of the map L H> [Z, L], where Z = diag(zl, —il) is the 
matrix of ad(#) with respect to (a+, a). Finally 

sp (d, C) = 5p+2i(d, C) © sp0(d, C) ©sp_2i(d, C). (3.11) 

From the formulas (3.9) it is clear that the representation g i-> aA{r]{g)) of the Lie 
algebra (jl(d,C) can be exponentiated to a representation of the full linear group 
GL(d,C). 

Corollary 1 The mapping g »-> B,d{n{g)) is the differential dp of the representation 
p{g) • Mc -* Mc defined in the following way. For g = {gjk) e GL(d,C) we let 
g~l = {Gjk) to denote the inverse matrix to g and set 

d d 

p{9)a>j = E 9Vat> P(9)*j = E G3k°>k, 3 = 1, 2, . . . , d. (3.12) 
k=i k=i 

Finally for each g G GL(d,C) the map p{g) is a symplectic automorphism of Mc, 
hence extending to an automorphism ofW, which we denote also by p{g). Thus we 
get a representation g i-> p{g) of the group GL(d,C) by automorphisms of the Weyl 
algebra W{Rd). * 

The second part of the Corollary follows immediately from the Proposition 2, in view 
of the universality used for defining p. 

4 Some polynomial algebra 

It follows from CCR (3.3) in particular, that the subalgebras V[af, ..., aj] and 
V[ai, ..., ad] generated by the creation operators of, . . . , a j , resp. annihilation oper
ators oi, . . . , ad, are naturally isomorphic with the algebra V{Rd) of polynomial func
tions on Rd by means of the substitution map, viz. P{x) — Eial^Pa^ ^ P(a*) = 
E|a|<jPa(a+)a. 2uid similarly for the case of V[a\, . . . , ad]. 

Moreover, these both subalgebras are invariant under the representation p of 
GL(d,C) on W and it follows from (3.12) that its restriction to P[ai", . . . , ad] is 
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equivalent to the standard action of GL(d,C) on V(Rd), while that on V[au ..., ad] 
is its contragredient. 

From the well known facts concerning the action of the general linear group on the 
polynomial algebra we infer the following. The subspaces of homogeneous elements of 
degree I, viz. Vl[at, . . . , aj"], resp. Vl[au ..., ad], are invariant and irreducible under 
the action of GL(d,C). They are also inequivalent for I ^ V, so the decompositions 

V[at, ...,aj] = © Vl[at, . . . , aj], resp. V[au . . . , ad] = 0 Vl[au ..., ad], into 
1=0 1=0 

homogeneous subspaces give the decomposition into irreducible GL(d,C)-modules, 
which remain irreducible after restriction to U(d), cf. [2]. 

A standard ordering argument (of the Poincare-Birkhoff-Witt type) shows that 
the multiplication map 

V[at,...tai]®V[au...tad]BP®Q*PQeW (4.1) 

is an isomorphism of vector spaces commuting with the above action of GL(d, C), i. e. 
is an isomorphism of GL(d, C) -modules. 

For each pair (r, s) of nonnegative integers, we shall denote by W(r>5) the image of 
Vr[at, . . . , a£] ®Vs[au ..., ad] under the map (4.1) — it is the subspace spanned by 
the products PQ, with P = P(a+) € Vr[at, . . . , aj] and Q = Q(a) E Vs[au . . . , ad]. 

Proposition 3 For any R 6 W ^ the following commutation relation holds 

[H, R] = (r- s)R. (4.2) 

A simple direct proof of this result is obtained by observing that the normaly ordered 
monomials (a+)V = afai • a£Q2 • - - a j a d • a{l • a£2 • - • ap

d
d with \a\ = r, |0| = s form 

a basis of W^ and applying to them the differentiation property of ad (If) together 
with the fact that aj, df are ad(II) eigenvectors 

[H, at] = iat, [H, a^ = -iajt j = 1, 2, . . . , d. 

The final proposition given below is the fact we were searching for, namely it brings 
a description of the factorial decomposition of W. However it will be more convenient 
to state the result for the restriction of the GL(d, C)-action to the compact real form 
U(d), since in this case it is somewhat more transparent. 

Let us consider the action of U(d) on W obtained by restricting the matrices 
in (3.12) to be unitary. Since now g~l = gl, the transformation formula for {aj} 
reads p(g)aj = E L i <l*ja*> 3 = 1, 2, . . . , d. Now let V[zu . . . , zd,zu . . . , zd] be 
the polynomial algebra in zu ..., zd) zu . . . , zd regarded in a natural fashion as a 
U(d)-module by setting for P G V[zu ..., zd,zu ..., zd] 

(gP)(z,z)=P(zg,zg), g <E U(d), 

where z = (zu ..., zd), z = (zu ...,zd) are row vectors. Vl[zu . . . , zd,zu . . . , zd] 
denotes as usual the subspace of positive homogeneous polynomials of degree /. Con
sider for any pair of nonnegative integers (r, s) such that r + s = J the subspace 
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7>(M) Q Vl[zu . . . , zd,zu • -j^Zd] consisting of polynomials homogeneous of bidegree 
(r,s), i. e. such that P(Xz,Xz) = XrXsP(z,z). Finally, let H{r>s) C V{r>s) be the sub-
space of harmonic polynomials. The spaces H{r,s) are invariant and irreducible under 
the action of U(d) and comprise what is known as the spherical (class one) represen
tations of TJ(d). In the most familiar to physicists case of SU(2) these representations 
exhaust the whole dual space of the group. 

Proposition 4 The following is an equivalence of \J(d)-modules 

W ~ 0 oo-H{r>s). 
r>0,s>0 
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