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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
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A COMPLEX FROM LINEAR ELASTICITY 

MICHAБL EASTWOODt 

INTRODUCTION 

This article will present just one example of a general construction known as the 
Bernstein-Gelfand-Gelfand (BGG) resolution. It was the motivating example from two 
lectures on the BGG resolution given at the 19th Czech Winter School on Geometry and 
Physics held in Srni in January 1999. This article may be seen as a technical example 
to go with a more elementary introduction which will appear elsewhere [7]. In fact, 
there were many lectures on various aspects of the BGG resolution given by other 
participants in the Winter School. In particular, Cap, Slovak, and Soucek presented 
their recently worked out curved analogue [5] for a general parabolic geometry. 

I would like to thank Douglas Arnold for telling me about the linear elasticity 
complex and asking about its link to the de Rham complex. 

T H E DE RHAM COMPLEX 

Apart from the final section, we shall work in three dimensions. On R3 we have the 
familiar differential operators of grad, curl, and div. In line with standard differential 
geometric conventions, let us take (x^r^x 3 ) as coordinates and write d/dx1 = V; for 
i = l,2,3. Then 

grád 
"Viu 
V2u 

V\ 

v2 
t curlv 

Vзtг У*. 

V2v3 - V 3 Î ; 2 wl 

V3vi - V\v3 w2 

V\V2 - V2 t / i w3 

div. ViУ + V2w
2 + V3W3 

It is convenient to adopt Einstein's summation convention—an implied sum over re
peated indices. For example, divi./ = Vjur\ Without being too precise, let us write £ 
for the smooth functions of (xl,a?2,a;3) and £,- or £x for triples of such functions. Also 
introduce the alternating symbol e^k with e123 = 1. Then, as is demonstrated in any 
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reputable text on vector analysis, we have the resolution: 

u i—> V jU w% i—> VjiH1 

m m m m 
(1) o - * R - > £ - £ ^ £ ^ £{ ^> £ -> 0. 

This means that, in a suitably local sense, this is an exact sequence—each operator 
provides the integrability conditions for the one which precedes it. Certainly, if we 
consider functions defined on a contractible open subset of R3, then the resulting 
sequence is exact. One of the first tasks in any development of analysis on manifolds 
it to set up (1) on an arbitrary smooth manifold where it becomes the de Rham 
sequence. 

THE LINEAR ELASTICITY COMPLEX 

As further notation, let us use round brackets to denote symmetrization. Thus, 
Hij) = (Uj + £jt)/2 is the symmetric part of a 2-tensor Uj. Further, let us write £(ij) 
for the smooth symmetric 2-tensors. Here is another resolution in three dimensions. 

(2) 

It comes from the linearized theory of elasticity where Ui is the displacement, Vij is 
the strain, wli is the stress, and V = VjWtj is the load obtained from a given stress. 
Though one of the differential operators of (2) is second order, there is clearly a strong 
resemblance to (1). The kernel T of the first operator has dimension 6: 

T = {ui s.t. V(iUj) = 0} = {ui = a,i 4- eijk&x1*} = < , l for constants a* and bj > . 

FROM DE RHAM TO LINEAR ELASTICITY 

The form of this kernel provides a clue to the precise link between (1) and (2). We 
can also resolve T by the T-valued de Rham sequence. It is the middle row of the 
following diagram. 

Щ ь --> Vøttø uЯ i—•> VjWij 

m m m m 
ЄІ --> - £(ІJ) --> £M —> £{ 

ш ш 
VІJ н--> Є^^VkЪVmn 

(3) 

0 0 0 0 
4- 4- 4 ; 
£" £ІЧ eiq Є" 
4- 4- i i 

£(T) -> Ą(T) -+ ЄҚГ) -> £(T) 
4- 4- i i 
£p £. £\ £P 

i 4- i i 
0 0 0 0 
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in which the vertical mappings are 

I I 
W" ť« 

I 
up 

ф". 

ЄpqГX ҷ) 

Ф" 
Vip 

ýi". 

ЄpqГX Xpi '?P 

y» 
ЄpqгX

qWir 

wiq 
V 
t" 

ЄpqГX Z 

t" 

Up - epqrx
q<f>r vip - ePqrx

qipir f p - epqrx
qwtr T]p - epqrx

qtr 

Notice that the columns of (3) are exact. Also in (3) there are three compositions of 
the form 

: i 
* , for example 

I 
* 

epqrx
qq V;. tpirФ* + ЄpqrX

q]Viфr 

ViФr 

l 
c pirV 

All three are simply algebraic (involve no differentiation): 

»-> -£ipr<t>r $iq ^ Ppip/ - ýj wiq «-> epirw 

€i
p. For where Sl

p is the Kronecker delta. The middle one is an isomorphism £{
q 

the others, if we write fyy] = (Uj — tji)/2 for the skew part of a 2-tensor and £\ij] for 
the skew 2-tensors. then 

£q —> Є[ІP] —> Є\ '[ip] Ф Gtø) £(ІV) = £ІV and Єiq = Є{iq) Є[iq]-ï Є[iq] 

-P-

It is now simply a matter of diagram chasing to cancel these superfluous isomorphisms 
from (3) to obtain (2). For example, up € £p has a unique lift U € £(T) so that 
ViU G £i(T) projects to a symmetric tensor in £ip. Specifically, 

U 
up + xчV\pUq] 

^ V . U = 
VjUp -f V[pUi] + XqViV[pUq] 

le^ViVjUk 

which projects t o V^up) and, sure enough, ut- »-> V^Uj) is t h e first differential operator 
of (2). T h e exactness and other propert ies of (2) are simply inheri ted from t h e corre
sponding propert ies of the de R h a m sequence (3), t h e only slightly cunning ingredient 
being the choice of m a p p i n g s in t h e exact sequence 

(4) 

фq ь~> 
ЄpqГX 

фq 

фr' 

m m 
£q -> £(T) 

lü 
-> 

Ш 
up 

ф\ 
ь-> %- - epqrx

qфr 

- > 0 . 

For all intents and purposes then, (2) and (3) are equivalent. Roughly speaking, 
introducing the extra variables $ 9 , ipiq,... in (3) is the standard manoeuvre for writing 
a second order operator as a system of first order operators. 
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CONSEQUENCES 

The equivalence of (2) and (3) has consequences other than exactness of (2). Recall 
the argument for exactness. It is that (3) is manifestly exact as a vector-valued version 
of the de Rham complex. Then, after cancellation of certain extraneous terms, we 
obtain (2), 

Roughly speaking then, anything which is true of the de Rham complex should have 
a counterpart for linear elasticity. There are at least two further possible instances 
of this. The first is Hodge theory. On a compact Riemannian manifold, the p-forms 
enjoy an orthogonal decomposition into three parts, the harmonic forms, the image of 
the exterior derivative, and the image of its dual. For vector fields on R3, this is often 
called the Helmholtz decomposition, splitting a general vector field into its potential 
and solenoidal parts. Corresponding decompositions in linear elasticity may be found 
in [8] and more generally in [9]. 

On a more speculative note, finite element approximation schemes for the de Rham 
sequence are well-understood [1]. For example, one such scheme comes down to sim-
plicial approximation and is very much related to the isomorphism between de Rham 
cohomology and simplicial cohomology. It should be possible to track this through (3) 
to obtain finite element methods for linear elasticity. 

LINEAR ELASTICITY ON RP3 

Consider real projective 3-space: 

RP3 = {1-dimensional linear subspaces L of R4} . 

There is a tautologically defined line bundle on RP3 which associates to the point 
L E RP3 the linear space L itself. It is a sub-bundle of the trivial vector bundle whose 
fibre is R4 over every point. Let us denote the local smooth sections (more precisely 
the sheaf of germs of smooth sections) of the tautological line bundle by £(-1). Also, 
write £% and £{ for the tangent and cotangent bundles respectively. Then, there is the 
Euler sequence 

(5) 0 -> £(-1) -* ^(R4) -> £\-\) -> 0 

where £(R4) denotes the smooth R4-valued functions and £l(-l) is the tensor product 
of £* and £(—1). An immediate consequence is the exact sequence 

(6) 0 -> £l(-2) -> £(A2R4) -> £fo"J(-2) -> 0. 

Also, if we fix a volume form on R4, then £fafcl(-4) is trivialized by a canonical section 
which we shall denote by cy'*. There is a similar canonical section c ^ of £[^(4). This 
has two consequences. The first is that the exact sequence (6) may be rewritten 

0 -> £q(-2) -> £(A2R4) -> £p(2) -> 0 

and the second is that the de Rham sequence on RP3 may be written 

0 -> R -> £ -> St -> £{(-4) -> £(-4) -> 0. 
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Combining these two observations gives the diagram 

0 
I 

0 0 £ p ( -2)e£to)(-6) 0 
1 I II I 

£q{-2) £iq{-2) £iq{-6) £q{-6) 

0 -> AR4 -> ^(AR4) --> £(AR4) -> £{(AR4)(-4) -» £(AR4)(-4) -> 0 . 

£p(-2) £ipt2) *'P(-2) £P{-2) 

i ll ; i 
0 £«( -2 )e%)(2) 0 0 

0 

It is an elementary matter to check that this coincides with (3) when written out in 
standard local coordinates. Therefore, the same diagram chase as before gives the 
resolution 

0 -> A2R4 -> £i{2) -> %)(2) -> £M{-6) -> £l{-6) -> 0, 

extending to RP3 the linear elasticity sequence (2). Notice that on RP3, there are no 
choices to be made: (6) is simply derived from the Euler sequence. When restricted to 
R3 -̂> RP3, it becomes (4). What previously may have seemed a rather ad hoc choice 
of splitting becomes quite natural once we choose to compactify R3 as RP3, 

LINEAR ELASTICITY AS BGG 

To discuss BGG in any sort of generality much notation is required. The notation 
comes from representation theory (since BGG has a dual formulation constructed from 
Lie algebras). Consider RP3 as a homogeneous space: the group SL(4,R) of real 4 x 4 
matrices of unit determinant acts on RP3 and if we take the first standard axis in R4 

as basepoint, then the stabilizer subgroup is 

p= 
* * * * 
0 * * * 
0 * * * 
0 * * * 

with unit determinant 

The main thing we need is a notation for the irreducible homogeneous vector bundles 
on RP3. Homogeneous means that SL(4,R) acts compatible with the way it is already 
acting on RP3 and irreducible means that there is no non-trivial sub-bundle with the 
same property. The general such bundle is determined by an irreducible representation 
of P and Following [3], we may write them as £(>< • •) where the parameter p can 
be any real number but q and r must be positive integers. In fact, this constitutes 
half of the irreducible homogeneous vector bundles on RP3. The other half differ by 
an overall twist. As is explained in [6], the notation comes from the Dynkin diagram 
of SL(4,R). The cross over the first node specifies the parabolic subgroup. The 
notation x • • determines a representation of P by means of its highest weight and 
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hence a homogeneous bundle. Here are some examples: 

£(x • •) = £ = the trivial bundle 
—2 1 0 

£( x • •) == £i = the cotangent bundle (or bundle of 1-forms) 
—3 0 1 

£( x—•-•) = £\jj] — the bundle of 2-forms 

£(x • •) = £ l = the tangent bundle. 
Tensors with more complicated symmetries are best described by Young tableau. 
These tableau are the classical instrument for describing both the irreducible rep
resentations of GL(n, C) and how they may be realised inside 0*0* for suitable k. 
In some sense this is an alternative to classifying with highest weights but it is more 
concrete. In fact, not only do these tableau say how the representation occurs inside 
0 f eC\ but they actually choose a splitting. In this context they are often called Young 
projectors. Though misleading in their simplicity, the most elementary examples are 
m which takes the symmetric part of a 2-tensor and u which takes the skew part. 
Generally, 

£( W-5) = l i ^ l k - ^ ft](p + 2q + 3r) 
r 

where the Young tableau, having q + 2r boxes, acts on £{ to give a bundle of covariant 
(q + 2r)-tensors subject to the symmetries imposed by this tableau. The quantity 
p + 2q + 3r in round brackets is the 'projective weight' [2] of the tensor. 

Now we can write down BGG resolutions on RP3, the simplest being de Rham: 

n ID c/° ° °\ c/~2 l °\ c/~3 ° l \ c/~A ° °\ 
0 -> R -> £(*-•-•) -> £( x • •) -> £( x • •) -> £( x • •) -> 0. 

Of course, this sequence makes perfectly good sense on any 3-dimensional smooth 
manifold but on RP3 it has the addition feature having SL(4, R) acting on it and being 
invariant under this action. In particular, the space of constant functions, namely R, 
should be regarded as the trivial representation of SL(4,R). The general irreducible 
representation of SL(4, R) is given by a highest weight which may be recorded as non-
negative integers attached to the nodes of the corresponding Dynkin diagram. The 
general BGG resolution on RP3 is the sequence of bundles and differential operators 

-.a b cx „,-a-2 a+6+1 cx -v-a-6-3 a 6+c-flx ^,-a-b-c-A a b. _ 
£(X-+-*) -> £ ( X • • ) - > £ ( X • • ) - > £ ( X • - • ) -> 0 

which resolves the representation • • • of SL(4, R) just as the de Rham resolution 
does the constants. The differential operators are no longer first order but have orders 
a + 1, 6 + 1 , c + 1 respectively. The linear elasticity sequence is the special case 

0 1 0 ^,0 1 Ov „ , - 2 2 0, „ ,~4 0 2. „ , - 5 O K 

0 -> +-+-+ -^ £(x-^-«) -> £( x—^-») -> £( x-^-#) -> £( x—#-•) -> 0 

or, as tensors, 
0 -> A2R4 -> ^(2) ^ 4 £(ij)(2) ^ ^ ffl£*(2) - ^ ^ > £m(-2) -> 0. 
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T H E CALABI COMPLEX 

It was also noticed by Paul Bressler that the linear elasticity complex on R P 3 is a 
special case of a complex constructed by Calabi [4]. The Calabi complex is itself a 
special case of the BGG resolution. Extending our notation to E P n in the obvious 
way, the Calabi complex is 

0 1 0 0 0 o o „ , 0 1 0 0 0 0 o ч 

- , - 2 2 0 0 0 0 0X 

-> £( x • • • • *-*) 
- . - 4 0 2 0 0 0 0 ч 

— ? c ( x — • • • • • • • • •) 
- , - 5 0 1 1 0 0 0Ч 

—•> £( x • • • • •—•) 
^ , - 6 0 1 0 1 0 o ч 

—> £( x • • • • •—•) 

- , - n - l 0 1 0 0 

—г £( x — • • • • -i-i) 
„ , - n - 2 0 1 0 0 

—> £( x — • • • • ...-i-S)->o 
In fact, Calabi derives it from the de Rham sequence much as is done in this article. 
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