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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 66 (2001) pp. 165-178 

GEOMETRIC MEANINGS OF CURVATURES IN FINSLER 
GEOMETRY 

ZHONGMIN SHEN 

1. INTRODUCTION 

In Finsler geometry, we use calculus to study the geometry of regular inner met
ric spaces. In this note I will briefly discuss various curvatures and their geometric 
meanings from the metric geometry point of view, without going into the forest of 
tensors. 

A metric d on a topological space M is a function o n M x M with the following 
properties 

(Dl) d(p, q) > 0 and equality holds only when p = q\ 
(D2) d(p,q)<d(p,r) + d(r,q). 

For a Lipschitz curve c : [a, b] —> (M, d), define the dilation of c at t £ [a, b] by 

,., / x i. d(c(*i),c(*2)) 
dili(c) : = hmsup sup -- v lh v i n . 

e_ f0+ -c+t<ti<t2<t+e ti - t\ 

We obtain a length structure on M defined by 

td(c):= fbdi\t(c)dt. 
Ja 

d is said to be inner if 
d(p,q) = inf i?d(c), 

where the infimum is taken over all Lipschitz curves c from p to q. Traditionally, we 
impose the following reversibility condition on d 

(D3) d(pyq) = d(qyp). 

But this reversibility condition is so restrictive that it eliminates lots of interesting 
metric structures, such as the Funk metric below. 
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Debrecen in Hungary. The author would like to thank Dr. S. Bacso and Dr. L. Kozma for their great 
help and hospitality. 
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Let ӣ be a strongly convex bounded domain in Rn. For p,q € f., let tvq denote the 
ray issuing from p to q passing through q. Define 

(1) d /0 | tJ):=ln{|5|[> 

where z Є дíì is the intersection point of £pя with ðíì. Then df is an inner metric on 
П, which is called the Funk metric [Funk]. The Funk metric is not reversible. Set 

(2) dңfaq) := ̂ \df(ptq) + df(qtp)J , P,qЄtt> 

We obtain a reversible inner metric which is called the Hilbert metrгc. There are many 
other interesting inner metrics which are not Riemannian. 

An inner metric d o n a manifold M is said to be regular if there is a nonnegative 
function F on TM such that 

(FO) for any C1 curve c : [a,6] -> M, dilt(c) = F(é(í)), o < í < ò; 
(Fl) FisC°°onTM\{0}; 
(Ғ2) For each x Є M, Fx := F|тxм is a Minkowski functional on TXM, i.e., 

(Ғ2a) Fя(Лy) = \Fx(y), VЛ > 0, y € TÆM; 
(F2b) for each y Є TXM \ {0}, the induced symmetric bilinear form gy on TXM is 

an inner product, where 

1 д2 Г 1 
F2tø -f su + ív) (3) gУK^):= |,=ť=o, u,veTxM. 2dsdt[ 

A Finsler metric on a manifold M is a nonnegative function F on TM which satisfies 
(Fl) and (F2). 

The Funk metric df in (1) is regular and the induced Finsler metric Ff is determined 
by 

(4) x + - 4 - e c M , yeTxn. 
*f\V) 

The Hilbert metric dh in (2) is regular too and its induced Finsler metric Fh is deter
mined by 

(5) Fh(y):=\(Ff(y) + Ff(-y)). 

T. Okada [Ok] proved that the Funk metric Ff satisfies the following equation 

(M °Ff - F dFf 

(6) ^-Fw 
Okada uses (6) to prove the fact that Ff is of constant curvature K = — £ and Fh is of 
constant curvature K = — 1. 

2. MINKOWSKI SPACES 

Minkowski spaces are finite dimensional vector spaces equipped with a Finsler metric 
invariant under translations. Thus Minkowski spaces are just vector spaces equipped 
with Minkowski functionals. For a general Finsler space (M, F), each tangent space 
TXM with Fx := F|TXM is a Minkowski space. Thus to study the geometric structure 
of a Finsler space, we need to study Minkowski spaces first. 
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Let (V,F) be an n-dimensional Minkowski space. For each y eV\{0}, F induces 
an inner product gy by (3). gy satisfies the following homogeneity condition 

0Ay(u,v) = ft,(u,v), A > 0 . 

Note that gy is independent of y if and only if F is Euclidean. It is natural to introduce 
the following quantity: 

(?) Cy(u}v,w) := - - gy+tofav) \f=Q. 

The family C := {Cy}yev\{o} is called the Cartan torsion. One can easily verify 
that C y is a symmetric multi-linear form on V. Moreover, Cy satisfies the following 
homogeneity condition 

C\y(u, n, w) — \~lCy(u, v, w), A > 0. 

Note that C = 0 if and only if F is Euclidean. Differentiating C y with respect to y 
yields a new quantity: 

Іí=0 
(8) Cy(u, i>, w, z) := — Cy+tz(u, vy w) 

Let C := {Cy}yev\{o}- C also gives us some geometric information on the Finsler 
metric [Shi], 

The mean of Cy is defined by 

(9) ly(u)~itjJ(v)cy(«>W)> 

where gij(y) — gy(ei, ej). The family I = {Iyjyev^o} is called the mean Cartan torsion. 
Deicke's Theorem [De] says that C = 0 if and only if I = 0. Note that in dimension 
two, the family I = {ly}yev\{o} completely determines the Cartan torsion. 

There is another interesting quantity for Minkowski spaces associated with a Haar 
measure. Let / i b e a Haar measure on V which is invariant under translations. Take 
an arbitrary basis {ei}"=1 for V and its dual basis {CJ*}"=1 for V*, fi can be expressed 
by dfi = a to1 A • • • A un. We define 

Wdet (jy(y)) 
(10) r(y):=ln-¥ ^ i , 

a 
where gij(y) := gy(eiyej). r is a well-defined quantity which is called the distortion of 
(F,M) [Sh2][Sh3]. T(y) satisfies the following homogeneity condition 

r (Ay)=r(y) , A > 0 . 

In general, T(y) depends on the direction y. Differentiating T(y) with respect to y 
yields the mean Cartan torsion. 

d 

<"' 
т(y + tv) 

l(=0 y v ' 

Therefore, the following conditions are equivalent (a) T(V) — constant; (b) 1 = 0; (c) 
C = 0; (d) F is Euclidean. 
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There are several special Haar measures on a Minkowski space (V, F). One of the 
natural Haar measures is the Busemann-Hausdorff measure fiF. \xF can be expressed 
by d\iF = aFujl A • • • A un, where 

(12) . , : = V ° W 
Vol{(uO<-Rn, F(yiei)<l}' 

where Bn denotes the unit ball in Rn and Vol denotes the Euclidean measure on Rn. 
The Busemann-Hausdorff measure is the unique Haar measure \x such that the unit 
ball B in (V, F) has the same volume as the standard unit ball Bn in Rn. It is somewhat 
surprising that the Busemann-Hausdorff volume of the Funk metric Ff in (4) is finite. 
More precisely, for any metric r-ball B(x,r) in the Funk space (Q, F/), 

HF(B(x,r)) = n - 2n - Vol(Bn) f V ( n + 1)< sinh71"1 (t)dt -> Vol(Bn). 
Io 

Let (V,F) be an n-dimensional Minkowski space and S = F-1(l) t n e indicatrix. 
There are two induced metric structures on the indicatrix S. One is the Riemannian 
metric g induced by gy, and the other is the Finsler metric F induced by F. 

In 1949, L.A. Santalo [Sa] proved that if F is reversible, then the Riemannian volume 
of the indicatrix S satisfies 

(13) ^(S)<Vol(S"- 1 ) ) 

equality holds if and only if F is Euclidean. However, there is no uniform lower bound 
on l^(S). For the further study on the Minkowski functional F, one has to study the 
geometry of (S, <?). It is surprising that the Riemannian curvature tensor Ry of g at 
y € S takes a special form as follows: 

(14) 
Ry(u, v)w = Cy(Cy(u, w). v) - Cy(Cy(v, w), u) + gy(v, w)u - gy(u, w)v, 

where u,v,w G TyS C V and Cy(u,v) = £ is determined by gy(£,w) := Cy(u,v,w). 
The Brickell theorem says that in dimension n = dimV > 2, g has constant curvature 
K = 1 if and only if F is Euclidean [Bri]. 

For the Busemann-Hausdorff measure {ip on the indicatrix S, we have 

(15) cn<nF(S)<c'n, 

where Cn and cn are positive constants depending only on n. No sharp constants have 
been determined in higher dimension. If F is non-reversible, however, there is no 
uniform upper bound on /ip(S). For further investigation on the Minkowski functional 
F, one has to study the geometry of (S,F). Suppose that F is of constant curvature 
K=1. Is F Euclidean ? 

3. CONNECTION AND GEODESICS 

Now we consider general Finsler spaces. Geodesies are the first objects coming to 
a geometer's sight when he walks into an inner metric space. By definition, geodesies 
are locally length-minimizing constant speed curves which are characterized locally by 
a system of second order ordinary differential equations. 
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Let (M, F) be a Finsler space. For a C1 curve c : [a, b] -» M, the length of c is given 
by 

£(c)= f F(c(t))dt. 
Ja 

A direct computation yields the Euler-Lagrange equations for a geodesic c(t) 

(16) ^ + 2G*(c) = 0, 

where (-c*(i)) denote the coordinates of c(t) and G* in the standard local coordinate 
system (xl,yl) in TM are given by 

(17) ^ ( u ) : = i / ( u ) { 2 | | ( u ) - ^ ( y ) } , V . 

where #j(j/) = 0 y ( ^ , ^ ) . 
A Finsler metric is said to be positively complete (resp. complete) if every geodesic 

on (a, b) can be extended to a geodesic defined on (a, oo) (resp. (—00,00)). The Funk 
metric in (4) is positively complete, but not complete, while the Hilbert metric in (5) 
is complete. Finsler metrics on a compact manifold are always complete regardless the 
reversibility 

With the geodesic coefficients G% in (17), we define a map Dy : C°°(TM) -> TXM 
for each y eTxM by 

DyU:=:{dU*(2/) + ^(,)^(y)}A|X! 

where U = U1-^ G C°°(TM). DyU is called the covariant derivative of U in the 
direction y. We call the family D := {Dy}y€TM the canonical connection of F. W. 
Barthel first noticed this canonical connection. With this connection D, we can define 
the covariant derivative DcU(t) of a vector field U(t) along a curve c(t)y a < t < b. 
U(t) is said to be parallel along c if DcU(t) = 0. Clearly, a curve c is a geodesic if 
and only if the tangent vector field c(t) is parallel along c. The parallel translation 
Pc : Tc{a)M -> Tc{b)M is defined by 

P(U(a)) = U(b) 

where U(t) is parallel along c. From the definition, we see that Pc is a linear transforma
tion preserving the inner products gc. In general, Pc does not preserve the Minkowski 
functional. We will discuss this issue in the next section. 

It is natural to study the holonomy group defined by the above parallel translations. 
A natural question is whether or not there are more types of holonomy groups of Finsler 
spaces than the Riemannian case. This problem remains open so far. 

Let (AI, F) be a positively complete Finsler space. At each point x G M, we define 
a map expx : TXM -» M by 

expx(t/) := c(l), 

where c(t) is the geodesic with c(0) = y. The Hopf-Rinow theorem says that expx is 
onto for all x G M. expx is called the exponential map at x. From the O.D.E. theory, 
J.H.C. Whitehead [Wh] proved that expx is C°° on TXM \ {0} and only C1 at the 
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origin. Akbar-Zadeh [AZ] proved that exp^ is C2 at the origin for all x if and only if 
D is an affine connection. 

4. NON-RlEMANNIAN CURVATURES 

The canonical connection D has all the properties of an affine connection except for 
the linearity in y. Namely, D y i + y 2 ^ D y i + D y 2 in general. To measure the non-linearity, 
it is natural to introduce the following quantity [Shi] 

d2
 L 

(18) By(u,v,w):= 
дsдt 

Vy+sv+twU |s=І=0 5 

where U G C°°(TM) with U(x) = u. One can easily verify that B y is a symmetric 
multi-linear form on TXM. We call the family B := {By}y€TM\{o} the Berwald curva
ture. A Finsler metric is called a Berwald metric if B = 0. L. Berwald proved a simple 
fact that B = 0 if and only if D is an affine connection. 

For Riemannian metrics, B = 0 and D is just the Levi-Civita connection. There are 
non-Riemannian Berwald metrics. Consider the following type of Finsler metric: 

(19) F(y):=a(u)-f/5(u), 

where a(y) := dg(y,y) is a Riemannian metric and (3(y) is a 1-form with a-length 
||/3|| < 1. F is called a Randers metric. M Hashiguchi and Y. Ichijyo [Halcl] first 
noticed that if /3 is parallel with respect to a, then F = a + /? is a Berwald metric. 
Later, they proved that if d/3 = 0, then F = a -f /? has the same geodesies as a and 
vice versa [Halc2]. 

Y. Ichijo [Ic] proved that on a Berwald space, the parallel translation along any 
geodesic preserves the Minkowski functionals. Thus Berwald spaces can be viewed 
as Finsler spaces modeled on a single Minkowski space. According to Szabo [Sz], if a 
Finsler metric F is Berwaldian, then there is a Riemannian metric g whose Levi-Civita 
connection coincides with the canonical connection of F. 

Define the mean of By by 

1 n ( 
(20) Ey(u,v) := -Y,9l3(y)gy[By(u,v)ei),e^ 

z i=i v 

where gij(y) = g^e^ej). The family E = {E>y}yeTM\{o} -s called the mean Berwald 
curvature. E is also related to the S-curvature S. See [Shi] and (33) below. 

As we have mentioned above, the parallel translation along curves in a Berwald 
space preserves the Minkowski functionals. Thus the Cartan torsion in a Berwald 
space does not change along geodesies. To measure the rate of changes of the Cartan 
torsion along geodesies in a general Finsler space, we will introduce a weaker quantity 
than the Berwald curvature. For a vector y 6 TXM \ {0}, let c(t) denote the geodesic 
with c(0) = y. Take arbitrary vectors u,vyw G TXM and extend them to parallel 
vector fields U(t),V(t),W(t) along c. Define 

(21) Ly(u, t/, w) := j t [c« t ) (U{t), V(t)y W(t))] | t=0 • 

The family L := {Ly}y€TM\{o} is called the Landsberg curvature. A Finsler metric is 
called a Landsberg metric if L = 0 [Shi]. Landsberg metrics form an important class 
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of Finsler spaces. We have the following equation [Shi] 

(22) v(u,v,w) = --gy\By(u,v,w),yj . 

From (22), we immediately conclude that every Berwald space is a Landsberg space. 
It is an open problem in Finsler geometry whether or not there is a Landsberg metric 
which is not a Berwald metric. So far no example has been found. Differentiating L 
along geodesies yields a new quantity: 

(23) 
d[. 

Ly(u,v,w):= — Mt)(щt),V(t),W(t) 
t=0 

Using (6), we can show that the Funk metric F = Fj in (4) satisfies 

(24) L„(u, v, w) + -F(y)Cy(u, v, w) = 0, 

and the Hilbert metric in (5) satisfies 

(25) Ly(u, v, w) - F2(y)Cy(tt, vt w) = 0. 

The Landsberg curvature Ly satisfies the following homogeneity condition 

(26) L\y(u,v,w) = Ly(u,v,w), A > 0 . 

In general, Ly depends on the direction y. Differentiating Ly with respect to y yields 
another quantity [Shi] 

(27) Ly(u,v,w,z) := —lLy+tz(u,v,w)\\t=Q. 

One can easily verify that L = 0 if and only if L = 0. When L7-O, L gives us some 
other geometric information on the Finsler metric. 

Define the mean of Ly by 

(28) W-E^felM^^^). 

The family J = {Jy}y<ETM\{o} is called the mean Landsberg curvature [Shi]. From the 
definitions of I and J, we have 

(29) J»W = |h ' )(^*) )]Lo> 
where c(t) is the geodesic with c(0) = y and U(t) is a parallel vector field along c with 
U(0) = u. In dimension two, J completely determines L. It is an interesting problem 
to study the difference between Finsler metrics with J = 0 and those with L = 0. 

There is an induced Riemannian metric of Sasaki type on TM \ {0}. T. Aikou 
proved that if L = 0, then all the slit tangent spaces TXM \ {0} are totally geodesic 
in TM \ {0} [Ai]. Along the same line, one can show that if J = 0, then all the slit 
tangent spaces TXM \ {0} are minimal in TM \ {0}. 

Consider an arbitrary regular measure [i on a Finsler space (M,F). \x induces a 
Haar measure (j.x in each tangent space TXM. Hence the distortion r is defined for 
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(TxAf, Fx, ßx). To measure the rate of changes of the distortion along geodesies, we 
define 

(30) S(У) := 'r(à(t))] , 
L \ / J t = o 

where c(t) is the geodesic with c(0) = y. We call the scalar function S the S-curvature 
[Shl][Sh3]. Differentiating the S-curvature along geodesies yields a new quantity: 

(31) S(v):= dt 
S(ć(í)) 

See [Sh2] for further discussions. When S / 0, S gives us some other geometric 
information on the Finsler metric F and the regular measure /J. See (37) below. 

The S-curvature S(y) satisfies the following homogeneity condition 

(32) S(Ay) = AS(y), A > 0 . 

In general, S(y) is not linear in y. Differentiating it twice with respect to y gives no 
new quantity Namely, we have 

(33) --»(«.«) = -
i д2 

2дsдt 
S(y + su + tv) 

i s=t=0 

Thus S(y) is linear in y € TXM if and only if E = 0 on TXM \ {0}. In particular, if F 
is a Berwald metric, then S(y) is linear in y € TXM for all x [Shi]. In fact, S = 0 for 
Berwald metrics if we consider the S-curvature of the Busemann-Hausdorff measure 
HF- This fact is proved by the author [Sh3], Finsler spaces with E = 0 deserve further 
investigation. There are some non-Berwaldian Randers metrics with E = 0 and S = 0. 
For the Funk metric F = F/ in (4), the S-curvature and the mean Berwald curvature 
are constant in the following sense. 

S(y) = ^ F ( y ) , 

Eyfa.t;) = ^ 3 7 T ) { F 2 ^ ) * ( t t ' v ) " 9y{y^)gy(y,v)^ . 

This is proved in [Shi]. 

5. RIEMANN CURVATURE 

As matter of fact, all the quantities defined in the previous sections vanish on a 
Riemannian space. Thus we do not see these non-Riemannian quantities at all in 
Riemannian geometry A. Einstein used Riemannian geometry to describe his general 
relativity theory, assuming that a spacetime is always Riemannian. 

For Riemannian spaces, there is only one notion of curvature—Riemann curvature, 
that was introduced by B. Riemann in 1854 as a generalization of the Gauss curvature 
for surfaces. Since then, the Riemann curvature became the central concept in Rie
mannian geometry Due to the efforts by L. Berwald in 1920's, the Riemann curvature 
can be extended to the Finslerian case [Ber]. 



GEOMETRIC MEANINGS OF CURVATURES IN FINSLER GEOMETRY 173 

Let (A/, g) be a Riemannian space and D denote the Levi-Civita connection of g. 
The Riemann curvature tensor is defined by 

R(u, v)w := JDc/DvVV - DVDVW - D[uy]w\\x , u, u,iv G F.A/, 

where £/,V,PV are local vector fields with U(x) = u,V(x) = v,W(x) = w. The core 
part of the Riemann curvature tensor is the following quantity: 

(34) Ry(u):=R(u,y)y. 

The Riemann curvature Ry : TXM -> TXM is a self-adjoint linear transformation with 
respect to g and it satisfies Ry(y) = 0. The family R = {Ry}yeTM\{o} is called the 
Riemann curvature. With a little trick by the author, one can extend the notion 
of Riemann curvature to Finsler metrics without employing connections on the slit 
tangent bundle TM \ {0}. 

Let (M, F) be a Finsler space. Given a vector y € TXM \ {0}, extend it to a local 
nowhere zero geodesic field Y (i.e., all integral curves of Y are geodesies). Y induces 
a Riemannian metric 

9 '= 9Y . 

Let R denote the Riemann curvature of g as defined above. Define 

(35) R » : = I V 

One can verify that Ry is independent of the geodesic extension Y of y. Moreover, Ry 
is self-adjoint with respect to gyy i.e., 

9y[&y(u),v) = gy(u,Ry(x))j , 

and it satisfies Ry(y) = 0 [Shl][Sh2]. Let Wy := {u £ TxMy gy(y,u) = 0}. Then 
Ry|vvy : Wy —•> Wy is again a self-adjoint linear transformation with respect to gy. 
Denote the eigenvalues of prp:Ry\wv by 

Kl(y) < * < «n-l(2/). 

They are the most important intrinsic invariants of the Finsler metric. We call Ki(y) 
the i-th principal curvature in the direction y. The trace of R^ is denoted by Ric(u) 
which is called the Ricci curvature. Ric(y) is given by 

(36) Rictø) := £ gVЫgyfaieiЪe,) = F2(y)П^Ki(y). 
ÿ=l ч ' » = 1 

The Ricci curvature and the S-curvature determine the local behavior of the Buse-
rnann-Hausdorff measure of small metric balls around a point. Let B x denote the unit 
ball in (TXM, Fx) and \ix the induced Busemann-Hausdorff measure of Fx on TXM. 
Assume that F is reversible. Then the Taylor expansion of fiF(B(x,e)) of a small 
metric ball B(x, e) is given by 

(37) »F(B(x, e)) = Vol(B"){l - y^r{x) e2 + o(e3)} , 
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where 

(38) T{X) := n-Vd(B") Lx {
Ric{y) + 3 n N ~ S2(y)] }dlLc. 

See [Sh2] for details. 

6. CONSTANT CURVATURE 

Now let us take a close look at Finsler spaces of constant curvature K. A Finsler 
metric is said to be of scalar curvature if there is a scalar function K(y) on TM\{0} such 
that for any y € TxM\{0}, the principal curvatures Ki(y) = K(y), i = 1, • • • . n — 1. By 
definition, all two dimensional Finsler metrics are of scalar curvature K(y). F is said to 
be of constant curvature K (resp. constant Ricci curvature) if «i(y) = K, i = 1, • • • , n - 1 

(resp. E?^1 My) = (*--.)*)• 
We have the following important equation [AZ] 

(39) Ly(u,v,u;) + K F2(y)Cy(u,v,w) = 0. 

The Cartan torsion and Landsberg curvature take special values along geodesies. Let 
c(t) be an arbitrary unit speed curve. Take a parallel vector field V(t) along c(t). Let 

(40) C(t):=Cm(V(t),V{t)tV(t)). 

From (23) and (39), we obtain the following important equation [Nu][AZ] 

(41) C"(t)+KC(t) = 0 . 

This immediately implies that Landsberg space of constant curvature K y- 0 must be 
Riemannian. This is observed by S. Numata [Nu]. Solving (41), we obtain 

'asinh(t) -f bcosh(t), if /c = - l , 
at + b, if K = 0 , 
asin(t) -f bcos(t), if K = 1. 

Define L(t) in the same way as above for the Landsberg curvature. From the definition 
of L, we have L(t) = C'(t), Then we obtain a formula for L(t) [AZ]. 

Take two parallel vector fields V(t) and W(t) along c. Assume that both V(t) and 
W(t) are o^)-orthogonal to c(t) for some t = t0 (hence for all t). Set 

C(t):=Cm(V(t),V(t),V(t),W(t)). 

By studying the Ricci identities and the Bianchi identities, we obtain 
rasinh(2t) + bcosh(2t) -f c, if K = - 1 , 

(43) C(t) = \at2 + bt + c, if/c = 0, 
a sin(2t) -f b cos(2t) -f c, if K = 1. 

Define L(t) in the same way as above for L . We can show that L(t) = C'(t) + d. 
Then we obtain a formula for L(t) [Shi]. 

Complete Finsler metrics of constant curvature K < 0 must be Riemannian if the 
Cartan torsion does not grow exponentially This fact is due to Akbar-Zadeh [AZ]. 
Using (6), T. Okada [Ok] verified that the Funk metric Fj in (4) is of constant curvature 
K = -\ and the Hilbert metric Fh in (5) is of constant curvature K = - 1 . By (24), we 

(42) C(í) 
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can show that the Cartan torsion of Ff is bounded along any geodesic. Note that Ff is 
not Riemannian ! because it is only positively complete. Since F^ is non-Riemannian, 
the Cartan torsion of Fh must grow exponentially along geodesies in one direction. 

Positively complete Finsler spaces of constant curvature K = 0 must be locally 
Minkowski if C and C are bounded along geodesies. This fact is also due to Akbar-
Zadeh [AZ]. So far, we do not know if there are any positively complete Finsler spaces 
of constant curvature K = 0, except for locally Minkowski spaces. 

There are infinitely many projectively flat Finsler metrics of constant curvature 
K = 1 on Sn constructed by R. Bryant [Brl][Br2] recently Bryant metrics are non
reversible. So far, no reversible Finsler metric of constant curvature K = 1 has been 
found on Sn, except for the standard Riemannian metric. The author can prove that 
for any Finsler metric on a simply connected compact manifold M, if it has constant 
curvature K = 1, then M must be diffeomorphic to Sn and geodesies are all closed with 
length of 27r. From (42) and (43), we see that C has period of 2n on parallel vector 
fields along any geodesic, while C has period of n on parallel vector fields orthogonal 
to the geodesic [Shi]. 

All known Finsler metrics of constant curvature are locally projectively flat, i.e., at 
every point, there is a local coordinate system in which the geodesies are straight lines. 
It is an interesting problem to find Finsler metrics of constant curvature without this 
property 

Consider two pointwise projectively related Finsler metrics F and F on a manifold. 
Suppose that F and F have constant Ricci curvature K and k, respectively Then 
using A. Rapcsak's equation, we can show that for any unit speed geodesic c(t) of F, 

the function tp(t) := l/yF(c(t)) satisfies 

(44) . / ( t j + ^ t ) - - - * - . 

See [Shl][Sh4]. By (44), we can show that the Hilbert metric is the only complete, 
reversible, projectively flat Finsler metric of constant curvature K = — 1 on a strongly 
convex domain in Rn. There might be many positively complete non-reversible projec
tively flat Finsler metrics of constant curvature K = — | on a strongly convex domain 
in Rn. So far we only have the Funk metric with this property 

It is an open problem whether or not there is a (positively) complete Finsler space 
which does not admit any (positively) complete Finsler metrics of scalar curvature. 
This leads to the study on the topology of (positively) complete Finsler spaces of scalar 
curvature. 

7. COMPARISON GEOMETRY 

In this section, we will discuss several global results using comparison techniques. 
Let (M, F) be a positively complete Finsler space. Take a geodesic variation cs(t) 

of a geodesic c(t), i.e., Co(t) = c(t) and each cs(t) is a geodesic. Let J(t) := ^ | 5 = 0 (£ ) . 
J(t) is a vector field along c which is called a Jacobi field. The behavior of J(t) along 
c is controlled by the following Jacobi equation 

(45) DtD6J(t) + Rm(J(t)) = 0. 
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Tak# a geodesic c(t) = expx(£u),0 < t < oo and a special geodesic variation cs(t) := 
expx(t(y+sv)). The standard comparison argument by Cartan-Hadamard and Bonnet-
Meyers gives the following important global results in comparison Finsler geometry 

Theorem 7.1. ([Aus]) Let (M, F) be a positively complete Finsler space. Suppose 
that the Riemann curvature is nonpositive, i.e} the principal curvatures 

*>i(y) < 0 , i = I , - - , n - 1. 

Then the exponential map expx : TXM -> M is an onto covering map. Thus M is a 
K(TI) 1) space. 

Theorem 7.2. ([Aus]) Let (M,F) be a positively complete Finsler space. Suppose 
that the Ricci curvature is strictly positive., i.e., there is a positive constant X such 
that 

n - l 

X>(2 / )> (n - l )A>0 . 
i= l 

Then the exponential map expx : TXM —> M is singular at ry for any unit vector 
y e TXM atr < n/VX. Thus the diameter of M and its universal cover M is bounded 
by Diam(M) < n/y/X, and the fundamental group 7T\(M) must be finite. 

Applying the Morse theory to the loop space, one can prove the following theorem 
for homotopy groups. 

Theorem 7.3. Let (M, F) be a compact simply connected Finsler space. Suppose that 
the principal curvature K\(y) < • • • < Kn-i(y) satisfy the following pinching condition 
for some 2 < k < n — 2, 

(46) j<jfE«i(y)> ««-i(y)<i-

Then m(M) = 0 for i = 1, • • • , n - k. 

Let (M, F) be a positively complete space. Denote by B(x, r) and S(x, r) the metric 
ball and sphere around x with radius r, respectively There is a naturally induced 
measure vF on the regular part of S(xy r) such that the coarea formula holds 

(47) fiF(B(x,r))= [ vF(S(x,t))dt. 
Jo 

Let nF denote the Busemann-Hausdorff measure of the induced Finsler metric F on 
S(x,r). In general, vF ^ fiF. If F is reversible, then 

(48) cn fiF<vF< c'n pLF , 

where c„, c'n are positive constants. If F is non-reversible, the inequality on the left side 
of (48) does not hold. The coarea formula (47) together with (48) implies (15). See 
[Sh2] for more details. Further estimates on the geometry of 5(x, r) give the following 
comparison result on the Busemann-Hausdorff measure nF under certain curvature 
bounds. 
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Theorem 7.4. ([Sh2][Sh3]) Let (M, F) be an n-dimensional positively complete Fins-
ler space. Suppose that the Ricci curvature and the S-curvature satisfy 

(49) Ric/F2 > (n - 1)A, S/F > (n - 1)5, 

where X,S are positive constants. Then the ratios fiF(B(x,r))/V\j(r) and 
VF(S(x,r))/V^5(r) are non-increasing, where 

VKS(r) := VoltS""1) j f [e~ft sA(o]B~V 

and S\(t) satisfies 

s'{(t) + A sx(t) = 0, sA(0) = 0, s'A(0) = 1. 

Theorem 7.4 has a number of applications. Let M be a compact oriented manifold. 
The canonical Z^-norm || • ||i on the complex Cfc(M) of singular real chains is defined 
by 

llclli :=.CW> c = Vjr.ff.. 
i i 

For a real homology class z € Hjfc(M), define 

N l i = i n f | | c | | i . 

z=[c] 

For the fundamental class [M] € Hn(M), let 

||M|| := ||[A<||U. 
||A/|| is called the Gromov invariant of M'. ||M|| is not necessarily an integer. Gromov 
proved that if 7Ti(M) is amenable, then ||M|| = 0. 
Theorem 7.5. Let (M, F) be an n-dimensional revei^sible compact Finsler space. Sup
pose that the Ricci curvature and the S-curvature satisfy the bounds (49) with A, 6 < 0. 
Then 

(50) ||M|| < n\(n - l)n(/JA| + \5\)nnF(M). 

Further, there is a constant e(n) > 0 if 

(51) (J\\\-r\5\)yF(M)<e(n), 

then IIMII = 0. 

The theorem for Riemannian spaces was proved by M. Gromov [Gr]. The proof for 
the general case follows from Gromov's argument by using Theorem 7.4. 
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