
WSGP 22

Miloslav Znojil
Re-establishing supersymmetry between harmonic oscillators in D 6= 1 dimensions

In: Jarolím Bureš (ed.): Proceedings of the 22nd Winter School "Geometry and Physics". Circolo
Matematico di Palermo, Palermo, 2003. Rendiconti del Circolo Matematico di Palermo, Serie II,
Supplemento No. 71. pp. [199]--207.

Persistent URL: http://dml.cz/dmlcz/701719

Terms of use:
© Circolo Matematico di Palermo, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/701719
http://project.dml.cz


RENDICONTIDEL CIRCOLO MATEMATICO DI PALERMO 
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RE-ESTABLISHING SUPERSYMMETRY BETWEEN HARMONIC 
OSCILLATORS IN D^l DIMENSIONS 

MILOSLAV ZNOJIL 

ABSTRACT. We offer a plausible resolution of the paradox (first formulated by Je-
vicki and Rodriguez in Phys. Lett. B 146, 55 (1984)) that the two shifted harmonic 
oscillator potentials V(q) = q2 + G/q2 + const may, in spite of their exact solvability 
in a non-empty interval of the couplings C, become supersymmetric partners if and 
only if G vanishes.. We show that and how their G 7- 0 SUSY may be re-established 
via a regularization provided by pseudo-Hermitian quantum mechanics. 

1. MOTIVATION 

A suitable algebraic background of the theoretical construction of multiplets which 
would unify some experimentally observable bosons with fermions is provided by the 
graded Lie algebras, so called superalgebras. In such a setting, an exceptional role 
is played by the linear harmonic oscillator in one dimension, D = 1. Indeed, its 
Hamiltonian may be factorized and, subsequently, shifted to the left or to the right, 

ң(LHO) •Ѓ + Ѓ _ 4 - £ - l = 5 - , 4 + l , A = q + ip, B = q-ip 

H{L)=H(LH(*-l = B.A) H(R) = H(LH°) + 1 = A.B. 

According to Witten [1] one may then introduce a "super-Hamiltonian" and two "su
percharges" , 

n=\H(L) 0 1 
I " 0 H(R) \ Q = 

0 
A 

Q = 

and notice that they generate a representation of Lie superalgebra sl(l/l), 

{Q,Q} = H, {Q,Q} = {Q,Q} = 0, [H,Q} = [H,Q) = 0. 

In the language of physics, one can speak about the bosonic and fermionic vacuum 
annihilated by both the supercharges, 

(#,0) = exp(-ç2/2)/л/^ 
0 

Q|0,0) = Q | 0 , 0 ) = 0 . 
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The "bosons" themselves may be then introduced as created and/or annihilated by 
the first-order differential operators a1" ~ B and/or a ~ .A, respectively. The parallel 
creation, annihilation and occupation-number operators are also easily defined for 
"fermions", 

p = 
0 0 
1 0 т = 

0 1 
0 0 

Mr = 
0 0 
0 1 

The supercharges become factorized as well, Q ~ aJ7^ and Q ~ a!J7. In terms of 
the harmonic-oscillator eigenstates \n) the Fock space will be spanned by the states 
|n&, Uf) characterized by the presence of n^ bosons and n/ fermions where n/ is equal 
to zero or one, 

|n,0) 
\n) 
0 

|n,l) = 
0 

|n) 

2 , 2 ,q; а=(D-2)/2 + i, t = Q,\,. 

In this way the harmonic oscillator may be understood as a next-to-trivial super-
symmetric field theory in a one-dimensional space-time which unifies the bosons with 
fermions. More details may be found, e.g., in the concise review paper [2]. 

In what follows, we shall analyze what happens if we replace the one-dimensional 
JJ(LHO) by fts rac]ial, D-dimensional generalization with any real D > 2, 

- « ~ $ + ^ + , 

We shall be guided by the Witten's supersymmetric quantum mechanics where the 
use of the operators A = dq + W and B = —dq + W with arbitrary superpotentials 
W leads to the same supersymmetric pattern as above, forming the superHamiltonian 
from the two partner operators 

H{L) = B . A = p2 + W2 - W\ H{R)=A-B = p2 + W2 + W'. 

In the spirit of our recent letter [3] we shall admit that these operators are pseudo-
Hermitian [4]. 

2. BOUND STATES IN THE PSEUDO-HERMITIAN SETTING 

Beyond the elementary harmonic oscillator let us now contemplate a generalized 
superpotential 

(i) W^(r) = r -— r = r(x) = x - г є. 

In the other words, we assume that we start from the choice of a real parameter 7 
and define the pair H(L,R) of non-Hermitian operators. Such a recipe gives the partner 
Hamiltonians in the above D-dimensional harmonic oscillator form where Di 7-- DR 
in general, 

(2) Tig = # < « ) - 2 7 - 2 , # £ ; = # ( " > - 2 7 , a = | 7 | , / 3 = | 7 + 1 | -

In the light of ref. [5] the complexified line of coordinates r = x — is circumvents 
the singularity in the origin so that the bound state wavefunctions axe regular and 
expressible in terms of the Laguerre polynomials, 
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*M - r(N+g+D're+V2 e x p ( " r 2 / 2 ) • L^)(r2)-
Together with their energies 

E = E$ = 4N + 2g + 2, g = -Q • a, Q = ±1, N = 0 , 1 , . . . 

these states are numbered by the integer N and by the so called quasi-parity Q. 

3. SUPERSYMMETRY, PSEUDO-HERMITIAN WAY 

For reasons explained in ref. [5] we must assume that 7 7-- 0,1,2, . . . . Up to that 
constraint, we may visualize the above construction as one of the regularizations rec
ommended in the recent literature [6]. Here we intend to summarize and discuss the 
subject in more detail. 

In the first step we notice that the quasi-parity Q coincides with the ordinary spatial 
parity P in the limit a —• 1/2. In such a limit the basis states are well known 
(cf. Appendix A). Once we move to a ^ 1/2 we notice that the quasi-even states 
xp(r) rsj r

l/2~a still lie below their quasi-odd complements ip(r) ~ r1/2+a at any fixed N. 
Whenever we choose a > 1, the limiting transition e —• 0 moves the quasi-even 

solutions out of the Hilbert space completely. Otherwise, these states remain normal-
izable in a way depicted in Figure 1 where the following ordering is obtained for the 
N-th bunch of the energy levels, 

(3) E^ [= a(N)] < E™ [-= b(N)} < E$? [-. c(N)} < fi}+» [= d(N)}. 

This ordering is preserved along all their 7-dependent variation. Each of these four 
curves is just a once broken straight line but, in our picture, our eyes are guided by an 
infinitesimal shift of the levels in such a way that their shape may be easily followed 
(one should only recollect that the system remains undefined at all the integers 7 G N). 

In the Figure the physical, Hermitian Umiting transition e —> 0 has been performed. 
The general, e 7-- 0 has been discussed elsewhere [7]. We may only note here that in 
contrast to the latter and manifestly non-Hermitian, e 7-- 0 scheme of ref. [7], all our 
present states belong to the Hilbert space of the ordinary quantum mechanics. Thus, 
our new scheme may be interpreted as a result of a pseudo-Hermitian regularization 
recipe studied, in more detail, elsewhere [8] (cf. also Appendix B for some more details). 

The inspection of Figure 1 reveals a certain generalized supersymmetry (SUSY) 
where the standard requirements of quadratic integrability tolerate the quasi-odd levels 
at all 7 but confine the existence of the levels a(n) to the very short interval of 7 G 
(—1,1) and the existence of the levels b(n) to the interval of 7 G (—2,0). As a 
consequence, one has to distinguish between the following five mutually significantly 
different regimes. 

(1) "Far left" with 7 G (—00, —2) and with the complete degeneracy 

E\tf[=c(N)] = E$)[=d(N)] 

where the Witten's index vanishes [3] and where SUSY itself is broken because 
the ground state energy remains positive. All the spectrum is equidistant. 
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(2) "Near left" with 7 € ( -2 , -1) and with the mere partial degeneracy which 
survives from the preceding interval. There emerges the new series of ener
gies -EMQ [= b(N)] without any left partners; this possibility represents just 
a weaker form (and/or a more singular analogue) of the Jevicki-Rodriguez 
breakdown of SUSY [9] as mentioned above in Abstract. 

(3) "Central domain" with 7 G (—1,0). This is the most interesting domain 
where the properties of the well known linear special case H^LH°^ (which has 
7 = -1/2) appear generalized to the whole neighboring interval. Up to the 
exceptional (and newly emerging) ground state a(0) we may spot here the well 
known pattern of degeneracy, 

Etf [= a(N)} < Effi [= b(N)} = £<+"> [= c(N)} < 

<E$)[=d(N)] = a(N + l)<... 

so that SUSY becomes unbroken even for the spectrum which ceased to be 
equidistant at 7 7- —1/2. 

(4) "Near right" with 7 € (0,1) and with the properties which "mirror" the far 
left (the series of energies -Evm [= b(N)] ceases to exist, etc). 

(5) "Far right" with 7 G (1,00), degeneracy 

E{+f{^c(N)} = d(N-l), N>0 

and with the characteristic 7-independence of the almost completely degenerate 
unbroken SUSY spectrum. 

We may summarize that the resulting SUSY pattern is fairly unusual. It may be 
characterized by several above-listed appealing properties but one should re-emphasize, 
first of all, that near 7 = —1/2 a nice non-equidistant generalization of the textbook 
D = 1 SUSY oscillators is obtained. 

FIGURE CAPTIONS 

Figure 1. SUSY and the 7-dependence of the spectrum which is generated by the 
superpotential (1). 

Figure 2. Graphical solution of the selfconsistency condition E(g) = Q in the 
schematic example of Appendix B.3. with gjv-fc = 1 and fk = 3. 

(A) curve (11) at a,k = 0.7 in the Hermitian regime, 

(B) curve (11) at â  = 0.7 in the non-Hermitian regime (both energies are real), 

(C) curve (11) at dk = 1-4 in the non-Hermitian regime (no real root, both energies 
are complex), 

(D) selfconsistency line E(Q) = Q. 
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APPENDIX A: T H E STANDARD HARMONIC OSCILLATOR BASIS ON L2(R) 

Eigenstates of a Hamiltonian H(g) which commutes with the parity V may be 
numbered by an integer n and by the superscript * which characterizes the spatial 
parity of the state, 

(4) H(g)\n^(g)) = E^(9)\n^(9)) 

These eigenstates form a complete basis in the Hilbert space L2(R), 

(5) £ £ \m^(g))(m^(g)\ = I. 
<r=± m=0 

The usual condition of their orthonormalization reads 

/

oo 
(n^(g)\x)(x\m^(g))dx = 5mJa,T. 

•OO 

For the particular and exceptional harmonic oscillator H(0) = H^LHO) these eigen
states are proportional to the well known Hermite polynomials, 

(x|n(+>(0)> =N2nH2n(x) exp(-x2/2) = (x\sn), 
( 6 ) (x|n(")(0)> = M2n+1n2n+1(x) exp(-x_2/2) = (x\tn), 

x e R , Mn= (x/2nn!V^r) , n = 0 , l , . . . -

At each particular subscript n = m the pairs of the latter harmonic-oscillator basis 
states have an opposite parity, V \s) = +|s), V \t) = -\t). They may be transformed 
into the unitarily equivalent pairs of states 

{\T))-V2{i 1 ) { \t) ) 
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with the real VT parities, VT\S) = +|S), VT\T) = -|T> where the complex con
jugation T defined by the simple rule TiT = —i mimics the usual antilinear time 
reversal. 

APPENDIX B: MAIN DIFFERENCES BETWEEN THE HERMITIAN AND 

NON-HERMITIAN HAMILTONIANS 

B. 1: P-symmetric models and the bases on L2(R+). Any eigenstate \il>) of 
H = H^ = VHV satisfies its Schrodinger equation even after a pre-multiplication by 
the parity V. Both the old and new eigenstates belong to the same real eigenvalue 
E which cannot be degenerate due to the Sturm-Liouville oscillation theorems. One 
of the superpositions |̂ > ± Vty) must vanish while the other one acquires a definite 
parity This is the essence of the mathematical proof that the V symmetry of wave 
functions cannot be spontaneously broken, V\n^(g)) = ±\n^(g)). 

The knowledge of the spatial symmetry of the Hermitian Hamiltonian H(g) enables 
us to simplify many considerations and calculations by choosing and fixing the parity 
of the solutions in advance, 

(x\n^(g)) = ±((-x)\n^(g)). 

This permits us to live, conveniently on the semi-axis of a; € (0, oo) = R+. In such a 
setting we rarely imagine that we are tacitly changing the Hilbert space from L2(R) to 
L2(R+). We feel that this is a technicality which deserves a separate remark. 

On the new space (or, if you wish, in the old space equipped by the projector or sin
gular metric n) the inner product changes its meaning since we have to integrate over 
the mere semi-axis (symbolically (4>\i>') -» (ip\U\tpf)). This re-scales the orthogonality 
relations, 

/ •OO 1 

(nW(f l)|nI ti»W(fl)> = J (t»W(ff)|x)(x\ m^(g)) dx = ±6mn. 

Alternatively, we may omit the symbols II and switch to the two re-normalized bases 

(x\an) = M2n'H2n(x) exp(-x2/2), 
(:r|rn) = >WiH 2 r l +i(z) exp(-x2/2), 

x e R + , Mn= ( ^ n ! ^ ) , n = 0 , l , . . . 

which are both orthonormal on the half-line. In parallel, condition (5) splits in the 
two independent completeness relations 

oo oo 

] T \am) (am\ = I, ^ l r » > v7""! = L 

m=0 n=0 

The overlaps of the states with different superscripts do not vanish and form a unitary 
matrix which changes the basis in L2(R+), Its elements 

(7) Wn,m = 2 [°° (nW(0)| x)(x\ m«(0)> dx = 2 (sn \U | tm) = (an \ rm> 
Jo 
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may be computed by the direct symbolic integration in MAPLE giving the exact values 
sampled in Table 1 from which one may extract some closed formulae, e.g., 

(2n)!V4nT"2 _ ^ T j r ( n + i ) 
(5n | i i | tn) - 2 2 n + 1 ( n , ) 2 ^ - n r ( n + 1 } • 

This means that the original vectors (6) form an over-complete set and we may make a 
choice between the two alternative basis sets {|cr)} and {|r)}. They are both complete 
on the new Hilbert space £/2(-R+)-

B. 2: T^T-symmetric models. The above-mentioned rigidity of the conservation of 
parity is lost during the transition to the VT symmetric models H = Hx = VTHVT 
where any quantity exp(i<p) is an admissible eigenvalue of the operator VT since its 
component T is defined as anti-linear, Ti = - i In more detail, every rule VT\^)) = 
exp(iip) \tjj) implies that we have 

VTVT\ip) = expH<D)PT|V>) = \i/>) 

as required. The Schur's lemma ceases to be applicable. In the basis of Appendix A 
with the properties VT\S) = \S) and VT\L) = — \L), the general expansion formula 

oo 
H= E ( \Sm)Fm,n(Sn\ + \Lm)Gm,n(Ln\ + i\Sm)Cm,n(Ln\ + i\Lm)Vm<n(Sn\ ) 

m,n=0 

contains four separate complex matrices of coefficients. Once it is subdued to the 
requirement H = VTHVT, we get the necessary and sufficient condition demanding 
that all the above matrix elements of H = if* must be real, 

( o j «' rn,n = J~mn, \Jm,n = .JTn,n> Wn.n = C m n , --Jra.n = ^mtn' 

As long as the similar trick has led to the superselection rules for the spatially symmet
ric Hamiltonians, we may conclude that the VT symmetric analogue of the direct-sum 
decompositions and superselection rule is just the much weaker constraint (8). 

B. 3: Schematic finite-dimensional matrix model with and without VT 
symmetry. Let us contemplate the partitioned matrix Schrodinger equation 

« (W- , ) - (5 ) -
where F = F*, G = G* and either a = 1 (Hermitian case) or a = — 1 (VT symmetric 
case). Schrodinger equations with the matrix representation (9) generalize the models 
with VT symmetry [10]. Their spectrum may happen to be real and discrete, at least 
in the limit A -» 0, or containing the complex conjugate pairs. Let us now describe 
their nontrivial, non-perturbative solvable example. 

Preliminarily, both the Hermitian submatrices F and G of the Hamiltonian should 
be diagonalized via a pair of some suitable unitary transformations, F —* / , G —> g. 
Their respective spectra {/n} and {gn} will be assumed real and discrete. 

Secondly, we shall ignore all the small elements of the coupling matrix A in our 
pre-diagonalized effective Schrodinger equation (9), 
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(10) (f-EI-°Ajén*)*'°-
Here, a = ±1 "remembers" its respective Hermitian and non-Hermitian origin and all 
the small elements in A are irrelevant causing just a perturbative, small deformation 
of the decoupled spectrum {/n} -f {<?..}• 

Thirdly, let us choose the latter coupling matrix in the form dominated by the 
transposed diagonal, 

/ o 
0 

.4 = 

0 . . . 0 ao \ 
0 ax 0 

0 aiv-i 0 . . . 0 
\aN 0 . . . 0 0 / 

Quite unexpectedly, this choice makes the problem exactly solvable since the secular 
equation det(iIe//(,O) - EI) = 0 can be immediately factorized, 

t.U-s-j^).U-B-aj^).....j,„-B-j!!£.y 
\ 9N-QJ \ 9N-1-QJ \ 9o-QJ 

The explicit evaluation of zeros of the k-th factor is trivial, 

1 ( Ц ) Җo) = fk-<x<ik 
9N-к ~ Q 

The implementation of the selfconsistency Q = E(Q) gives the sequence of the mere 
quadratic algebraic equations 

fк-E-aaк- ;al = 0. 
J? k 

9N-k - b 

All their roots are available in closed form, 

Ek± = - (jk + 9N-k ± y/ifk - 9N-k)2 + 4a |a f c | 2 ) . 

This confirms our a priori expectations since the Hermitian energies with a = 1 are 
always real while, at a = — 1, we get the real spectrum if and only if 

(12) Ы < |Л -flлr_„|/2, fc = 0,1,...,N. 

Vice versa, we get a complex conjugate pair Ek± whenever we move to the strongly 
non-Hermitian regime and encounter a large and strong off-diagonality or coupling of 
modes in A. This is an independent linear-algebraic re-confirmation of the similar 
observations made during the explicit computations using differential equations. 
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Table 1. Overlaps y/n (sn\U\tm) defined by eq. (7). Rows are numbered by n 
0 , 1 , . . . , 6, columns by m = 0 , 1 , . . . , 4. 

1/2/2 -1/6 v/ 1/20 v/Î5 -èv/70 1/48 v/ 5 
1/2 l/4v/ЗУ2 -l/24v/Î5v/2 ávW2 -ŁVЗW2 

-l/24v/2Vб l/8v/ЗVб l/16v/І5v/б -èv/7Öv/б 4v^5v/б 
l/40л/2v/5 -l/24v! v/5 l/16v/Î5v/5 1/32 v/7бv/5 - i v/ 5v/5 

-^v/70v/2 ^ñv/Зv/70 -^v/l5vj70 35 
fi4 ^v/35v/70 

èv/2v/7 -^v/Зv/7 яl>v/l5v/7 -т^v/70v/7 ^v/35v/7 
-*W2v/231 ^ v/3лj23í -«fe Vlбv/ŽЗl Шñv/70vj231 -512 v/35v/231 
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