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RENDICONTIDEL CIRCOLO MATEMATICO DIPALERMO 
Serie II, Suppl. 59 (1999) pp. 25-47 

ASPECTS OF PARABOLIC INVARIANT THEORY 

A. ROD GOVER 

ABSTRACT. These lectures include a brief discussion of parabolic geometries in gen
eral but are concerned primarily with conformal and CR structures. Motivated by 
the problems of constructing invariant operators on tensor bundles and constructing 
polynomial invariants of such structures, the lectures will describe basic invariant 
operators for each of these structures which in a certain sense are analogues of the 
Levi-Civita connection of Riemannian geometry. Some applications of these to the 
problems mentioned will also be treated. This work was presented as a series of three 
lectures at the 18th Winter School on Geometry and Physics, Srni, Czech Republic, 
January 1998. 

1. INTRODUCTION 

In the following lectures we will focus almost exclusively on conformal and CR 
structures. Conformal structures were also discussed by Michael G. Eastwood at the 
15th Winter School [10]. Although there is a small overlap in coverage for the most part 
Eastwood's notes are complementary to the discussion here and indeed the interested 
reader is encouraged to review those notes. 

Although I accept full responsibility for the lectures presented here much of the 
discussion is based on ongoing joint work with Michael G. Eastwood and C. Robin 
Graham and has developed from joint work with Toby N. Bailey and Michael Eastwood 
[1]. Other input is indicated below. 

2. CONFORMAL STRUCTURES AND PARABOLIC GEOMETRIES 

A Riemannian geometry consists of a smooth n-manifold M equipped with a positive 
definite metric g. Recall that any such metric is a smooth positive definite section of 
©2T*M, the symmetric tensor product of the cotangent bundle to M. A (Riemannian) 
conformal n-manifold is a pair (M, [g]) where M is a smooth n-manifold and [g] is an 
equivalence class of Riemannian metrics where any two metrics g and g are said to 
be equivalent if g is a positive scalar function multiple of g. It is clear that conformal 
manifolds are equipped with a well defined notion of angle but not length. We will 
consider only conformal and Riemannian structures of dimension n > 3. 

We will write £° and £a for, respectively, the tangent and cotangent bundles to M. 
Tensor products of these bundles will be indicated by adorning the symbol £ with 
appropriate indices. For example in this notation Q2T*M is written £(<&), where the 
(• • •) indicates that the enclosed indices have been symmetrised. A choice of metric is 
a section of £(a&) and so will usually be written gab rather than just g. The pairing of 
vectors with their duals and the generalisation of this to tensors will be indicated by 
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repeated indices in the usual fashion. For example vaua indicates a scalar field resulting 
from the contraction of the tangent vector field va with the 1-form field ub. Mostly we 
will regard the indices as abstract indices and then this notation is in the framework 
of Penrose's abstract index notation [35]. In case a frame is chosen and the indices are 
concrete then this notation is according to Einstein's summation convention. Given a 
choice of metric, indices will be raised and lowered using this without mention. 

Recall that a Riemannian manifold is naturally endowed with the Levi-Civita con
nection Va. This is the unique torsion free connection on the tangent space and its 
tensor powers which preserves the metric. The curvature -Rtt6

Cd of this is known as the 
Riemannian curvature and is defined by 

(VaV6-V6Va)t;c = iZ f l 6V. 
It is well known that this curvature is a (local) invariant of the Riemannian structure. 
It depends only on the underlying metric and is independent of any choice of frame or 
coordinates. This follows immediately from the fact that the Levi-Civita connection 
is a Riemannian invariant differential operator. Other invariants can be constructed 
using this and its covariant derivatives. For example 

RabcdR0***, (V-AefcJtVrf*) andi?w:=iU0d 

are other invariants. The first two are scalar invariants and the last, which is the Ricci 
tensor, is a tensor valued invariant. It is a classical result that all local invariants, tak
ing values in tensor bundles (and polynomial in the jets of the metric and its inverse), 
arise in this way, i.e. from contractions of covariant derivatives of the curvature. 

If the metric g^ is replaced by gab = ft20a&. where ft is a smooth non-vanishing 
function, then the connection Va is replaced by the connection Va where 

Vav6 = Vav6 + Tav
b - Tbva + ?cvc6

b
a, (1) 

with <Sj the Kronecker delta and Ta := ft"1Van. This transformation of gab will be 
described as a conformal rescaling. It is helpful to define line bundles £[w] on M as 
follows. The bundle whose smooth sections are metrics from the conformal class is a 
ray subbundle (i.e. a fibre subbundle with fibre K+) of £ab. We identify this subbundle 
with a ray bundle of scalars, which we denote £+[—2]. For each w 6 R the ray bundle 

£+[w] is then defined to be the (—f) power of £+[—2]. Finally, for each tu, £[w] is 
defined to be the canonical extension of £+[w] to a line bundle. Under a conformal 
rescaling as above we have 

Va<£ = Va^ + wTa</>, 
for </> e £[w]. 

The Riemannian curvature is not invariant under conformal rescaling and the above 
Riemannian invariants do not give meaningful information about the conformal struc
ture. It is useful to observe that .Robed can be decomposed into the totally trace-free 
Weyl curvature Cabcd and a remaining part described by the symmetric Rho-tensor Pab 
according to 

Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]ci 
where [• • • ] indicates the skew part over the enclosed indices. The Rho-tensor is a 
trace modification of the Ricci tensor. It is easily verified explicitly that, in fact, Cabcd 
is invariant under conformal rescaling. However, while this is a useful observation 
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the essential problem remains since, for example, VaCtcde is not conformally invariant 
and so it is not clear, at this point, how to construct higher order invariants of the 
conformal structure. 

A related problem is the construction of linear invariant differential operators acting 
between tensor bundles. Again in the Riemannian case such operators can all be 
described in terms of the Levi-Civita connection. The key here is that, given a tensor 
field / , the list / , V0 / , VoVft/, • • • is essentially equivalent to the infinite jet of / at 
each point of M. Thus we may as well decree at the outset that we are interested in 
operators which are linear in these V derivatives of / . Each tensor Va • • • V&/ may be 
regarded as a function on the principal bundle of orthonormal frames taking values in a 
finite dimensional representation of O(n). Since O(n) is reductive such representations 
are completely decomposable and thus all possible linear operators can be described 
explicitly. 

This breaks down in the conformal case since the operators Va • • • V&/ are not 
in general conformally invariant. Clearly it would be desirable if there were some 
conformally invariant analogue of the Levi-Civita connection which packaged the jet 
information of tensor fields into representations of a reductive Lie group. In fact such 
an operator exists and there are analogous operators for CR structures and these will 
be described explicitly below. The definitions of these operators are motivated by 
the flat models of the structures concerned so let us briefly review the flat model for 
conformal structures. 

Let T denote Rn+2 equipped with a symmetric bilinear form h of signature (n+1,1), 
given in block form by 

to 0 1\ 
0 Idnxn 0 , 

V- ° °/ 
and coordinates XA. We use h to raise and lower the indices of T, for example 
XA = hABXA. The space of generators of the null cone of h is the n-sphere Sn -
this is our candidate for the flat model. Since the null cone is given by the vanishing 
of Q := hABXAXB then on the null cone \d/0XAQ = XA is orthogonal to the null 
cone. Thus tangent vectors to the null cone can be identified with vectors vA in T 
such that XAvA = 0. Functions on Sn may be identified with functions on the null 
cone homogeneous of degree 0, that is functions / such that f(XXA) = f(XA). Since, 
as an operator on such functions, dA := d/dXA lowers the homogeneity by 1, vector 
fields on Sn may be represented by vector fields vA, on the null cone where vA is 
homogeneous of degree 1 (and vAXA = 0). In fact we are free add multiples of XA to 
vA since the Euler vector field, XAdAj annihilates the functions of S". Write £A for 
the tangent bundle to T restricted to the null cone and £A(1) for this tensored with 
functions homogeneous of weight 1, £(1). Then in summary, 

£*n*{vAe£A(l) : vAXA = 0}/~, 

where ~ indicates the freedom to add to each vA multiples fXA for / G £ (0). Using 
this, hAB determines a conformal metric on Sn by 

va •-• hABvAvB. 
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It is easily verified that the right hand side is well defined. Since hABvAvB is homo
geneous of degree 2 a metric is determined by choosing a non-vanishing section of the 
bundle of functions homogeneous of degree - 2 , f £ Y£(-2), and taking the quadratic 
form given by 

va *-> £hABvAvB. 

We may also deduce from this that, as a bundle on 5n , £(—2) is the same as £[—2]. 
It is readily verified that such a metric is conformally flat (i.e. locally there is a 

conformal transformation which takes this to the flat metric). Sn equipped with a 
conformal metric in this way is the standard flat model for a conformal structure. 
Since each point of the the null cone determines a metric for the corresponding point 
of 5n , the null cone (with origin removed) is essentially the total space of the bundle 
of metrics over S71. (More precisely the future null cone gives a square root of this.) 

Let G denote the identity connected component of 0(h). This acts transitively on 
the rays of the null cone, so the conformal Sn may be identified with G/P where P is 
the parabolic subgroup of G consisting of all elements of the block form 

/ A"1 0 0\ 
r ra 0 (2) 

\-ArV/2 -Ar'm X) 

with r € Rn, ra G SO(rc) and where r* denotes the transpose of r. P stabilises the null 
ray through the point 

(°\ 
e -= : 

0 
W 

on the null cone. Since the flat model is a homogeneous space let us review some 
properties of these and and consider their generalisations. 

3. HOMOGENEOUS STRUCTURES AND CARTAN CONNECTIONS 

Let G be a Lie group and H any subgroup. Recall that as a vector space the Lie 
algebra g of G is just the tangent space to G at the identity, g = TeG. This tangent 
space is then identified with the space of left invariant vector fields via 

<ЬЛ<») = > e « ) 
Jt=o 

for differentiable functions / on G. The space of left invariant vector fields is closed 
under commutation and the Lie bracket on g is defined to agree with the commutator 
of the elements regarded as left invariant vector fields. This is consistent with the 
adjoint action of G on g. 

Functions on G/H may clearly be identified with functions on G that are constant 
up the fibres of G -> G/H. That is, functions annihilated by Y e J), where J) is the 
Lie algebra of H identified with the appropriate subalgebra of g. For such a function 
and he H 

dt fis**) 
ł=0 

IftohJW • 1 ) x ) \ 

t=0 
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It follows then that the total space of the tangent bundle T(G/H) to G/H may be 
identified with the quotient space, 

Gxffj|:=Gx|/~, 
where the equivalence relation is 

(g,X) = (gh,Ad(h-1)X) 

and Ad now indicates the representation of H on g/F) determined by the adjoint rep
resentation of G on g. 

More generally corresponding to each representation /x of H on a vector space V 
one obtains a homogeneous bundle V = (G xHV -t G/H) the total space of which is 
G xH V, that is G x V factored by the equivalence relation 

(g,v) = (gh,n(h-1)v). 

Sections of V are functions 
f:G->V 

satisfying the homogeneity condition 
f{gh) = »(h-1)f(g). 

We will use the notation £ V, or £(V), to mean the sheaf of germs of smooth sections 
of V. By a slight abuse of notation we will also use this notation to mean simply local 
sections. 

If W carries a representation p of G then the homogeneous bundle 

W:=GxHW 

is trivial. The mapping giving 

(G/H) xW=-GxHW 

is 
(gH, w) «-* (g, w) where w = p(g)w. 

It is easily checked that this is well defined. It follows that local sections can be 
identified, 

£((G/H)xW)~£(GxHW), (3) 

by 
£((G/H) xW)^w*+we£(GxHW) 

where w(g) = p(g)w(g). 
Since G xH W is trivial it admits a flat connection determined by differentiation 

with the left invariant vector fields on its trivialisation (G/H) x W, 

(Vxw)(g) := p(9~1)Cx9w(9)' (4) 
On the right hand side we have chosen a function X(.) : G —• g satisfying Xgh = 
Ad(/i~1)Xf7 to represent the tangent vector field X (on G/H). Note that it is immediate 
from the definition of Vxw that 
(a) Vxiu = 0 if X takes values in Fj. 
- so Vxiu is independent of the function X(.) chosen to represent the tangent section 
X. Observe also that 
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(b)(Vxw)(gh) = p(h-l)(Vxw)(g) 
- so (Vxw) is a section of G xH W. This property (b) is verified by the following 
calculation: 

l.h.8 = Pttgh)-1) 

= Pfr-1^-1) 

-^w{ghetx*h) 
t=o 

= P^Mg-1) 

= г.h.s. 

w l S ^ Л ) 

j^ge"1') 

<=o 

t=0 

These properties show that V is a well defined first order differential operator taking 
values in 1-forms. Finally note that it also follows from the definition that, for / a 
function on G/H, 
(c) Vfw = fVw + df®w 
and so V is a connection. 

Using that w(g) = p(g)w(g) we may expand out the right hand side of (4) to obtain 

(Vxw)(g) = Cx9w(9) + p(X9)w(g). (5) 

Of course we can take this as the definition of V and verify properties (a),(b) and 
(c) directly using this. One then observes that we do not require the triviality of the 
structure to obtain these properties. In fact one just needs: 
(a) Cxf(g) = hs/(0 e t*)] _ tf X € I) (i.e. that Cx is a fundamental vector field of 
G -> G/H). 
(b) Cxgh = Ad(/i"1).X, for all h G H. 

(c) Cxa : £1 -=-> TgG as vector spaces. 
and that p is a (g, .ff ̂ representation. Dually the only properties of the Maurer-Cartan 
form u) (recall this is the canonical form such that u)(£x) = X for all X € g) that are 
used are 
(a)w(C;0 = -YforX<EF), 
(b) {Rh)*u = Ad{h~x)u for all h e H9 

(c) For all g G G, u : TgG 9L>. g as vector spaces. 

It follows then that if, more generally, we have a manifold M and a bundle Q -> M 
with fibre H and a & valued 1-form u satisfying (a),(b) and (c) (except that G is 
replaced with Q in (c)) then (5) gives a connection on the induced bundle Q xH W. 
W here is a (g, H)-module. In this case LJ is called a Cartan connection and V is the 
corresponding induced connection onQ xHW. We will term Q the Cartan bundle for 
M. Of course one gets an associated bundle V (but not in general a connection) for 
any representation p of H on a space V. Sections of V are functions 

v:Q->V 

satisfying the homogeneity condition 

v(gh) = p(h-1)v(g). (6) 
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These observations lead us the idea of specifying Q —> M and its Cartan connection 
u as a means of describing geometries which are deformations of homogeneous (or 
flat) structures G/P. In this picture the parabolic geometries of interest in the general 
programme are geometries with a canonical Cartan connection u taking values in g 
where g is the Lie algebra of a simple Lie group G and where the fibre of Q —> M is 
a parabolic subgroup P of G (that is the complexification of the Lie algebra p of P 
is a parabolic subalgebra of the complexification of g). This includes a large class of 
structures (see, for example, [8, 9] and, in particular, [7] for details of a large subclass) 
and the canonical connections are called normal Cartan connections. In these lectures 
we shall be concerned only with conformal and CR geometries. In the case of conformal 
structures the normal Cartan connection has been described explicitly for some time 
[31]. For CR structures it was independently discovered by Tanaka [38], and Chern 
and Moser [6]. 

4. INVARIANT CALCULUS FOR CONFORMAL STRUCTURES 

The above observations suggest that the invariant theory of parabolic geometries 
is simplified if we deal with bundles induced from representations of the appropriate 
simple group G, or at least (g, P)-representations, rather than say irreducible represen
tations of the parabolic structure group P. Then, as observed above, the corresponding 
associated bundles have a connection induced from the Cartan connection of Q. From 
an algebraic point of view it is also clearly an advantage to work with G-modules as 
the theory of finite dimensional representations of simple groups is understood. Thus 
we will proceed with such a programme for conformal structures. However, we must of 
course bear in mind that in the end we must learn to deal with a large class of bundles 
which are induced from P-modules that do not extend to (g, P)-modules. The tangent 
bundle is one example. 

We will not deal here with the details of how the Cartan bundle Qt for a conformal 
manifold M, is constructed (see [31] or [9] for the details of this). It is sufficient for our 
purposes to know of its existence. We will deal in more detail with an induced bundle 
which we now describe. Recall T was introduced above to denote K?+2 equipped with 
an (n + 1,1) bilinear form h. Clearly T is a representation space for G, the identity 
connected component of 0(h). Let us write £A, which is called the tractor bundle, 
for the induced bundle Q xP T and £A for the dual co-tractor bundle. Since sections 
of £A are functions from Q to T, satisfying (6) (where now H = P as in (2)), it is 
clear that h determines a tractor metric, which we will also denote by h. This is given 
by h(v,w)(u) = h(v(u),w(u)) for v,w € T(£A) and u 6 Q or, adorning the sections 
with abstract indices, we would write hABVAwA. We will describe sections of tensor 
products of the tractor bundle and its dual, such as hAB> as tractor fields. These may 
be weighted, for example £AB[2] = £A ® £B ® £[2]. 

Since P preserves the subspace E of T spanned by e it follows that there is a 
corresponding line subbundle of £A which, by some elementary representation theory, 
is naturally identified with £[—1] and we write XA for the preferred section of £A[l] 
which gives the injecting morphism 

f [-1] -> £A 
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by 
p H. pXA. 

Similarly since P preserves the subspace of elements of the form 

/ 0 \ 

W 
for a, • • • , b € R, there is a natural bundle subjection 

£A -> £[l] 

given by 
UA i-> tf A.KA 

where AU := hABXB. (We will use /I^B and its inverse to raise and lower indices in 
this fashion without further mention.) In fact there is a composition series 

£A = £[l] + £ f l [ - l ] + £ [ - l ] . (7) 

If one chooses a section BA of £A, such that BABA = 0 and f := BAXA is non-
vanishing, then this composition series splits since £4 := £~XBA may be used to reverse 
the above maps in the obvious way. For example £ [1] -> £A by U H-> U£A. It is an 
elementary exercise to show that such a choice of tractor field BA is precisely equivalent 
to a choice of metric from the equivalence class (cf. the discussion of the flat model 
above). Thus we write 

[£A]g = e[i]®ea[-i)®£[-i] (8) 

where the [-]g indicates that the enclosed bundle has been split by the choice of the 
metric g. We may use this notation for sections also 

n= 
If the metric is given and understood then we may drop the [-]5. Under conformal 
rescaling the quantities above transform according to 

* 1 . = I n" I 

then 

Note that 

lf[UA]3=\ n 

[uA)7=\ na 1 = 1 /í+Vtr ] . (9) 
Tt/i

6 - lT»T6a j 

[XA]9 = 

One can use (8) and (9) as the definition of the tractor bundle. This is the point of 
view in [1] for example. In any case these formulae enable explicit computations in 
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terms of the tangent bundle and Levi-Civita connection and so forth. For example the 
tractor connection V, that is the connection on £A induced from the Cartan connection 
on G, is given explicitly by the formula 

(a\ ( yiaTih \ 
V d I* \ = \ Viit + Sfp+Pfo \. 

\p) \ ViP-P#t ) 

One may readily check directly that this is conformally invariant by using (9) and 
(1). This calculation is given explicitly in [10]. This definition, due to T.Y. Thomas 
[39], was discovered independently although slightly later than Cartan's conformal 
connection on Q. 

Of course the tractor connection V extends to be a connection on tensor products of 
the tractor and co-tractor bundles by requiring V to satisfy a Leibniz rule over tensor 
products. It is a useful exercise to verify that V preserves the tractor metric. Note 
however that we cannot use V repeatedly since, for example, if UA G T£A then VaU

A 

is not itself a section of a tractor bundle. Of course this problem would be resolved if 
VaU

A could be identified with a section of some appropriate tractor bundle. Another 
'problem' with V is that it is not invariant on tractor bundles of weight w ^ 0. 
In fact if / is a tractor field of weight w then one has (under conformal rescaling) 
V a / = V a / + w T 0 / since, on £[w], Va is just the Levi-Civita connection. As we shall 
see we can deal with both of these points. 

For each choice of metric g from the conformal class define an operator DA by 

P4/]s:=[va/j 

where / is a function of weight w, or is a section of a weight w tractor bundle but has 
indices suppressed. Let us compare DA for the metric g with DA for the metric g. 

On the other hand 

[ÓA/fr = [ V + tuTV I 
V - T t v 7 - 1ц>тьт

ь/ ) 
'i-A 

= [D / - ^ ( T t V 6 / + ^T*TV)] ? . 

So 

ĎjJ = ĎAf + XA(TVif + ^V?if). 
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Thus although this shows that the operator DA is not invariant it follows immediately 
from this transformation formula that the operator 

DAP:£*[w]->£[AP]®£*[w] 

given by, 

DAPf := 2X[PDA]f (10) 

is invariant. Here the * indicates any tractor indices, so / in (10) is a weighted tractor. 
For a given choice of metric this may be expressed 

• <- P - > 

( 0 0 wf\ 

o o w • (ii) 
-wf -Vpf 0 / 

The operator DAP is a reasonable candidate for a conformal analogue of the Levi-
Civita connection. As observed it is invariant on weighted tractors. It is a first order 
operator and, furthermore, it is clear from (11) that, at any point and, for / of any 
weight, the list / , DAPf, DAPDBQJI ' ' * has all the information of the infinite jet of 
/ . Also DAP satisfies a Leibniz rule. To show this it is clearly sufficient to show that 
DA behaves as a derivative. If f\ and f2 are section of tractor bundles of respective 
weights w\ and w2 then 

( (t/Ji + w2)fxf2 \ ( (wxfi)f2 + fi(w2f2) \ 
V*(/!/2) = /2VV1 + /1V/2 

( wji \ ( w2f2 \ 

vJ+/ih*J 
= fiDAf2 + f2D

Afly 

as required. Finally note that it is easily verified directly that DAP preserves the 
tractor metric, DAphBc = 0j thus the action of DAp commutes with raising and low
ering of indices. These properties are each analogous to properties of the Riemannian 
metric connection. On the other hand there remains the problem of employing this 
operator on non-tractor bundles and extracting operators which take values in irre
ducible bundles. These are essentially algebra problems and dealing with them in 
general involves understanding how certain P-modules arise in the composition series 
of the G-modules inducing the tractor bundles. In general this is a hard problem and 
not one we will deal with directly. Rather we will describe some general procedures 
for extracting invariants and invariant operators from the tractor calculus without a 
direct confrontation with the representation theory. 
4.1. Some tractor calculus. As an elementary example of using the invariant op
erator Djip to construct other operators and objects consider hABDA[qD\B\p)0f for 
/ some weighted tractor, where (• • • )o indicates the symmetric trace-free part with 
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respect to the enclosed indices. A straightforward calculation using the definitions 
above gives 

DApXB = 2X[phA]B. 
Using this and expanding out the above using the definition (10) of DAp we see that 

hABDA{QD{B{P)of = -X{QDP)of (12) 

where Dp : £*[w] -* £*[w — 1] is some differential operator which is clearly also 
invariant on weighted tractors. 

An explicit formula for Dp is easily extracted from (12), 

DAf ={n + 2w- 2)DAf - XAUf, (13) 

where, 

• / := DPDpf = VpVp / + wPf (14) 

and P is the trace of Pa&. Prom this formula it is easily verified that DA is in fact 
precisely Thomas's _D-operator as in [1, 40]. Note the useful identities 

XADAf = w{n + 2w-2)f 

and 

DAXAf = {n + 2w + 2){n + w)f (15) 

for / a weighted tractor of weight w. 
The commutators of the various invariant operators above produce invariant cur

vature objects. The curvature of the tractor connection V on £c, £labCL, is defined 
by 

( V a V 6 - V 6 V a ) t / c = fifl,
c
L[/L, 

and, given a choice of conformal scale, dabKL is represented by 

( 0 0 0 \ 

2V[aP6]* Cji 0 . 
0 -2V[aPb]l 0/ 

The vanishing of this is precisely equivalent to the structure being locally equivalent 
to the flat model. Using this it is straightforward to show that on flat structures 
[DA, Dp] = 0 as an operator on any weighted tractor bundle. Furthermore in the 
general case (that is on non-flat or curved structures) [DAj Dp]f = 0 if / has no 
indices, i.e., 

[DAlDP]f = 0 for feT£[w]. (16) 
Given a choice of metric write £IAB

CL for the tractor object 
/0 0 0\ 
0 iUCL 0 . 

\o o oy 
Of course this is not invariant but, in view of the composition series (7), it follows that 
X[AQBC\KL is invariant and therefore so is 

WAB
C

L := -*—DKX[KSlABfL. 
n ~~~ __• 
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Explicitly this is given by 

WAB
C

L = (n- A)ilAB
c
L + 2X[ADKQB]K

c
Li (17) 

so, for n ^ 4 this extends ilab
KL to an invariant tractor object. This also turns up in 

the commutator of the tractor D, 

[DM DB)VC = (n- 2)WAB
c
LvL + 4(n - 2)X[AnB]K

c
LDKvL, 

for vc G T£c[0], from which one can also deduce its invariance. 

4.2. Invariant powers of the Laplacian. Joint work with Michael Eastwood. 
The construction of linear conformally invariant differential operators is an area of 
considerable interest [3, 4, 16, 20, 28, 32, 37, 41]. Some uses of the tractor D operator 
to manufacture such operators were described in Eastwood's notes [10], in particular 
the role of DA in the powerful curved translation procedure of Eastwood and Rice [16] 
was indicated there. In the following we will focus on a more elementary use of DA 

which directly exploits the tractor calculus. 
It is immediately clear from (13) that if / is a tractor of weight 1 — f then • / is 

invariant. In the case that / is just a weighted function this is the usual conformally 
invariant Laplacian or Yamabe operator. However the Vp in (14) means the coupled 
tractor-Levi-Civita connection and our derivation of this operator from DAp proves 
that • / is invariant even if / has tractor indices. For example, if fAB e T£AB[l — | ] 
then EfAB is invariant. Following Eastwood [10] we will thus say • is strongly invariant 
since it remains invariant when acting on tractor fields rather than just weighted scalar 
functions. 

Now consider DADBf where / G r £ [ 2 - § ]. Since [DA, DB]f = 0 we have D[ADB]f = 
0 (where, as usual, [•••] indicates the skew part over the enclosed indices). On the 
other hand DBf has weight 1 - *. So 

0 = D[ADB]f = X[AODB]f 

and it follows immediately that 

DADBf = XAXBU2f (18) 

where U2f is an invariant differential operator. We can deduce immediately from 
(13) that this is fourth order with leading term A 2 / . Of course U2f is the well known 
operator which was apparently first introduced by Paneitz [34], but also independently 
discovered by Riegert [36] and Eastwood and Singer [17], 

° 2 / = A 2 / + 4 P a 6 V f l V 6 / - ( n - 2 ) P A / - ( n - 6 ) ( V a P ) V f l / 

+ (n-4)(Jp2-Pa6Pa6-iAP)/. 

This argument does not directly generalise to the higher order powers of the Lapla
cian. Note however that our calculations have shown that 

UDBf = -XBU2f. 

Thus using (15) 
DBUDBf = (n-A)U2f. 
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Thus the formula on the left recovers D2 except when n = 4. This suggests using 

DI---DBUDB---DIf 
J c — 1 

to recover the higher order analogues of the D2 operator. If / £ TS [k — ~] this is 
certainly invariant, since, recall each Dp lowers the weight by 1, so DB---Djf has 
weight 1 - ?}. Now let us consider the case that the structure is (conformally) flat. If 
the tractor connection is flat, then 

X[AUD\B • • • DE]DF]DG - • • Djf = D{AD\B - - - DE\D^DG - - - Djf = 0, 

since the tractor D operators commute in the flat case. Thus, in this case 

UDB •«- D / / = XB • • • -Kj(A*/ + lower order terms). 

It then follows easily by repeated use of (15) that 

D1 - • • DBUDB • • • Dif = nj -^ i - k)(n - 2% - 2)A*/ + lower order terms. 

However the latter result must also hold in the curved case since an explicit calcula
tion to verify this would be the same in the curved case except that curvature terms 
could arise upon commuting covariant derivatives (and it is easy to see these curvature 
terms must be of lower order in / ) . Thus D1 • • • DBUDB - - - Dif gives higher order 
analogues of D2 except when n is even and n < 2k. This gives these operators as 
explicit formulae. (However to expand these formulae in terms of the Levi-Civita con
nection and curvature terms is extremely tedious.) The observation that the formulae 
D1 - • • DBUDB • • • Dif would recover these invariant operators was first made by East
wood [11]. Eastwood also observed that it is immediately clear from these formulae 
that the operators recovered are strongly invariant. This is because the operators DA 

are invariant on weighted tractors and, as observed above, D is invariant on tractor 
fields of weight 1 — \. The existence of these invariant operators (for A; > 2) is due to 
C.R. Graham, R. Jenne, L. Mason and G. Sparling [25]. In fact they also show the exis
tence of another in the series, namely an operator of the form A*/+lower order terms 
for / a (weight 0) function and 2k = n the dimension of the manifold. In fact one of 
these was recovered above. Viz D 2 / in dimension 4. Note from the recovery of this as 
in (18) we cannot conclude that D2 is strongly invariant since the argument there used 
that [DA,DB]f = 0 which is not the case if / is allowed to take values in a weighted 
tractor bundle. In fact D2 is not strongly invariant in dimension 4, see [10] for an 
explicit proof of this. It seems likely that an adaption of the argument which led to 

n 

(18) will produce the conformally invariant operators A 2 / + lower order terms [13]. 
If so this would enable the family of operators to be put in a special self-adjoint form 
that would have applications in spectral theoretic questions [5] (See also [12] for some 
progress on this problem). 

It is worth observing at this point that C.R. Graham has shown that in dimension 
there is no conformally invariant operator with principal part A 3 / [26] (even though 
there is on the conformally flat structures). It seems likely that in even dimensions 
n = 2k there will in general be no conformally invariant linear differential operators 
with principal part A' for £ > k. 
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4.3. Invariants of conformal structures and polynomial invariants. There has 
been considerable interest in the programme of constructing invariants of parabolic 
structures since Fefferman initiated the programme by attempting to describe the 
local scalar invariants of CR structures [18]. The programme was expanded in [19] to 
include conformal geometries. These both involve embedding the structure in a higher 
dimensional structure which is equipped with a metric. Then invariants of the original 
parabolic structures can be obtained as linear combinations of "complete contractions" 
of the curvature tensor, and its covariant derivatives, of the ambient classical structure. 
For even dimensional conformal structures and CR structures this ambient metric 
construction is obstructed at finite order. For the cases where this works there remains 
the algebraic problem of determining to what extent all invariants arise via these 
complete contractions. This problem was essentially solved by Bailey, Eastwood and 
Graham in [2]. It follows from this, for example, that all invariants of odd dimensional 
conformal structures arise from the complete contractions alluded to. The tractor 
calculus offers an avenue to avoid the problem of the obstruction to the ambient 
metric constructions. In [21] is described a complete invariant theory for projective 
geometries via tractor calculus techniques. However this is not a true test case in the 
sense that were one to treat the projective structures along the lines of the Fefferman-
Graham approach then there would be no obstruction to deal with. Nevertheless one 
can use the tractor calculus to produce invariants "beyond the obstruction" [22]. Let 
us sketch here some of the ideas involved. 

Just as Va and the Riemannian curvature Rabcd may be used to construct Riemann-
ian invariants, analogous complete or partial contractions involving the operator DA 
and the tractor object WABCD, introduced above, may be used to construct invariants 
of a conformal structure. For example corresponding to the Riemannian invariant 
ViVj(RcdlkRCd'k) we may write the conformal invariant 

DJDJ(WCDIKWCDJK). 

In fact using (17) and a calculation by Graham [27, 1], one obtains that this is of the 
form 

\(n - 8)(n - 4)2((n - 6)FG + constant x C^C19^), 

where FG indicates an invariant that Fefferman and Graham obtained in [19]. Note 
that although, by construction, DJDJ(WCDIKWCDJK) is clearly invariant in all di
mensions, it goes wrong in dimensions 4,6 and 8 in the sense that the order of the 
invariant drops in these dimensions. This is no surprise as invariants constructed in 
this way using just DA and WABCD are closely related to the invariants obtained by 
the Fefferman-Graham construction [19, 2]. However, as mentioned above, the latter 
is obstructed at finite order in even dimensions. 

This problem can be circumvented, at least partially, by direct use of the opera
tor DAP to construct quasi-Weyl invariants. It is awkward to discuss these in the 
context of invariants of structure so let us consider the construction of invariants of 
sections of £[l — §]. This problem in the case of conformally flat structures is an 
interesting model problem since the general problem is not amenable to treatment by 
"harmonic extension" as in [14, 2]. For our current discussion there is no need, at this 
point, to imagine that the structure is flat. For / € £[l — ?[] consider the expression 
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DpDQgABf2DA{PD\B\Q)J- It is straightforward to show that 

DpD<>gABf2DA{PD\Bmf = (2 - n)2(3 - n)(4 - n ) / 2 DL (19) 

where, recall, 
n / : = V . V / + ( l - 2 ) P / . 

Note that (19) vanishes in dimension 3 and 4. We can improve on this result. By an 
easy calculation one obtains that, in any dimension, 

9ABf2DA{PDimQ)J = XPXQfUf. 

So f2Uf is an invariant for all n. However this last result depends crucially on the 
fact that, for each n, the weight of / is 1 — n/2. In contrast using (12) we have that 

9ABf2DA{PD\B\Q)J = X{QJP)o (20) 

for / of any weight. Since we know in advance that the left hand side has this form 
we may as well "remove" the XQ and form DPJP. Now for / € £(1 — | ) we have 

D p J P = ( 2 - n ) 7 2 0 / 

which compares favourably to (19). The observation (20) which allowed this improve
ment is typical of a general result. It is beyond the scope of these lectures to discuss 
this is in detail but let us consider another example. Suppose we begin with the ex
pression pac^6c(V0V6/)VcVe/, where for the moment we assume nothing about the 
weight of / . Now formally replace each gac with hAC, each Vtt with DAP (note the 
upper case A corresponds to the lower case a). To obtain 

hAChBE(DAPDBQf)DCRDESf, 

or (DAPDBQf)DAjiDB
sf Now take the trace-free symmetric part of this 

JPQRS := {DA{PD\B\Qf)DA
RDB

s)J. 

By general elementary arguments one can show that in such expressions half the indices 
arise from free (i.e. uncontracted) X's. That is JPQRS is necessarily of the form 

JPQRS = X{PXQJRS)0* 

where we will assume that JRS is symmetric and trace-free. One can easily show 
directly that the map £{Q...V)0[W] -> £{PQ...V)0[W +1] , given by fQ...v i-> X{PfQ...V)0, is 
injective and it is straightforward to describe the inverting map by an explicit formula. 
Thus the valence 2 tractor field JRS must also be invariant. It follows then that 

J := DRDSJRS 

is also conformally invariant. We describe this as the quasi-Weyl invariant corre
sponding to the original Riemannian invariant expression ^^^(VaVfc/jVcVe/ and 
J is an explicit formula which is clearly invariant for / of all weights and in all di
mensions. Unfortunately it is an extremely tedious calculation to describe such an 
invariant J in terms of Va derivatives of / , and so establish, for example, that the 
invariant is non-vanishing. However the story is different if one starts off with an 
expression for a conformal invariant rather than just any Riemannian invariant. More 
precisely we want now to start with an expression which is non-trivial and invariant 
on conformally flat structures. Suppose, for example, that this time we begin with 
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the expression I = ^V^VaV&ZJVcVe/. As above, if we formally replace each g™ 
with hAC, each Vfl with DAP and then take the trace-free symmetric part then we 
obtain an expression IPQRS which by general considerations (and without using any 
information about the weight of / ) we know to be of the form IPQRS = X(PXQIRS)0. 
Thus the trace free symmetric object IRS is invariant and the corresponding quasi-
Weyl invariant is DRDSIRS. One can conclude that this does not vanish when the 
weight of / is 1 - | since it does not vanish on the conformally flat structures. To see 
this we must note that for this weight I = poft^ce(VaV6/)VcVe/ is invariant on flat 
structures (i.e. conformally flat structures with metrics such that P^ = 0). Exploiting 
a general argument [22] which uses this invariance of 7, one can deduce that, at least 
on the flat structures, 

IRS = XRXSI 

thus 
DRDslRs = 2n(n + 2)I. 

Again this is typical of a general result and using the general results called upon above 
one can show that for / G 6[1 — !*] all curved analogues of (scalar) invariants which 
exist in the conformally flat case arise as linear combinations of a countable set of 
basic quasi-Weyl invariants and the two invariants D/ and fUf. The details are in 
[22]. 

The corresponding treatment of conformal structure invariants yields similar results 
for invariants of the curvature, again the details are in [22]. 

5. CR STRUCTURES 

with C. Robin Graham 

Here we wish to give a brief description of the basic tractor calculus for CR struc
tures. The discussion here is based primarily on joint work with C. Robin Graham. 
Conversations with Kengo Hirachi, Michael Eastwood and John Lee have also been 
extremely useful. Where possible the conventions for pseudohermitian structures as in 
Jerison-Lee and Lee's articles [30, 33] have been followed. Where the notation varies 
from Lee's it is so the formulae are as formally similar as possible to the analogous 
conformal formulae above. 

For M a smooth (2n + l)-dimensional orientable smooth manifold a CR-structure 
on M is an n-dimc complex subbundle T1'0 C CTM s.t. T1'0 n T0'1 = {0}, where 
T0'1 := T1'0. We will assume this is integrable i.e. [T^.T1'0] C T1'0. 

A g-form is said to be of type (q, 0) if it vanishes upon contraction with a vector in 
T0'1 and of type (0, q) if it vanishes upon contraction with a vector in T1*0. We write 
ftq*° and £1°* for respectively the bundle (or sheaf of germs thereof) of (q, 0)-forms and 
(0,g)-forms. The canonical bundle ftn+1'° has fibres of complex dimension 1. We will 
assume this bundle admits an (n + 2)th root and denote by 5(1,0) the bundle which 
is the — l/(n + 2) power of fin+1»°. For w - w' G Z the bundle of (w, w1)-densities, 
6(w,wf), is defined to be (6(l,0))w® (6(l,0))w> (these conventions are consistent with 
Eastwood and Graham [15]). 

Set 
iJ = Re(T1'o0T0'1). 
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This is a 2n dim« subbundle of TM. H carries a natural complex structure map given 
by J(v + v) = i(v - v) for v E T1,0. Since M and .ff are orientable M admits a 
pseudohermitian structure, viz a non-vanishing real form 9 s.t. if =ker0. Associated 
with this is the Levi-form: 

g(v,w) = dO(v, Jw) for v,w € H (or € Cif). 

We will assume M is strictly pseudoconvex, that is we can choose 9 so that g is positive 
definite, and we will only work with such 9. Given a pseudohermitian structure 0 define 
T(= To) to be the unique vector field on M satisfying 

TJ 9 = 1 and Tj dO = 1. 

We usually work with an admissible coframe, that is a set of (1,0)-forms {0a}, a = 
1, • • • ,n, satisfying 9a(T) = 0 and such that, upon restriction to T1,0, these form a 
basis for (T1'0)*. Indices a^a, and so on, below refer to such a frame, the conjugate 
frame or the dual to either of these. In such a frame the components of the Levi form 
are given by gai and are used to raise and lower indices. 

A choice of pseudohermitian structure determines a connection the (Tanaka)- Webster-
Stanton connection via: 

V0 = 0 
Vg = 0 

[V,J] = 0 
and the torsion equations, 

[V f l ,V r]/ = _4&V5/ 
[V 5 ,V r ] / = AaVbf 
[Va,V5]/ = -igaoVTf 

where Aa0 = A(ab) = -4fij. The curvature of V is determined by a tensor Raici (see 
[33]), Aab and VCJ4O& and barred versions of last two. The Webster-Ricci tensor is 
defined 

-̂ a5 = -Re o5 
and the Webster scalar curvature 

R = .Ra . 
From these one can define the (CR) Rho-tensor. 

^^^Tг^-гí^TЇ)^) 
Choosing a new scale for 9 

results in 

9 i-> = Q = er 

g^Sìg. 
We write Ta for VaT and so forth. 

Each choice of g from the conformal class may be identified with a section of the 
line bundle £(—1, —1). Henceforth use g to denote the section of ^ ( 1 , 1 ) which gives 
this isomorphism and for each choice of CR-scale 0 < U 6 £(1,1), U = Z7, write gW 
for the form determined by U: 

5 w = il-V 
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Similarly write 0 for the £(1,1) valued 1-form and write O^ for the form determined 
by a choice of CR-scale. If V is the connection determined by 0^ then VIZ = 0 = Vg. 

A change in CR-scale U i-> U = e~rU induces transformations to V •-.> V and to 
the curvature and so forth (see [33]). For example, for an unweighted co-vector vb 

Vau6 = Vavb - vaTb - vbTa 

Vav6 = Vavb + gtaT^c 
V0Vfc = V0V6 + iT aV ar;6-iT f lV f l t ;6-iv c(V6T c-T cT6) 

(where Vo is the line bundle valued version of V T ) and for / G £(w, w') 

vT/ = V a / + t£;,Tfi/ 

and so on. 

5.1. THE CR TRACTOR BUNDLE. For a given choice of CR-scale £j is iden
tified with a direct sum 

\SA\U) = £(i, o) e £a(i, o) e £(o, -1) 

and under change of CR-scale (as above) 

vA 
= U> L T„ + T„<T 

\pj Vp-TVi-KT^ + iTo^y 
Write Z1 for the section of £7(1,0) giving the map Zl : wj —>• a. There is a tractor 
Hermitian form hjj given by 

hi jU*VJ = &5/ .V + CT7 + pa 

for 

Define 
(n + 2)Qa = V f f lP-iV6

J4a t 

where P := Pj = 5(S+i)#- Let 

S = - i ( V a Q „ + VBQa + P^P0* - AatA^). 
n 

Then on an unweighted tractor 

there is a CR invariant tractor connection given by 

/ V*7 - Tb \ 
Vbi>A = V6Ta + iA^a 

V Vhp-PSTa + Qbo ) 
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( Vla \ 
VIVA = VJT0 + Aajp + P^a , 

\ Vip + iA\Ta-Qia ) 
and 

( Vo° + £-2Po-ip \ 
VOUA = V0ro - iP*T„ + ^PTa + 2iQaa 

\ V0p + ^Pp + 2iQaTa + iSa ) 
For a given choice of CR scale we define a first order differential operator DA : 

S*(w,w') -+ €A®£*{w - l,w') by 

DAf := I V 8 / J 

where £*(w,w') indicates a tractor bundle of arbitrary valence and weight (w,w'). 
Calculating the transformation of this under a change of CR scale one obtains 

DTf = DAf + ZA(TbVbf + | T 6 T 6 / + zTo). 

So, in analogy with the conformal case, we have that the operator defined by 

DAP := 2 ^ . 0 4 (21) 

is invariant on weighted tractor bundles. In the CR case this operator is only part of 
the story. Toward understanding this let us digress to the CR flat model and interpret 
DAp in that context. 

5.2. The flat model. In this subsection we will reuse some of the symbols introduced 
above (such as, for example, ZA) to denote special objects related to the in the flat 
structure. This should cause no confusion as it will turn out that the new usage is in 
fact consistent with the use of these symbols in the general case. 

Let W denote C1"1"2 with complex coordinates 

ZA=\ Z* ) , a = l , . . . , n 

and let hjj denote the (n + 1,1) Hermitian form on W given by 

hABZAZ* = 2ReZ°Zn+1 + haiZ
aZl, 

where h^ is the standard positive definite Hermitian form on C". Let us write Q for this 
as a function on C1"*"2, i.e., Q := hA$ZAZB. The null cone is given by the vanishing 
of Q. We write N for this in C1*2 - {0}, M := {ZA £ 0 : Q = 0}. The flat model 
for CR geometry is the image Q of this null cone under the map C1"1"2 — {0} -> QPn+i. 
Thus Q is also given by the vanishing of Q but now where regard Q as a function on 
CPn+1. 

In this picture sections / of £(w,w') on Q may be identified with functions on M 
which are homogeneous in the sense that 

f(XZ) = XwXw'f(Z). (22) 
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We will imagine that such functions are in fact (arbitrarily) extended to functions 
on C*+2 that are homogeneous in the sense of (22). In terms of such homogeneous 
functions it is easily verified that the operator DAp on Q is given by 

&Apf = 2Z[PdA]f, 

where dA := d/dZA. This operator is clearly covariant under the (parabolic) subgroup 
P of SU(n + 1,1) which stabilises the null ray through the point ZA. Note also that 
it is intrinsic to Q in the sense that, on Q, it is independent of how functions are 
extended off Q. To see this suppose that / and / are functions on C1"1"2 satisfying (22) 
and where 

f=f+Qh 
for some smooth homogeneous function f\. Thus / and / agree on N. Then 

2Z[PdA]f\Q = 2Z[PdA]f\Q 

since 

2Z[PdA]Qfi = Z[PhA]sZBfi + Q2Z[PdA]fi 

= Z[PZA]fi + Q2Z[PdA]fi 

= Q2Z[PdA]fi 
which vanishes on Af. 

Thus, in this setting, we can understand DAp as an invariant and intrinsic operator 
on Q embedded in the ambient CPn+1 . This might inspire us to look for other such 
operators. Indeed consider 2Z[§dA]f7 meaning (Z%dA — ZAd$)f. Note that 

(ZsdA - ZA8B)Q = ZQZA - ZAZQ = 0. 

Thus by a similar argument to the one just above we can quickly deduce that DAgf := 
2Z[gdA]f is another invariant operator which is intrinsic to Q. 

5.3. The basic invariant operators. Since the operator DAgf just observed on the 
flat model is first order one would expect it to extend to the general curved setting. 
This is the case and it is easily verified directly that 

DASf := ZBDAf - ZADsf - ZAZs\iV0f + ^ - = ^ P / ] 
71 + I 

defines an invariant operator on weighted tractor bundles. 
The pair DAp and DAg are basic first order CR invariant operators which between 

them correspond to the operator DAP of conformal structures. It requires both of 
these to recover an analogue of the conformal tractor D operator: 
For / a tractor field of weight (tu,tu'), the CR invariant operator 

DBf 

may be defined by 

- Z{ADB)f = hp*DimDB)Qf. (23) 

This definition manifestly gives DB : £*(w, w') -» £*(w — 1, w') as a strongly invariant 
operator. More explicitly 

DBf = (n + w + w')DBf - ZBVf, (24) 
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where here 

D/ := [V°V0 + iwVo + t»(l + ^ ' " T V l L 
n +1 

and the invariance of DB is readily verified directly using this expression. The opera
tors DAP and DAB can be recovered from DB and its complex conjugate via 

(n + w + w')DAPf = 2Z[PDA]f 

and 

(n + w + w')DABf = 2Z[BDA]f = ZBDAf - ZADBf. (25) 
It is straightforward to interpret DA in the flat case. Suppose that / is homogeneous 

on M as in (22). Let / be a "harmonic" extension of this to C l + 2 in the sense that / 
is homogeneous on C"+2, as in (22), and satisfies 

/ V = / and hA»dAdBfU = 0. 

Then it follows easily from (23) that DBf is given by 

DBf = (n + w + w')dBfU-

If n + w + w' j£ 0 one can always find such an extension and so for such weights this 
determines DB! in the flat case. In fact it seems that this "ambient" description of 
DA, as well as the similar descriptions of DAP and DAB, can be generalised to a curved 
setting via the Fefferman ambient metric construction [18]. This is work in progress 
with Kengo Hirachi. (Indeed it was in this joint work that we first constructed the 
operator DAB.) Results along these lines for the conformal case have already been 
obtained by Graham [27]. 

5.4. Invariant Powers of the Sub-Laplacian. In analogy with the construction of 
the conformally invariant powers of the Laplacian we can use the tractor calculus to 
construct powers of the so called sub-Laplacian. 

Note that if / is a tractor field of weight (iu, w') such that n + w + w' = 0 then from 
(24) 

DA! = ZADf. 
Clearly then D is a CR invariant differential operator, 

D : £*(w,-n-w)-> £*(w -1,-n-w- 1), 

where * indicates any tractor indices. This is the sub-Laplacian of Jerison-Lee [29] 
(in fact a slight generalisation in the sense that [29] deaj_only with the case that 
w = w' = —n/2). One might imagine that the operator • / , which arises similarly 
from DAi would give another CR invariant differential operator on / € £*(w, —n — w). 
In fact 

(D - D) / = (n + w + w')\iV0f + - ^ f ^ P / ] -
n +1 

Thus on tractors / of weight (w, w') such that n + w + w' = 0 the operators D and D 
agree. 

In contrast the operator DAUDAf is not in general the same as DAUDAf so it 
seems natural to take \(DAODA + DA^DA)f as the definition of the corresponding 
fourth order operator for / of weight (iu, 1 — n — w). It is straightforward to show this 
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is non-vanishing except when n = 1 and w = w1 = 0. Detailed results on the higher 
order analogues of these operators will appear in [23]. 

5.5. Concluding Remarks. For CR geometries one can define a notion of quasi-
Weyl invariants essentially by analogy with the conformal definition only now we have 
two operators, DAP and DAQ, available to use in such constructions. It is clear that 
by an appropriate adaption of the treatment of the conformal case (as in [22]) one 
can produce invariants that are "beyond the obstruction" to the Fefferman ambient 
construction. However at this point a detailed study of this case has not been made. 

The tractor calculus discussed above for conformal structures is based on the stan
dard (or defining) representation of SO(n+l, 1). It is also possible to instead develop a 
local twistor calculus based on the fundamental representation of Spin(n+1,1). In joint 
work with Jan Slovak [24] this has been described for four dimensional geometries and 
their generalisation to n-dimensional almost-Grassmannian (or paraconformal) struc
tures. 
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