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A Property of Doubly Stochastic Densities 

ANZELM IWANIK 

Wroclaw*) 

Received 15 March 1989 

During the 17th Winter School on Abstract Analysis (Srni, 1989), Professor E. 
Behrends**) posed the following question 
Given a probability density function f(x, y) on the unit square satisfying the equalities 

jf(x,y)dy = $f(x,y)dx=l 

is it possible to find a (Lebesgue) measure preserving transformation T of the unit 
interval such that f(x, Tx) > 0 a.e.? 

We shall show that the answer is affirmative. 
For any measure preserving transformation T of [0,1] denote by \iT the (doubly 

stochastic) measure concentrated on the graph of T, i.e. the measure determined by 
the formula 

fiT(A x B) = m(Bn T~\A)) 

where m is Lebesgue measure on [0,1] and A, B are Borel subsets of the unit interval. 
In general, a Borel probability measure pi on [0, l ] 2 is called doubly stochastic if 
li(B x [0,1]) = /i([0,1] x B) = m(B) for any Borel set B. The measure djx(x, y) = 
= f(x, y) dx dy is clearly doubly stochastic and absolutely continuous with respect 
to m x m. 

Our solution of the problem relies on a result of V. N. Sudakov ([2], Prop. 42 
and Thm. 8). Its convenient reformulation says that for any absolutely continuous 
doubly stochastic measure \L there exists a barycentric representation of \i over the 
measure \iT with T measure preserving and invertible (m.p.i.). More precisely, there 
is a probability measure v on the group <3m of all (equivalence classes of) m.p.i. 
transformations of the unit interval such that 

li(C) = \liT(C)dv(T) 

for any Borel subset C of the unit square. Here <@m is endowed with its natural 
standard Borel structure determined by the functions T-> m(B n T~X(A)). 

*) Instytut Matematyki Politechniki Wroclawskiej, Wybrzeze St. Wyspianskiego 27, 50-370 
Wroclaw, Poland 

**) The problem was originally stated by Professor T. M. Rassias of Athens. 
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We also remark that the assertion f(x, Tx) > 0 a.e. is equivalent to the existence 
of a null set N such that graph T c {(x, y):f(x9 y) > 0} u (N x [0,1]). 

Now the solution is contained in the following theorem 

Theorem 1. Let \i be an arbitrary absolutely continuous doubly stochastic measure. 
If //(C) = 1 then there exist an m.p.i. transformation Fand a null subset N of [0,1] 
such that graph T c C u (N x [0,1]). 

Proof. We may assume that C is Borel. Now by the Sudakov theorem we get 

1=H(C) = J^ r(C)dv(T) 

so nT(C) = 1 for v-a.e. T. This means that the intersection C n graph T projects 
onto a set of measure 1 in [0, 1]. In other words, 

graph T c C u ( N x [0,1]) 

for some null set N. 

Remark. Actually, Sudakov's result gives more as the m.p.i. transformations in the 
barycentric representation of JX have pairwise disjoint graphs (they arise from 
a measurable partition of the unit square). Therefore we obtain continuum many T's 
with disjoint graphs all satisfying the assertion f(x, Tx) > 0 a.e. 

Now we present another result of the same kind which can be viewed as a topo
logical variation of Theorem 1. 

Consider a weak* continuous mapping x -> fix from [0, 1] into the set of proba
bility measures on [0,1]. Denote by \i the associated probability measure on the unit 
square, i.e. for any Borel subset C of the unit square let 

//(C) = \ixx(Cx)dx 

where Cx = {y: (x, y) e C}. With this notation we have 

Theorem 2. Let the topological support of each \xx be connected ( = a subinterval). 
If C is such that jn(C) = 1 then there exist a continuous transformation T: [0,1] -> 
-> [0,1] and a null set N in [0,1] such that graph T c C u (N x [0, 1]). 

Proof. The mapping x -> \ix can be considered as a Feller transition probability. 
By Thm. 2 of [1] there exists a Borel function of two variables cpjx) (co and x are 
from the unit interval) which is continuous with respect to x and such that 

Vx(A) = J 1A(<P<O(X)) dco 

for any Borel subset A of [0, 1]. 
Now we have by Fubini's theorem 

1 = fi(C) = J fix(Cx) dx = JJ lc>co(*)) dco dx = J(J lcjcpjx)) dx) dco 

so 

lcj<pjx))dx = 1 co-a.e. 
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This means <p^(x) e Cx9 or equivalently (x9 (pjx)) e C9 except for xeN^ with 
m(N(0) = 0. In other words, 

graph (pn c C u (N x [0,1]) for a.e. co . 
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