Acta Universitatis Carolinae. Mathematica et Physica

Rainer Lind
Generalized Banach-Mazur distance

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 30 (1989), No. 2, 99--104
Persistent URL: http://dml.cz/dmlcz/701801

Terms of use:

© Univerzita Karlova v Praze, 1989
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Generalized Banach-Mazur Distance

RAINER LINDE

Jena*)

Received 15 March 1989

For two isomorphic Banach spaces X and Y the Banach-Mazur distance is given by

$$
d(X, Y)=\inf \left\{\|T\|\left\|T^{-1}\right\|: T: X \rightarrow Y \text { isomorphism }\right\}
$$

It is well-known that the Banach-Mazur distance of two n-dimensional spaces is always less than or equal to n. By a result of Gluskin [4] there is a constant $c \geqq 1$ such that for every natural number n there exist Banach spaces X_{n} and Y_{n} with $\operatorname{dim} X_{n}=\operatorname{dim} Y_{n}=n$ and

$$
d\left(X_{n}, Y_{n}\right) \geqq c n
$$

We want to measure the distance of n-dimensional Banach spaces not by the norm but by any other operator ideal quasi-norms.

1. Notations

As usually we denote by $L(X, Y)$ the set of all linear and bounded operators from the Banach space X in the Banach space Y. For the definition of a quasi-normed operator ideal we refer to Pietsch [9]. We only want to repeat the definition of some special quasi-normed operator ideals.

We say that an operator $T \in L(X, Y)$ is absolutely p-summing for $1 \leqq p<\infty$ if there exists a constant $c>0$ such that for all elements $x_{1}, \ldots, x_{n} \in X$ the inequality

$$
\left(\sum_{i=1}^{n}\left\|T x_{i}\right\|^{p}\right)^{1 / p} \leqq c \sup \left\{\left(\sum_{i=1}^{n}\left|\left\langle x_{i}, a\right\rangle\right|^{p}\right)^{1 / p}: a \in X^{\prime},\|a\| \leqq 1\right\}
$$

holds. In this case we write $T \in P_{p}(X, Y)$ and put

$$
\left\|T \mid P_{p}\right\|=\inf c
$$

where the infimum is taken over all possible constants c of the above definition.

[^0]An operator $T \in L(X, Y)$ is called nuclear if it admits a representation

$$
T=\sum_{i=1}^{\infty} a_{i} \otimes y_{i}
$$

with $a_{i} \in X^{\prime}$ and $y_{i} \in Y$

$$
\sum_{i=1}^{\infty}\left\|a_{i}\right\|\left\|y_{i}\right\|<\infty
$$

Then we write $T \in N(X, Y)$ and put

$$
\|T \mid N\|=\inf \sum_{i=1}^{\infty}\left\|a_{i}\right\|\left\|y_{i}\right\|
$$

where the infimum is taken over all admissible representations of T.
For a given normed operator ideal A an operator $T \in L(X, Y)$ belongs to the adjoint operator ideal A^{*} if there is a constant $c>0$ such that

$$
\left|\operatorname{trace}\left(S_{0} S T T_{0}\right)\right| \leqq c\left\|S_{0}\right\|\|S \mid A\|\left\|T_{0}\right\|
$$

for all $S_{0} \in L\left(Y, Y_{0}\right), S \in A(Y, X), T_{0} \in L\left(X_{0}, X\right)$ and X_{0}, Y_{0} finite dimensional. In this case we put

$$
\left\|T \mid A^{*}\right\|=\inf c
$$

where the infimum is taken over all admissible constants. Further T belongs to the dual operator ideal A^{\prime} if $T^{\prime} \in A\left(Y^{\prime}, X^{\prime}\right)$. Then $\left\|T\left|A^{\prime}\|=\| T^{\prime}\right| A\right\|$.

2. Generalized Banach-Mazur distance

Let A and B two quasi-normed operator ideals. We say that the Banach spaces X and Y are (A, B)-isomorphic if there exist operators $S \in A(X, Y)$ and $T \in B(Y, X)$ with $T S=I_{X}$ and $S T=I_{Y}$. In this case we put

$$
d_{A, B}(X, Y)=\inf \{\|S|A\| \| T| B\|: S, T \text { as above }\}
$$

Of course we have the following necessary condition. If X and Y are (A, B)-isomorphic then we have

$$
I_{X} \in B \circ A \quad \text { and } \quad I_{Y} \in A \circ B .
$$

Since most of the operator ideals are proper that means that only the identity of finite dimensional spaces belongs to the ideal we restrict ourselves to finite dimensional spaces. First we will list some simple properties. Here and in the following the sign \leqq \leqq means also $\ldots \leqq c \ldots$ for some constant $c>0$ not depending on the Banach spaces X and Y or their dimension.

$$
\begin{align*}
& d_{L, L}(X, Y)=d(X, Y) \tag{1}\\
& d_{A, B}\left(X^{\prime}, Y^{\prime}\right) \leqq d_{A^{\prime}, B^{\prime}}(Y, X) \tag{2}
\end{align*}
$$

(3) The inclusions $A \subset C$ and $B \subset D$ imply $d_{C, D}(X, Y) \leqq d_{A, B}(X, Y)$.

It follows equality in (2) if A and B are symmetric.

$$
\begin{equation*}
d_{A O C, B D D}(X, Y) \leqq d_{A, B}(X, Z) d_{C, D}(Z, Y) . \tag{4}
\end{equation*}
$$

(5) If $A^{2}=A$ then $\ln d_{A, A}(X, Y)$ becomes a quasi-metric.
(6) The inequalities of Lewis-type

$$
\begin{gathered}
\left\|S: X_{n} \rightarrow Y_{n}\left|A\left\|\leqq n^{2}\right\| S\right| C\right\| \\
\left\|T: Y_{n} \rightarrow X_{n}\left|B\left\|\leqq n^{\mu}\right\| T\right| D\right\| \\
\text { imply } \quad d_{A, B}\left(X_{n}, Y_{n}\right) \leqq n^{2+\mu} d_{C, D}\left(X_{n}, Y_{n}\right) .
\end{gathered}
$$

Directly from the definition we obtain
Lemma 1. Let A and B two quasi-normed operator ideals. Then

$$
d_{A, B}(X, Y) \geqq \max \left\{\left\|I_{X}\left|B \circ A\|,\| I_{Y}\right| A \circ B\right\|\right\} .
$$

In the following we will use a result of Lewis [6].
Lemma 2. Let A be any normed operator ideal. There exists for any two ndimensional spaces X_{n} and Y_{n} an isomorphism $T: X_{n} \rightarrow Y_{n}$ with $\|T \mid A\|=1$ and $\left\|T^{-1} \mid A^{*}\right\|=n$.
Therefore we have the next result about generalized Banach-Mazur distance.
Proposition 1. Let A be any normed operator ideal. It holds for every n-dimensional spaces X_{n} and Y_{n} the equality

$$
d_{A, A^{*}}\left(X_{n}, Y_{n}\right)=n .
$$

Proof. The estimate from above follows directly from lemma 2. Otherwise we have

$$
n=\operatorname{trace}\left(I: Y_{n} \rightarrow Y_{n}\right) \leqq\left\|S\left|A\| \| S^{-1}\right| A^{*}\right\|
$$

for every other isomorphism. This implies equality.
Corollary. For every n-dimensional spaces X_{n} and Y_{n} it holds

$$
d\left(X_{n}, Y_{n}\right) \leqq n .
$$

The next result which goes back to F . John goes in the same direction as lemma 2.
Lemma 3. Let X_{n} be any n-dimensional space. Then there exists an isomorphism $T: X_{n} \rightarrow l_{2}^{n}$ with $\left\|T \mid P_{2}\right\|=n^{1 / 2}$ and $\left\|T^{-1}\right\|=1$.
From this we deduce the next result.
Proposition 2. Let $1 \leqq p<\infty$ and X_{n} with $\operatorname{dim} X_{n}=n$. Then

$$
n^{\min (1 / p, 1 / 2)} \leqq d_{p_{p}, L}\left(X_{n}, l_{2}^{n}\right) \leqq n^{\max (1 / p, 1 / 2)}
$$

Proof. Let $1 \leqq p \leqq 2$. Take the isomorphism T of lemma 3. Then

$$
\left\|T\left|P_{p}\left\|\leqq n^{1 / p-1 / 2}\right\| T\right| P_{2}\right\|=n^{1 / p} \quad \text { implies } \quad d_{P_{p}, L}\left(X_{n}, l_{2}^{n}\right) \leqq n^{1 / p}
$$

From

$$
n^{1 / 2}=\left\|I: X_{n} \rightarrow X_{n}\left|P_{2}\|\leqq\| I\right| P_{p}\right\| \leqq\left\|S \mid P_{p}\right\|\left\|S^{-1}\right\|
$$

for any other isomorphism $S: X_{n} \rightarrow l_{2}^{n}$ it follows

$$
d_{P_{p}, L}\left(X_{n}, l_{2}^{n}\right) \geqq n^{1 / 2}
$$

For $2<p<\infty$ the proof is analogous.
Corollary. For any n-dimensional space X_{n} it is

$$
d_{P_{2}, L}\left(X_{n}, l_{2}^{n}\right)=n^{1 / 2}
$$

Remark. The inequality of proposition 2 cannot be improved for $1 \leqq p<2$. We have

$$
d_{P_{p}, L}\left(l_{u}^{n}, l_{2}^{n}\right)=\left\{\begin{array}{l}
n^{1 / 2} \text { for } 1 \leqq u \leqq 2 \\
n^{1 / p} \text { for } p^{\prime} \leqq u \leqq \infty
\end{array}\right.
$$

To show this we have to prove that

$$
\begin{aligned}
& d_{P_{p}, L}\left(l_{u}^{n}, l_{2}^{n}\right) \leqq n^{1 / 2} \quad \text { for } \quad 1 \leqq u \leqq 2 \quad \text { and } \\
& d_{P_{p}, L}\left(l_{u}^{n}, l_{2}^{n}\right) \leqq n^{1 / p} \quad \text { for } \quad p^{\prime} \leqq u \leqq \infty
\end{aligned}
$$

The first inequality follows by considering the identity from l_{u}^{n} in l_{2}^{n} and from l_{2}^{n} in l_{u}^{n}, respectively. The second one is implied by Kwapien's [5] result that $P_{p} \circ P_{p^{\prime}}^{\prime}=L_{p}^{*}$ and

$$
\begin{aligned}
n^{1 / p+1 / u} & =\left\|I: l_{u}^{n} \rightarrow l_{u}^{n}\left|L_{p}^{*}\|\leqq\| S: l_{u}^{n} \rightarrow l_{2}^{n}\right| P_{p}\right\|\left\|S^{-1}: l_{2}^{n} \rightarrow l_{u}^{n} \mid P_{p,}^{\prime}\right\|= \\
& =\left\|S\left|P_{p}\| \| S^{-1 \prime}: l_{u^{\prime}}^{n} \rightarrow l_{2}^{n}\right| P_{p^{\prime}}\right\| \leqq \\
& \leqq\left\|S\left|P_{p}\| \| S^{-1 \prime}: l_{1}^{n} \rightarrow l_{2}^{n}\right| P_{p^{\prime}}\right\| n^{1-1 / u \prime} \leqq \\
& \leqq c_{G}\left\|S \mid P_{p}\right\|\left\|S^{-1}: l_{2}^{n} \rightarrow l_{\infty}^{n}\right\| n^{1 / u} \leqq \\
& \leqq c_{G}\left\|S \mid P_{p}\right\|\left\|S^{-1}: l_{2}^{n} \rightarrow l_{u}^{n}\right\| n^{1 / u}
\end{aligned}
$$

By analogous considerations it follows for $2 \leqq p<\infty$ that

$$
d_{P_{p}, L}\left(l_{u}^{n}, l_{2}^{n}\right)=n^{1 / 2} \quad \text { for } \quad 2 \leqq u \leqq \infty .
$$

So also in the case $2 \leqq p<\infty$ the estimate from above cannot be improved. But we have the following

Problem. Are there for $2<p<\infty$ a Banach space X_{n} and an isomorphism $T: X_{n} \rightarrow l_{2}^{n}$ with $\left\|T \mid P_{p}\right\|\left\|T^{-1}\right\| \leqq n^{1 / p}$?
If we change the order of P_{p} and L we get another estimate.

Proposition 3. Let $1 \leqq p<\infty$ and X_{n} with $\operatorname{dim} X_{n}=n$. Then

$$
n^{\min (1 / p, 1 / 2)} \leqq d_{L, p_{p}}\left(X_{n}, l_{2}^{n}\right) \leqq n
$$

Proof. The estimate from below is the same as in proposition 2. For the estimate from above we will use lemma 3 to X_{n}^{\prime}. Let $T: X_{n}^{\prime} \rightarrow l_{2}^{n}$ with $\left\|T \mid P_{2}\right\|=n^{1 / 2}$ and $\left\|T^{-1}\right\|=1$. Putting $S=\left(T^{-1}\right)^{\prime}$ we get $\|S\|=1$ and

$$
\left\|S^{-1}\left|P_{p}\|=\| T^{\prime}\right| P_{p}\right\| \leqq\left\|T^{\prime}|N\|\leqq\| T| N\right\| \leqq n^{1 / 2}\left\|T \mid P_{2}\right\|=n
$$

Remark. The estimate cannot be improved even in the case $p=2$. We have

$$
d_{L, P_{2}}\left(l_{u}^{n}, l_{2}^{n}\right)=n^{\max \left(1 / 2,1 / u^{\prime}\right)}
$$

Taking the identities we get the estimate from above. Otherwise for any isomorphism $S: l_{u}^{n} \rightarrow l_{2}^{n}$ we have

$$
\begin{gathered}
n=\operatorname{trace}\left(I: l_{u}^{n} \rightarrow l_{u}^{n}\right) \leqq\left\|S\left|P_{2}\| \| S^{-1}\right| P_{2}^{*}\right\|= \\
=\left\|S\left|P_{2}\| \| S^{-1}\right| P_{2}\right\| \leqq\left\|S: l_{\infty}^{n} \rightarrow l_{2}^{n}\left|P_{2}\| \| S^{-1}\right| P_{2}\right\| \leqq \\
\leqq c_{G}\|S\|\left\|S^{-1}\left|P_{2}\left\|\leqq c_{G} n^{1 / u}\right\| S: l_{u}^{n} \rightarrow l_{2}^{n}\| \| S^{-1}\right| P_{2}\right\| .
\end{gathered}
$$

3. Estimates for quasi -norms generated by s-numbers

Let s be any s-number function [8]. Let $0<r<\infty$ and $0<w \leqq \infty$. Then $T \in L(X, Y)$ belongs to $L_{r, w}^{s}(X, Y)$ if the following quasi-norm is finite

$$
\begin{aligned}
& \left\|T \mid L_{r, w}^{s}\right\|=\left(\sum_{n=1}^{\infty}\left(n^{1 / r-1 / w} s_{n}(T)\right)^{w}\right)^{1 / w} \quad(w<\infty) \\
& \left\|T \mid L_{r, \infty}^{s}\right\|=\sup \left\{n^{1 / r} s_{n}(T): n \in \mathbb{N}\right\}
\end{aligned}
$$

Of course we have the inequality

$$
\left\|T: X_{n} \rightarrow Y_{n} \mid L_{r, w}^{s}\right\| \leqq n^{1 / r}\|T\|
$$

which implies

$$
d_{L^{s} r(1), w(1)}, d_{L^{s} r(2), w(2)}\left(X_{n}, Y_{n}\right) \leqq n^{1 / r_{(1)}+1 / r_{(2)}} d\left(X_{n}, Y_{n}\right) .
$$

Proposition 4. Let s be any multiplicative s-number function, $0<r(1), r(2)<\infty$ and $0<w(1), w(2) \leqq \infty$. Then
for $1 / r=1 / r(1)+1 / r(2)$ and $1 / w=1 / w(1)+1 / w(2)$.
Proof. The assumption follows from lemma 1 and

$$
L_{r(1), w(1)}^{s} \circ L_{r(2), w(2)}^{s} \subset L_{r, w}^{s}
$$

For the approximation numbers

$$
a_{n}(T)=\inf \{\|T-L\|: \operatorname{rank} L<n\}
$$

the Gelfand numbers

$$
c_{n}(T)=\inf \left\{\left\|T J_{M}\right\|: M \subset X, \operatorname{codim} M<n\right\}
$$

and the Kolmogorov numbers

$$
d_{n}(T)=\inf \left\{\left\|Q_{N} T\right\|: N \subset Y, \operatorname{dim} N<n\right\}
$$

we get the following
Corollary. For $s \in\{a, c, d\}$ we get

$$
d_{L^{s} r(1), w_{(1)}, L_{r(2) w(2)}^{s}}\left(X_{n}, Y_{n}\right) \geqq n^{1 / r}
$$

Proof. The assumption follows from proposition $4, s_{k}\left(I_{X_{n}}\right)=1$ for $1 \leqq k \leqq n$ and

$$
\left(\sum_{k=1}^{n} k^{w / r-1}\right)^{1 / w} \asymp n^{1 / r}
$$

Remark. Using Gluskin's result [3] about $c_{k}\left(I: l_{u}^{n} \rightarrow l_{v}^{n}\right)$ we get equality in the preceding corollary for $X_{n}=l_{u}^{n}$ and $Y_{n}=l_{v}^{n}$ in some cases. Namely for

$$
1 \leqq v<u \leqq 2, \quad r_{2}<2 \frac{1 / v-1 / 2}{1 / v-1 / u}
$$

and

$$
1 \leqq u<v \leqq 2, \quad r_{1}<2 \frac{1 / u-1 / 2}{1 / u-1 / v}
$$

References

[1] Benyamini Y. and Gördön Y., Random factorization of operators between Banach spaces, J. d'Anal. Math. 39 (1981), 45-74.
[2] Carl B.: Inequalities between absolutely (p, q)-summing norms, Studia Math. 69 (1980), 143-148.
[3] Gluskin E. D.: On somefinite dimensional problems of the theory of diameters (Russian), Vestnik Leningr. Univ. 13 (1981), 5-10.
[4] Gluskin E. D., The diameter of Minkowski compactum is roughly equal to n, Funkcional. Anal. i Prilozhen. 15 (1) (1981), 72-73.
[5] Kwapień S.: On operators factorable through \mathbf{L}_{p} spaces, Bull. Soc. Math. France, Mém 31/32 (1972), 215-225.
[6] Lewis D. R., Ellipsoids defined by Banach ideal norms, Mathematika 26 (1979), 18-29.
[7] Linde R., s-Numbers of diagonal operators and Besov embeddings, Proc. 13-th Winter School, Suppl. Rend. Circ. Mat. Palermo (2) 10 (1985), 83-110.
[8] Pietsch A., s-Numbers of operators in Banach spaces, Studia Math. 51 (1974), 201-223.
[9] Pietsch A., Operator ideals, Berlin 1978.
[10] Pietsch A., Eigenvalues and s-numbers, Leipzig 1987.

[^0]: *) Friedrich-Schiller-Universität, Sektion Mathematik, DDR-6900, UHH, 17. o. G.

