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We sumarize recent results concerning the monotony and the additivity of the integral on 
generalized measure spaces. We also pose some open questions. 

1. Introduction 

Generalized measure spaces were introduced by Suppes [12] as a model of proba
bility and integration for quantum theories. Let X be a nonempty set. A collection 
Z c expK is called a a-class if it satisfies: 

(i)XeZ9 

(ii) YE Z => X - Ye Z9 

(iii) YteZ (ieN), Y{ mutually disjoint => (J YteZ. 
ieN 

By a measure we mean a cr-additive function m on Z with values in [0, oo). Then the 
triple (X9 Z, m) is called a generalized measure space. 

As we do not require Z to be closed under the formation of all unions, generalized 
measure spaces suit well as models of probability which admit the description of 
noncompatible events. (Motivated by quantum theory, events are called noncom-
patible if they are not simultaneously observable. Corresponding to this, two elements 
Y9ZeZ are called noncompatible if 7 u Z£Z.) The noncompatibility is e.g. en
countered in every system in which the measurement of one quantity effects the other 
quantity [4]. The need of a model of probability and integration admitting the 
noncompatibility has arisen in both quantum theory and other fields of application, 
including sociology, learning systems and artificial intelligence [13]. 

Throughout this paper (X9 Z9 m) will be a generalized measure space. A function 
f:X -> R is called measurable iff~1(A) e Z for any Borel set A a R. We use the 
notation Bf = {f_1(A): A a Borel subset of R). If f is measurable, Bf is a sub-cr-
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algebra of I and the restriction m | Bf is an ordinary measure. We define j^ fdm = 
= \xf d(m | Bf), where the right side means the usual Lebesgue integral. However, 
the development of the theory of integration on generalized measure spaces cannot 
follow the usual patern. For instance, the sum of two measurable functions f, g 
need not be measurable. Even iff 4- g is measurable — we then calif, g summable — 
we find that basic properties of the integral cannot be proved trivially in generalized 
measure spaces. Particularly, the following two questions (posed by S. Gudder — 
[2, 3]) turned out to be interesting: 

Iff, g are measurable functions on a generalized measure space (X, I, m) and if 
f ^ g, does this imply that $xfdm tk \x9 dm whenever these integrals exist? 

Iff, g are measurable summable functions on a generalized measure space (X, I, m), 
do we have 

J* ( / + o) dm = \xf dm + \x g dm whenever both sides 

are defined? 

2. Results 

The generalized integration theory requires new techniques in some places. As an 
example, let us consider the classical proof of the monotony of integration. Let f, g 
be measurable functions on a measure space (X, I, m), f ^ g. Then 

\xgdm- \xfdm = \x(g - / ) dm = 0 . 

Note that we need the additivity for the latter equation to hold. If we suppose that 
(X, I, m) is only a generalized measure space, the additivity cannot be ensured. 
Moreover, the function g — f need not be measurable at all and its integral need not 
exist. Hence, we have to use quite different procedures in proving the basic properties 
of the generalized integral. 

However, several positive results were achieved. The monotony of the generalized 
integral was found to be valid (independently proved in [6], [5] and [11]). However, 
the additivity of the generalized integral does not hold in general. The first counter
example (for unbounded functions) was found in [1]. The authors conjectured there 
that the additivity holds for bounded functions. The conjecture is disproved in [7] 
by a counterexample for functions with bounded range which is dense in some 
interval. The first significant positive result was that of Zerbe and Gudder [14]: The 
additivity holds for two finitely valued functions, (it is interesting that this result 
cannot be extended to a greater number of functions. There is a counterexample for 
three finitely valued functions — see [7,14].) While the approach of Zerbe and Gudder 
is based on highly non-trivial combinatorial reasoning, a new "plane-topological" 
method has brought a more general result: 

Theorem 1. [10]: Let f, g be measurable summable functions on a generalized 
measure space (X, I, m). Let Range f be bounded and nowhere dense and let the 
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closure of Range g be bounded and countable. Then \x (f + g) dm = \xf dm + 
+ \x 9 dm. 

In both approaches of [14] and [10] the additivity follows from the presence of 
certain special sets in Z. It remains an open question whether the countability con^ 
dition on g can be omitted in Theorem 1. We also do not know any counterexample 
for two bounded functions such that one of them has nowhere dense range. 

If m is supposed to be a countable convex combination of two-valued measures, 
the additivity can be proved under more general assumptions, as the following theorem 
shows: 

Theorem 2. ([9], Th. 2.2.12; for special cases see also [7, 8]): Letf, g be measurable 
summable functions on a generalized measure space (X919 m). Let m be a convex 
combination of measures mt on Z (i e N) such that all restrictions mt \ Bf9 mt \ Bg are 
two-valued. Suppose that 

(1) at least one of the functions f, g is bounded from above or from below, 

(2) the closure H of the set {(f(x)9 g(x)): xeX} a R2 is nowhere dense, 

(3) R2 - H is connected. 

Then \x (f + g) dm = \xf dm + \x g dm. 
Remark 3. Since the technique in generalized measure spaces is quite special, we 

interrupt here the review of results and reinforce the intuition of the reader by 
exhibiting an example. The example is also a little novelty in the area. It is the fact 
that none of the assumptions of Theorem 2 can be omitted. Indeed, there is an example 
in [8] showing that Theorem 2 loses its validity if we omit the assumption on the 
measure m. We show now that the assumption (3) is also necessary: 

Let Q be the set of all rational numbers. Put P = {2l: i an integer}. On X = P x Q 
we define functions f: (p9 q) h-> p9 g: (p9 q) i—> q. We take for Z the cr-class generated 
by BfuBgu Bf+g. It can be easily verified that Z = Bfu Zl9 where Zx is the a-class 
generated by Bg u Bf+g9 and Bfr\ Zx = {0, X}. Let mt be the probability measure 
on Zl9 concentrated in (1, 0), and let m2 be the probability measure on Bf9 concen
trated in (2, 0). The measures mt and m2 coincide on Bf n I1 and so they have 
a common extension to a measure m on Z. We have \xf dm + \x g dm = 2 + 04= 

* M f + g)dm = l. 
In the end we would like to mention another open problem. Denote by jtf(Z) the 

ex-algebra of subsets of X generated by Z. If the measure m admits an extension to 
a measure on s/(Z)9 then the integral on (X9 Z9 m) has to have all "classical" pro
perties. The counterexamples to the additivity show that such an extension is not 
possible in general. Nevertheless, the extension of m to s#(Z) may exist provided 
that Z is the c-class generated by Bf u Bg u Bf+g and the functions f and g satisfy 
some appropriate conditions. Such an extension is possible under the assumptions 
of Theorem 2. However, it is not known whether it is possible under the assumptions 
of Theorem 1 or forf, g finitely valued. A positive answer to this extension problem 
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may lead to an alternative proof of the monotony, the additivity and other properties 
of the generalized integral. 
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