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INVERSE LIMITS NEED NOT EXIST IN THE CATEGORY OF COMPACT SPACES 

AND FELLER KERNELS: A COUNTEREXAMPLE 

Gerhard Winkler 

In this note, incorrect statements are typed in italics. For applications, it 

would be useful to know that tnveAAC JUMUU cxAAt in the category P oj{ compact 

.Apac&A utitk V2JUL2A koAnoJU Oh moJipklbmA (c.f. [5], Ch. IV). This assertion is the 

main part in [7] - it will be stated explicitely in a moment. J. Vestergaard 

pointed out that there must be an error in the proof; familiarity with the Poulsen 

simplex enforces this feeling. We do here the clerical work to disprove the result 

decisively and localize the error in [7]; all arguments used below are well-known.. 

Let X and Y be Hausdorff spaces, denote by B(X) the Borel-a-algebra, by C(X) the 

space of bounded continuous functions and by M(X) (M+(X), M+(X)) the bounded (and 

positive,and normalized) Radon measures on X - "Radon" means "inner regular w.r.t. 

compact sets"; a mapping P : X -> M+(Y), X -• P(x,«), s.t. the functions x -* P(x,B), 

B€B(Y), are Borel measurable is called a Feller kernel iff 

(P(-,f) = / f(y) P(-,dy): f G C(Y)} cC(X), 

{uP = J P(x,.) u(dx): u€M(X)}cM(Y); 

the composition with a kernel Q from Y to Z is defined as usual: PQ(x,B) = 

/ Q(y,B) P(x,dy), xGX, B€B(Z). What we need from category theory is contained 

in Ch. Ill of [8]. 

Assume that ll»-0 is an increasing net; consider compact spaces X^, i€I, and 

kernels P.., i £ j, such that 
J --

(*i) a l l P.. are Feller kernels, 

(*ii) P . . ( x ,« ) , i € I , xGX, is the Dirac measure in x, 

P. .P . . = P, . whenever i £ j £ k, 
k j j i k i 

i . e . (X.,.f..) i s an inverse system in P. Ban., denotes the category of Banach 

spaces and linear contractions. The system (*) induces both: 

an inverse system (MU^),*..) in Batlj, where the M(Xi) are Banach spaces in the 

norms v. of tota l variation and morphisms $. . defined by *..(|A.) a l*.tp.i.j.* 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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a direct system ( C ( X . ) , $ J) in BaiL , where C(X.) has supremum norm and $ (f.) = 

x\.(.,f.). 
Ji i 

The EaiL limits exist respectively (c.f. [8], 11.8.2(b) and (d)); denote them by M 

with norm v and C with norm ||" || (concrete representations are given in the just 

cited reference). M is the dual Banach space of C, the duality being determined 

by the formulas 

(1) <#J(f.), ( , . . ) . „ > = ^ ( f . ) , f.€C(X.), (n.>.6I€,M. 

where $J is the canonical injection from C(X.) into C ([9]). M may be ordered by 
J 

the cone 
(2) M+ := { ( u ^ ^ e M : \i±ZQ for every i € l } . 

The positive face of the unit bal l i s 

M : : = { ( l i i ) . e i C M + : v ( ( f i . ) i e l ) = l } ; 

write ex M for the set of extreme points. 

The main part of the theorem in [7] , p.1200 reads as follows: 

AA&esctLon: k&Aume that an inven&e &y&tem [*) in D ib given. Then: 

a. the, Apace X := - M is> compact in the, weak*-topology o{M9C), 

b. theJie axe, TeJULen. kenneJU P. ihjom x to the, X. mch that P . - - -p .p. . vohwevex 
i u o 1 1 J Jl 

i $ J -
c. ii theJie, axe, TeJULex kenneJU Qi ihom borne, HauAdoti^ Apace, Y to the, X., then 

tko*o AJ> a unique TeJULeJi kexneZ Q from Y to X , Auch that QP. = Q. i& iei. 

In other words, the 6y*tem [*) haA an invesue Limit in P. 

We will show that the validity of this assertion implies that the inverse limit 

of Bauer simplices is a Bauer simplex whereas it may be even a Poulsen simplex. 

By a simplex we mean a compact Choquet simplex; inverse systems are considered in 

the category ji$ with simplices as objects and affine continuous maps tp : S -> T 

between simplices as morphisms. In [3], thm. 13 it is shown that in $ every in

verse system has an inverse limit (in [10] the corresponding results for noncom-

pact simplices are obtained).A simplex with compact extreme boundary is called a 

Bauer simplex, a metrizable simplex with dense extreme boundary is a Poulsen 

simplex (which in fact exists). 

The counterexample is based on the following observations I and II: 

I. If T is a (compact) metrizable simplex then there is a locally convex space E 

such that i) E contains a simplex S affinely homeomorphic to T, ii) there is a 

decreasing sequence of Bauer simplices S in E whose intersection is S. 

Proof: 14], thm. 9. 
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II. Consider an inverse system (S.,cp..) in the category $9 where all S. PT-O Bauer 

simplices and denote by S the inverse limit in $. Denote farther by X.. the compact 

extreme boundaries ex S. and define 

P.A x , . ) := p . ( c p . A x ) , - ) , i£j, x€X., 
J-L 1 J l 1 J 

where p.(y,0 is the unique element in M+(X.) with barycenter y in S.. Then: 
the mappings P.. define an inverse system (*) in D and an inverse and a direct 

J -• 
system in Bait., according to the remarks above. 

J . . I 
Finally, S and M are affinely homeomorphic if M^ is endowed with the weak*-topo-
logy a(M,C). 

Proof: Because the S. are Bauer simplices, the mappings 

S.3x - P i(x,f), f€C(X.), 

are affine and continuous ([1], II.-U1), thus also the mappings 

(3) Sj3x - p.(cpj.(x),fi), f i€C(X.). 

A standard monotonicity argument shows that the mappings in (3) restricted to X. = 
J 

ex S. define Feller kernels P.. from X. to X.. As representing measures p satisfy 
J J -- J -• 

the barycentrical formula g(x) = / g(y) p(dy) for affine continuous functions g, wc 
have for i < j < k , x G X̂ . and f€C(Xi) 

p k j p j i ( x ' f ) = / Pi(^i(y)'f) Pj(V x h (^)= p i ( ( P j i o c p k j ( x ) ' f ) • 

= Pi^ k i(
x)> f) = Pki(x,f). 

Thus we have verified that the compact spaces X.together with the Feller kern.el~. 

P.. are an inverse system (*) in D. Let us now consider the induced Ban., direct 
Ji J . . 1 
system of the spaces C(X.) with linear contractions $ . 

For a simplex S, denote by A(S) the space of affine continuous functions on S. If 

we take the functions f in (3) from A(S.) instead of C(X.) then we get a Bait.. 

direct system of the spaces A(S.) with supremum norm and linear contractions ¥ J: 

from [3], p.162, we learn that A(S) is the BaiL direct limit. 

Again since the S. are Bauer simplices, the spaces A(S.) and C(X.) are isometri- . 

cally isomorphic ([2], 2.7.5) via 

A(S.) 3 f -> f/ex S. € C(ex S.) 
V4; C(exS.)3f-*f 6A(S.) 

where f(x) = J ^ ^ f(y) p(x,dy). 

This shows that A(S) is isometrically isomorphic to C, that M is the dual Banach 

space of A(S), and that the duality is determined by the set of formulas 

(5) ^ <^(f.),(,.).el> = ,. ( f . ) , 

where YJ is the canonical injection from A(S.) into A(S). 
J 

By (h) and (5)f we see that the positive cone of M determined by the evaluations 

on A(S) is again M+ as defined in (2). Recall that the convex compact set S is 

affinely homeomorphic to its "state space" 
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(A(S)f)+ := {h€A(S)
f: h _ 0 , n has norm 1} 

in the weak*-topology a(A(S)f,C) - a(M,C). 

Since the state space is equal to M , the proof is complete. 

Now we see easily that Schefferfs assertion from [7] reported above fails to be 

true..By I. there is a sequence S of Bauer simplices in some locally convex space 

which decreases to a Poulsen simplex Sp. By II. we get compact spaces X and 

Feller kernels P satifying the assumptions of Schefferfs assertion. Again by II. 

the set X = ex M is affinely homeomorphic to the extreme boundary of the Poulsen 
o + j 

simplex. Hence X is not compact as claimed - X is even dense in M+. 

In other words: Schefferfs assertion implies that the inverse limit in £ of Bauer 

simplices is a Bauer simplex whereas we have seen that it can be a Poulsen 

simplex. 

The error can be localized in a lemma which is the basis of Schefferfs pro"*', tfe 

state from [7], p. 1199: 

A&62AtLon: Let B be a Banack Apace Auck that itA dual Banack Apace Bf iA an AL-

Apace uiitk a(Bf 9B)-cloAed positive cone B+. Tken: 

B LA an AM-Apace in the on&eK induced by tke cone B+ := {x€B:<xf ,x>» 0 i£ xf €B+} 

and tkexe axe two atteAnativeA: 

a. B kaA a unit and X - ex B'+ >a compact, 

b. B kaA no unit and X U{0} = ex Bf Lb compact. 

To see that this is wrong, we consider again the Poulsen simplex S . It is well-

known that A(S ) f is an AL-space ([2], 2.7.1). Obviously, A(S ) f is closed w.r.t. 

a(A(Sp)
f,A(Sp)), hence the assumptions are fulfilled. But A(Sp) is no AM-space 

since it is no lattice - a space A(S) is a lattice if and only if S is a Bauer 

simplex ([2], 2.7.5; in fact, A(Sp) is even an anti-lattice). Moreover: neither 
1 1 1 

ex (A(S ) f) + nor ex (A(Sp)
f)+U{0} are weak*-compact since again ex (A(Sp)

f)+ 

is dense in (A(Sp)
f)+. 
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