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THE LEFSCHETZ TYPE THEOREM FOR A CLASS OF NONCOMPACT MAPPINGS 

by W. Kryszewski (todz) 

The purpose of this note is to present some new algebraic and 

topological notions related to the generalized trace theory of J. Le-

ray and their connections with the fixed point theory. This is well 

known that the Leray trace plays a crucial role in the so-called Lef-

schetz theorem for compact mappings -and some of their generalizations 

(see [l], [2], [3], [4]). The analogous results for other classes of 

mappings, e.g. A-proper mappings of Browder-Petryshyn [9], A-map-

pings [7], [5], F-mappings [7] and other mappings which arise nat­

urally when studying the fixed point problems, are unknown yet. So, 

this is our aim to try to extend the algebraic tool of the Lefschetz 

theorem to these more general situations. 

This is the first part of a larger research, and that.is why we 

shall limit ourselves only to the sketch of an algebraic setting and 

its application to the class of A-mappings. 

Moreover, we give theorems(see (8.5) and (8.6)) which seem to be 

interesting from the point of view of the asymptotic fixed point the­

ory for compact mappings. 

I. Trace theory 

In spite of the fact that we shall need only some of the forth­

coming results, we present them (in the sketchy form), for the sake 

of completeness, together with some others. It seems that this theory 

may be of interest of its own. 

1. Let us recall some fundamental notions. For a finite-dimen­

sional vector space (VS) F over a field K we define two homomor-

phisms 9 : F $ VF - End (F) and e : F $ „F - K given (on genera-' 
IN. J\ 

tors) by the formulae 8(f $ x)(x') = f(x1)x and e(f® x) = f(x). 

It is quite easy to see that 9 is an isomorphism. We define the 

ordinary trace of an endomorphism <p € End(F) by: tr cp -= e(8 cp). 

Here are the most useful properties of tr. 

(1.1) (i) Let the following diagram of finite-dimensional VS's 

TkiA papvi AJ> In ^IYWJL faohm and no voAAion o£ it wilt be AubrruAtzd ioK pubticjxtion 

oJUostiheAz. 
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over K and homomorphisms commute 

f 

then tr cp = tr cpf. 

(ii ) If the following diagram of finite-dimensional VS's and 

homomorphisms commutes and has exact rows 

0 - F ! *F *F" *0 . 

|cp f |cp | cp" 

0 • F f * F » F" * 0 , 

then tr cp = tr cpf + tr cp". 

2. Now, let F be an arbitrary VS over K and let cp e End(F). 

We put Ncp = (J ker cp . It is easily seen that cp (Ncp) = Ncp, hence 
n^l 

cp induces a monombrphism cp : F -* F where F = F/Ncp. We say that 

cp is a Leray endomorphism (an L-endomorphism ) if dim F < °° and.we 

define the Leray trace Tr cp of cp by setting Tr cp = tr cp. Observe 

by (l.l) (iij, that if F is finite-dimensional-and cp G End (F), 

then cp is an L-endomorphism and Tr cp = tr cp. 

Next (see [8] ) . 

(2.1) ( i) I_f the diagram of VS' s and homomorphisms 

F -—* Ff 

F * Ff 

f 

commutes and cp is an L-endomorphism, then cpf. is_ such and Tr cp = 

= Tr cpf . 

(ii) If_ the diagram of VS's and homomorphisms 

0 •» Ff F F" •> 0 

cp' j cp J cpff 

0 F • F *F" • 0 

commutes and has exact rows and cp Is an L-endomorphism, or, cpf ,cp" 

are L-endomorphisms, then cp,cpf /cp" are L-endomorphisms and Tr cp = 
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_ «p
r
 Ф + ip

r
 Ф»

 ( 

As an easy consequence we get the following fact. 

(2.2) Let F be a VS over K and cp e End .(F) . If; ther^ 

exists a finite-dimensional vector subspace F
1
 of F such that 

cp(F' )C F' and, for each x e F, there is n = n (x) such that 

cp (x; e F.' , then <P i_s an L-endomorphism and Tr cp = tr (cp-|F ' ). 

P r o o f . The following diagram 

0 •> F
1
— — F -F/F' -0 

(cpiF') I Г I ф " 
0 - F

1
 -F — - F / F ' -0, 

where cp" is induced by cp, is commutative and has exact rows. Since 

F' is finite-dimensional, cplF' is- an L-endomorphism and Tr (cplF') = 

= tr (cp IF' ;. Next, Ncp" = F/F'. So, (p" is an L-endomorphism, too, 

and Tr cp" = 0. By (2.1 ; (ii) , we end the proof. q.e.d. 

(2.3) I_f cp e End (F) and dim Im cp < «> * for some n ̂  1, then 

cp is_ an L-endomorphism. 

3. Although very general, the above theory does not cover many 

natural situations. 

(3.1) Example. Let F be a VS over K generated by the set 

Z of integers, i.e. the space of all functions Z - K with finite 

supports. Let a : Z -* K be a function such that a(x) ^ 0 for all 

P 
x e Z. We define an endomorphism tp:F-* F by the formula cp( .£.. a.x. ) = 

= £ a.a(x.;x. where x. ^ Z, a. e K , i = 1,2,...,n. We see that 
T = 1 i l l i i 

(p is a monomorphism, hence Ncp = {0} and dim F = «. Thus cp is not 

an L-endomorphism. But formally, one can treat the series E a(x) 
xeZ 

(even if not convergent), i.e. the family { E a ( x O T c Z carci T < °°' 

as a generalization of the notion of the trace. , 

Below, we shall construct a theory which makes it possible to deal 

with situations similar to that described above. 

Let (S,£) be a directed set and let • e = {E ,i , :E -* E.} 

be a direct system of VS's (over K). We say that a pair (Ff{fs
:E

s -

* F ^ c c ^ ' where F is a VS and f is a homomorphism f br> any seS, 
Sfeo S 

is compatible with e if the diagram 
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is commutative for s,t e S, s £ t. Let pairs (F,{f }), (Ff,{f'}) 

be compatible with e. We say that f : F -* F1 is a homomorphism of 

these pairs if the diagram 

f ; 

is commutative for each s e S. We write 

Having a direct system E = ÍVWsєs 

(F,{f
s
}) - (F',{f;}). 

one can construct (see 

[10 j; the compatible pair (E,{i }) called the direct limit of e. 

and denoted by lim e. 
ses 

(3.1) [10]. The following properties are satisfied 

(І) 

( Ü ) 

( І І І ) 

U i (E„) = E 
SЄЬ 

For each s e S, ker i = (J ker 1 
t^s 

s ť 

lim e is characterized up to isomorphism of pairs by the 
ses 

property that, given a compatible pair (F,{f }), there is a unique 

homomorphism of pairs f : lim e •+ (F,{f }) which will be denoted by 

(f

sW 
SЄS 

As a consequence one has the following simple, corollary. 

(3.2) If a pair (F,{f }) is compatible with e, then (f )
 g 

is an isomorphism if and only if the following conditions are satis­

fied; 

(i) U f
a
(E ) = F, 

ses
 s s 

(ii) f
g
(-<

s
) =

 f

t
(

x

t
)
 f o r s

'
t G
 S

f
 x

g
 e E

g
, x

t
 e E

t
 iff there 

is u .> s,t such that i
s u
(

x

s
)
 = i

tu^
x
t^

-

Suppose F is a VS over K, <p e End (F) and e .= {E ,i . }* 
S S L. S tl »-> 

is a direct system of VS's. If there exist a cofinal subset s t s , 

a family {f 

ible with 

:£g
 H>F}sES« such that a pair (F'^fs^seS

f^ i s c o mP a t" , 

Є
* - <

B
в'-вt>вЄS' 

án.d (fs>s6s- '"»
 e,^F'{fs>ses'> fs ses 
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an isomorphism, a morphism of direct systems (see [10]), {cp }
 c l

 : e
1
 -* 

s se_ 
* e' such that the diagram

 /
 , 

E
 8 . „ 

I 
Ф
S I f

Q
 1

 Ф u
s 

E
s
— -F 

commutes for all s ES
1
, then we say that cp is - decomposable with 

respect to (w.r.t.) e and call the triple V = (
 e
 ', {f _ /

s G S
. '^s^S'^ 

a decomposition of cp w.r.t. e . If there exists a direct system e 

such that cp is decomposable w.r.t. e , then we say that cp is de­

composable.. 

A -decomposition V is called injective if f is a monomorphism 

for sES'. It is easily seen, by (3.1) (i), (ii), that it is equiv­

alent to the injectivity of i for any sG S
1
. 

Obviously, any endomorphism cp :F •* F has a decomposition name­

ly, the trivial one, i.e. E = F, f = id_ and cp = cp for 
S S r S 

every s E S. 

(3.3) • If: an endomorphism cp E End (F) has a (nontrivial) de­

composition, then it has an injective decomposition, as well. 

(3.4) For cp E End (F) to have a nontrivial decomposition it 

is necessary and sufficient that there exist-a directed set S and 

an increasing family {F } , __•<_• F C F. for s _ t, of non-
S S tu S X-. 

trivial vector subspaces of F such that (J F = F * and cp(F ) 

C F
s
 for s E S.

 s t b 

Now, let cp E End (F) and let e = {E 4
p f

}
p c C

 be a direct 
S St SE— 

system of VS's. Assume V = (
e
',{f }

 cc
,/{cp_} _

c
 . ) to be a decom-

S Svz_> S Stu 

position of cp w.r.t. e. We shall say that cp is L-decomposable 

w.r.t. e, V is an L-decomposition of w.r.t. e and cp is a ge­

neralized Leray endomorphism (generalized L-endomorphism) if there 

is s E S
f
 such that, for s E S', s _ s , cp is an L-endomor­

phism. 
In the set |"[ K , where K = K for any s E S, we intro-

sES
 s 

duce an equivalence relation "~" defined as follows: (
a

s
)

s
cc ~ 

- (b )
 c e
 iff there is s^ E S such that 'a„ = b^ for s _ s . The 

s sES o s s o 

equivalence class of (a ) __ E TT K is denoted by [(a_ )_,--]. 
^ s sES ' L, s s SES 

.SES 

For a generalized L-endomorphism cp with an L-decomposition 

V = ( e l
'

{ f
s

}
sES

, , { ( p
s

}
sES'

 } s u c h t h a t
'
 f o r s e S

''
 s

 -
 S

Q

 G S
'' 
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cp is an L-endomorphism, we define 

Гтr Ф
S 

for s G S
 f
, s k s 

a = * 
s
 '

 rt
 for other . s, 

Next, we define the generalized Leray trace of cp w.r.t. " as an ele­

ment of TT
 K
 /~ given by 

•
s
es

 s 

Tr (cp,t?) = [ ( a
s
)

s e s
l . . 

As is easily seen, the endomorphism cp from (3.1) is a general­

ized L-endomorphism w.r.t. a direct system e = {E ,i : E - E } 

where T C U C Z, card U < °°, E is the vector subspace of F ge­

nerated by T. If V = ( e, {frp}, {(p
T
} ) is a decomposition of cp w.r.t. 

c, then Tr (
Vf
P) = [(J^ a ( x ) )

T C Z f C a r d T <
 J . 

It seems to be obvious that the notion of the generalized trace 

depends strongly on the choice of a decomposition and a direct system. 

(3.5) Example. Let F be as in (3.1). Let
 e

 = {E ,i } and 

1 = {E
T
,I

T U
} where E

T
 = E_

T
. We take f

T
 : E

T
 <-- F and f

T
 = f_

T/ 

cp = cplE , cp = (plE
T
. Then we have two distinct L-decompositions V 

and V of (p w.r.t. e and 7 V respectively, for which Tr(cp#P) f 

± Tr (cp,P). 

However, the following simple proposition holds. 

(3.6) Let cp G End (F), and let e = ^ s ' S t ^ G S ' ^
 = {

^ s ' 

i-v+-} cc b e t w Q
 direct systems of VS's. Let V = (e',{f }

C5
^-

C
i' 

St Stb * S Stb 

{cp } ) be an injective L-decomposition of cp w.r.t. e and let 
S S to 

V = ( e f , {5 } c f , {<$>„}cCZc i ) be an i n j e c t i v e d e c o m p o s i t i o n of cp w . r . t . 
S SttvD S Stzo 

e. IJE there exists a morphism {<\> }
 C f

 : e
f •*• 7 1 , with <|, being 

an isomorphism for any s G S
 f
 , such that the diagram 

f'.lim U l - f "
1 

F - - F 

cp | 1 cp 

F * F , 

f
f
 -lim {<j, J-f"

1 

where f = (f ) , and f
1
 = (f )

 c C
» '

 i s
 commutative, then 5" 

S Stb S Sfcb : 

is an L-decomposition and Tr (cp,fl) = Tr (cp,^). 
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The proof is simple and requires some technical, algebraic con­

struction, so we shall omit it here. 

For an L-endomorphism cp E End (F), the trivial decomposition 

is an L-decomposition, but also 

(3.7) Any injective decomposition V of cp -is an L-decompo­

sition and Tr (cp,fl) = [ (Tr cp j J (the class of the constant -family) . 

The partial converse of (3.7) is given in 

(3.8) If̂  cp E End (F) has an injective L-decomposition V, 

then cp has such a decomposition V, being finite-dimensional, and 

Tr (<p,fl) = Tr (5,D). 

(3.9) Let cp E End (F) have a decomposition V = (F, (f } , 
• S SfciD 

(cp J _, ) w.r.t. a direct system e. Tf there exists a vector sub-

space. F' C F such that cp(F' )C F' and, for each x E F, there 

is n = n(x) such that cpn(x) E F', and for s E S ' , s ^ s E S ' , 

-1 ° 

dim-̂ f (F' ) < °°, then V ±s_ an L-decomposition. 

To prove this it is sufficient to observe that cp (f" (F'))C 

f~1(F') and, for each x E E g, <Pg(*J e f~1(F') where n = n(fs(x))', 

then recall (2.2) for s E S', s ^ s . 

Now, we present results analogous to (2.1). 

(3.10) (i) Let the following diagram of VS's and homomorphisms 

• F * F' 

be commutative. If cp has an injective L-decomposition V, then cp' 

has an injective L-decomposition P' , and Tr (cp, V) = Tr (cp' , Vy ). 

(ii) \t_ the diagram of VS's and homomorphisms 

w' p" 
• o • F' : * F * F " — ~ 0 

| cp' I cp" J c p " 
0 * F' — * F —-^ *F" *0 

is commutative, has exact rows and cp has an injective L-decomposi­

tion V, then cp',cp" have injective L-decomposition p' and P", 

respectively, for which 

(*) Tr (cp,P)' = Tr (<£',£>') + Tr (cp",tr). 
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If there exists a projection p : F ^ F such that ker p = ker p" 

and (pp = p(p, cp' and cp" have injective L-decompositions, then cp 

has an injective L-decomposition V such that (*) holds. 

P r o o f . We shall prove (i). The proof of (ii)' runs similarly. 

Let V = ({Es,ist}sGSf,{fs}sESf,{cps}s.Sf) be an injective L-decom­

position of cp w.r.t. a direct system e= {E fi .} c. Consider 
S St s __* 

the following diagram -. 
F/ker •- Im 5 

<P [ [ cpf 

F/ker --= * Im S 

where Ipff are induced homomorphisms. It is commutative. Let A = 
-1 — -- s 

= f (ker 5). It is easy to verify that _ = {Ec/A fi . : E /A -
S S S ST. S S 

--+./A. _c, is a direct system and a pair (F/ker £f{f : E_/A 
t u S __» •, S S S 

F/ker) __ f is compatible with "e. By (3.2), (f ) is an iso-
S__» S SEb 

morphism. Thus P = ( 7 , { f },{lp } ) , where q> : E /A - E_/A f o r 
" S S S 5 S S S 

s _ S1, is induced by cp and is an injective L-decomposition of 

*cp, in view of (2*l)(ii;. Since X is an isomorphism, we gather . 

that V" = (7,'{r • f-}f{^P_}) is an L-decomposition of cp'llm £. 

Now, since cp^F') C Im £, we' construct an L-decomposition p' 

of cp1 such that Tr (cp',p') = Tr (cp'llm 5, <Q" ) = Tr (q),p; . Consider 

the following well-defined diagram 

Es/As * im c 

E.fs 
Es/As . Im -

which is commutative for each s e Sf. Our assertion-, now follows 

from (2.1) (ii. • q.e.d. 

4. Let F = {F } . n be a graded VS over K. We say that F 
q q_iU 

is of finite type if diit̂ F < °° for any q £ 0 and F = {0} for 

almost all q. If cp = {cp } Q is an endomorphism of F of degree 

0, then we define the (ordinary) Lefschetz number A (cp) of cp by 

the formula: 

\(.cp) = L (-l)q tr cp . 
q_,0 q 

Suppose now that F = {F } Q is an arbitrary graded VS and 
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<p = {cp } ^n is an endomorphism (of degree 0) of F. We say that 
3 q-=u / „ „ 

cp is a Leray endomorphism (L-endomorphism) if F = {F } is of 
" q—^ t 

finite type and, in this case, we define the Lefschetz number A(ip) 
by the formula 

A(cp) = E (-l)q Tr cp̂ . 
q*0 q 

It is obvious that if F is of finite type, then A(cp) = A(cp). 

Now, we extend the above notions to a larger class of graded 

VS's. Let F = {F } ^n be a graded VS and let cp = {tp } ^n bean qJq£0 ^ ^ V4qJq^0 

endomorphism of F. Suppose that, for each q ^ 0, e_ = {E _fi .} cC 
q q*-* qs"C sEo 

is a direct system of VS's and Vq = (e'q, {fqs>seS . r {<Pqs}s6s »
 } is a 

decomposition of cp w.r.t. e . Let V = {I? } ^Q. We say that . cp 

is L-decomposable w.r.t. e = {e' }. ̂ Q / cp is a generalized Leray 

endomorphism (generalized L-endomorphism) and V is an L-decompo-

sltion w.r.t. e if/ for any s E Sf, s ^ s E S', {cp } ^Q is 

an L-endomorphism of the graded VS {E } >0. In this case.we de­

fine the generalized Lefschetz number of cp w.r.t. V by putting 

A(<p,0) = £ (-l)q Tr {vn,V). 
q^O q q 

Now, which is important, one can easily restate the results of sec­

tions 1, 2, 3 to get the analogous properties of A(cp),A(cp) and 

A(cp,0). 

II. Uniform spaces and filtrations 

We shall now apply the algebraic theory developed above to the 

'fixed point theory of a certain type of (noncompact) mappings acting 

in uniform spaces. 

In all what follows, by space we shall understand a Hausdorff 

uniform space, by mapping a continuous transformation. If X is a 

space with the uniform structure X, then by vicinity (of the diag­

onal in X * X) we mean an arbitrary. V E X open (in the product to­

pology of X * X ) , if E is a locally convex topological vector 

space (LCTVS), then by neighbourhood (nghbd) we mean a neighbourhood 

of the origin o in E. On subsets of a space we shall always con­

sider the induced topology (and the uniform structure) of a subspace. 

5. First, we shall recall and introduce some concepts and nota­

tions which are necessary in the sequel. 
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Let (X,X) be a space and Z C X. For V E X we put V(Z) = 

= { y E X l ( z , y ) E V for some, z E Z }; if V is a nghbd in an LCTVS 

E, then, for Z C E,V(Z) = V + Z. Let Y be a space and U 6 X. 

Two mappings f,g : Y -* X are said to be U-homotopic, provided 

there is a mapping h : Y x [0,1] -> X such that h(-,0) = f,h(-,l) = 

= g and,, for each y E Y, there is x E X such that h(y,t) E U(x) 

"for all t E [0,1 J. 

6. Let X be a space. By a filtration we understand a family 

{X } where S is a directed set, such that X c X. if s ̂  t, 
S S tiD S t 

and cl ( [J X ) = X. By i : X - X we denote the identity em-
sES S s s 

bedding. In particular, if X is an LCTVS and, for each s E S,X 
is a linear subspace of X, then the filtration {X } c is called 

S Stb 

a linear filtration. 

We shall give some examples. Since any uniform space may be uni­

formly embedded in an LCTVS (this simple statement follows easily, as 

a corollary, from the well-known theorem due to Kuratowski) and li­

near filtrations play a crucial role in the sequel, subsets of an 

LCTVS create the most important examples. 
C6.1) Example, (i) Let X be a space and Y an open subset 

of X. If {X } ,._ is a filtration in X, then {Y } „ . where s sES sJsESf 

Y = Y n X , is a filtration in Y. s s 

(ii) If Y C X, where X is a space, is filtrated by {Y ) _c, 
S Sco 

then cl Y is also filtrated by {Yg} and by {cl Y }. 

(iii) Let G be an open, convex nghbd in an LCTVS E,G 7- E, and 

let {E } be an increasing family of vector subspaces such that 
S S to 

cl ( U EA) = E. If B - bd G is the boundary of G, then {B } _c, 
sES S S S G S 

where B = B n E , is a filtration in B. s s 

Only the last part needs a proof. Take x E B and an arbitrary 

convex nghbd V. By li), {(E \ cl G) n E } CC,{G n E } are filtra-
S Stb s 

tions in E \ cl G and G, respectively. Hence there are points 

yf e V(x) n (E \ cl G) n E g and y" E V(x) n G h E s for sufficient­

ly large s. We denote by p the Minkowski gauge of G. Since 

p(y') > 1 and p(y") < 1, there must be a point y lying on the 

segment joining y1 and y", thus belonging to V(xj H E , such 
that p(y) = 1 and, hence, y E B. 
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The notion of a filtration is not sufficient for our purposes. 

We shall need a more complex object. 

Let (X,X) be a space. We say that a filtration {X } c of X 
s s __• 

is regular over a subset j5 c X, if, for each U'G X, there are 
V E X and s 6 S such that, for any s _ s Q, there exists a map­
ping n : V(X_) n V(Z) - X G such that n_(x) = x for x GX_ nV(Z) 

s s s s s 

and i • n , i : V(X ) n V(Z) - X are U-homotopic. We shall say 
s s s 

that {X } is regular if it is regular over the entire space X. 

Recall that a topological space Y is said to be r-dominated 

by a space G if there are mappings r : G •* Y and j : Y - G such 

that r • j : Y •* Y is the identity mapping id . 

We say that a filtration {X } _ of a space (X,X) satisfies 

the condition (R) over Z C X if: 

(R) There are T G X and s, G S such that, for each s _ s,, 

T(Z) n X is r-dominated by an open subset of a convex set 

lying in an LCTVS. (In other words, see [3], we demand that 

T(Z) n X be a Borsuk space). 

(6.2) Example. Let E be a metrizable LCTVS filtrated by an 

increasing family {E
s'sec £___ finite-dimensional vector subspaces 

of E. 

(i) If X is. an open subset of E and, for Z C X, there is 

a nghbd W such that W(Z)C X, then a filtration {X = X n E } _c — .___—— _______ _______ __________________ s s SG—* 

of X is regular and satisfies (R) over Z. Hence {X } c is 
"~~ S S 6b 

regular and satisfies the condition (R) over any compact subset nf~X. 

(ii) _L_L c __§. _l c o n v e x subset of E filtrated by {C = 

= C n E } , then {C } is regular and satisfies (R). 
s s t_> s 

(iii) Let G be as in (6.1). The filtration {B = B n E } _c • • -~—• — — ______ _____________________ g g g ^__) 

is regular and satisfies (R). 

(iv) Let X be an ANR (metric) with a trivial filtration X = 

= X for any s G S. Tftis filtration is regular and satisfies (R). 

P r o o f . (i) Let d be a metric compatible with the topologi­

cal and convex structure of E and let U be an arbitrary nghbd. 

Let e > 0 be such that cl B (o,3e)C U n W where B(o,3e) = 

= {y G Eld(o,y) < 3e}. Define. V = B(o,e) - and, for any x G V(X g) 

n V(Z) let d = d(x,E ) _ e.- We define a multivalued mapping 

$ : V(X ) n V(Z) - E for s G S by *(x) = cl B(x,2dx) n EQ. $ 
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has closed, convex and complete values. Moreover, $ is lower semi-

continuous. Indeed, for an open D C E , the set 

$+1(D) = {x E El$(x) n D f 0} = {x E EIB(x,2dx) D D f 0} = 

= {x E Elx E B(o,2dx) + D} 

is open in E. Hence, by the Michael Selection Theorem, there is a 

mapping ng : V(Xg) n V(Z) -* Eg such that n (x) E *(x). Obviously 

h satisfies the conditions of regularity. It is clear that, f.or any 

nghbd T C W, T(Z) n X is a Borsuk space. 

(ii) The proof is almost the same as in case (i). 

(iii) Take any nghbd U and let V = -j U . For any s E S we 

construct n! : V(B ) •* E as in (i). If p is the Minkowski gauge 

of G and r(x) = x/p(x) for x i p (0), then n = r • n' : 

V(B ) •+ B satisfies our conditions. Moreover, for any s E S, B 

is an ANR. 

Let H denote the singular homology functor with coefficients 

in a field K, from the category of topological spaces and continu­

ous mappings to trie category of graded VS's over K and homomor-

phisms of degree 0. Thus, for a space X, H(X) = {H (X)} ^Q where 

H (X) is the q-th singular homology group of X, and, for a mapping 

f : X - Y, H(f) = {H (f) : H (X) -* H (Y)}. We assume to be known 
M. q 4. 

that H satisfies all the Eilenberg-Steenrod axioms for homology. 

Let X be a space with a filtration {X,,} „. By i : X -
-*1 o vZO S X» o 

- X., s £ t, i :X -* X we..denote the identity embeddings. It is 

easy to see that, for each q =t 0, E = {H(X ),H (ie+.))oCC is a 
q q s q st stt> 

direct system of VS's and a pair (H (X),{H(i )} cC) is compat-
q q s Set? 

ible with e . 
q 

We shall now prove a result which is essential for further con­

siderations. 

(6.3) !If a filtration (X ) .- of X is regular over any com­

pact subset of X, then 

IS W ' V ^ t " =Hq(X)' S to 

and this isomorphism is realized by ^a^s^sES" 

P r o o f . According to (3.2) it .is sufficient to prove that 

J~e H (i )(H (X )) = H (X) and that, for any q-homology classes 
sto q s q s q 
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C
s
 e
 V V '

 C
t
 E
 V V ' " q f ^ ^ l = V V ^ t

5
 iff there is u* 

* s,t such that H
q
(i

s u
)(c

s
) = H

q
(i

t u
)(c

t
). 

Let c = [c] E H (X) and let c = L a.a., where a. e K and 
q
 i=l

 x 1 

a. is a singular q-simplex for i = l,2,...,p, be a q-cycle in X. 

" ~ P 
By A we denote a support supp c of c, i.e. - A = (J a.(A ) where 

i=l
 1

 ^ 
A_ is the standard q-simplex in 1R

q
 . Since {X } _

c
 is regular 

q s s to 

over A, thus, for U = X * X, there exist V E X and s 6 S such 

that, for s ^ s
Q
, there is a mapping n : V (X ) n V (A) -> X for 

which i • n
e
 is homotopic to i : V (X ) n V (A) -> X. Since (J X^ 

S S s
 sES

 S 

is dense in X, one can find s, ^ s such that A C V (X ). Let 
1 ~ o

 ч
 s 1 

g = i • n | A : A - X. If we denote by S (X) the VS of singular 

q-chains in X, then the homomorphisms S (g)' : S (A) - S (X) and 

SI H, T, . 

S (i ; : S (A; -> S (X) are chain homotopic. Hence we have a homomor-
Si T. T. 

phism D :.S (A) * S .-(A) such that 3D + D3 "= S (g ) - S (i). Thus 
q q+1 q

 3
 q 

8Dc-= S (g)(c) - c and, hence, [S (g)(c)j = c. But [S (g)(c)J = 
si q q 

= lS
q
(i

8l
)S

q
(n

8i
)(-c)J = Hq(iSi)[Sq(nSi)(£)j. 

Now, let [c].= H (i )(ce) = H (i )(c, ) = [c'J. There is a q+1-q s s q "C "C 

-chain d such that c - c!. = 3d. Similarly as above,, we show the 

existence of a chain homomor phism q>, : S (A) - S (X._) where A = 
q q u. 

= supp d,u ^ s,t, such that 8 cpd = cp9d = cp(c - c1) = S (i )(c ) + 

- S (i. j(c,)f which proves our assertion completely. q.e*d. 

From now on, we shall consider only filtrations of a space X 

which are regular over any compact subset of X. 

III. A-mappings 

7. Let (Y,V) and (X,X) be uniform spaces with filtrations 

(YJ _c and {X } c c, respectively. We say that a mapping f : Y-* 
S S vzo S S cio 

- X is an admissible mapping (A-mapping) w.r.t. {Y
s}'(

x
s}

 i f' for 

each V G X , there is S Q 6 S such that .f (Yg)C V(Xg) for s ̂ s Q . 

We shall say that f is a strong A-mapping if, for any V E X , there 

are W E Y and s^ E S such that f(W(Y ))C V(Xe) for s £ s^. o s s o 

Observe that if f : Y •+ X is a uniformly continuous A-mapping, then 
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f is a strong A-mapping. Moreover, if (Z,Z) is a space with a fil­

tration {Z } and g : X. - Z is a strong A-mapping, then, for 
S S to 

any A-mapping f : Y - X, the superposition g • f : Y -> Z is an A-

-mapping w.r.t. ^Y
s^

 a n d ^ Zs^ # 

(7.1) Example, (i) Any compact mapping (i.e. such that cl F(X ) 

is compactjis an A-mapping w.r.t. arbitrary filtrations {Y },{X } in 

Y and X, respectively. 

(ii) Let E be an LCTVS filtrated by an increasing family of 

vector subspaces. Any linear combination, with coefficients being 

bounded scalar functions, of A-mappings X - E is, again, an A-map­

ping. 

(iii) Let L : dom L - F, where dom L is a vector subspaces 

of E and F is an LCTVS filtrated, similarly as in (ii), by 

{F } c, be a linear and continuous Fredholm operator of index k^O 
S S to 

such that Im L = F. There is an increasing family {E } of 
S S tb 

linear subspaces of E, creating a filtration in E, such that L 

and any (nonlinear) L-compact mapping f : E -* F are A-mappings 

w.r.t. {E },{F }. For the proof, see [5j. 

(iv) Several, more concrete examples of A-mappings arise quite 

naturally when studying integral or ordinary differential equations 

(see [6], [7]). 

(7.2j Let (X,X) be a space with filtration {X } which 
———~— S S c:o 

is regular over a subset Z C X. If_ f : X •* X is an A-mapping 

such that f(X)C Z, then, for any q £ 0, H (f) iis decomposable 

w.r.t. the direct system e = (H (Xg),H U s t ) }seS-

P r o b f. Let U e X. By the definition, there are V E X and 

s € S such that V C U and, for t £ s , there is a mapping n. : 

: V(Z) n V(Xt) - Xfc such that nt(x) = x for x e V(Z) n Xfc. There 

are symmetric vicinities W,Vf E X , W C V , V1 © V'C V, s1 k SQ 

and sequences {n' : W(X ) n W(Z) -> X ) . , {hV : [W(Xj n W(Z)j* 
S S SSbS-a s s 

* [ 0 , 1 ] - XV > o s uch t h a t n ' ( x ) = x f o r x E Xe n W(Z), 
S s* S i 5 S 

hf(x,0) = i • n'(x) and hf(x,l) = x, for s £ s.. Moreover, we 

know that, for s £ s., hf is a V'-homotopy. Let s9 £ s1 be 

such that, for s £ s~, f(X )C. W(X e). Define -f = rV . f : X - X̂ , 
-.• S S 5 S S S 

for s £ s9. Observe that, for t £ s £ s9, i • f : X -* X, and 
-- •-• St. S S t 
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ft • i . : X -> X are homotopic to each other. Indeed, a homotopy 

h : X * [0,1] - Xfc given by the formula 

fnt . hs(f (x),2t) x G Xs, t G [0,1/2], 

lnt- ht(f(x),2 -2t) x E Xg, t 6 [1/2,1] 

h(x,t) = 

joins i , • f and f. • i .. Thus {H (f )} „ is an endomor-J st s t st Q s / Js2s 2 

phism of the direct system eq = {Hq(Xg),H (i s t ) / s ^ - By (6.3), 

we gather that the pair (H (X),{H (i )} ^ ) is compatible with e! 

^ c q q s s^s ' . c q 
and (H (i )) : lim e' -> H (X) is an isomorphism. At last, since 

q s s-s2 s^s9
 q q 

S = {s E Sis £ s0} is cofinal with S, -f • i = fIX and i • f 2 ' s s s s 

are (even V - ) homotopic to each other and, hence, the following dia­

gram 
. H U ) 

H (X ) 3—-! . H (X) 

H (f ) I I H (f) 
q s * • gK 

H (X ) — p — : H (X) 
q s H q ( l s ) q 

commutes for s ^ s~, we gather that fl = {ef, JH (i )} ,__,, 2' ^ U ^ . ^ q ^ q s ' s E S 1 

{H (f )} P Qi) is the wanted decomposition of H (f) w.r.t. z . 
q s S^IID f q q 

Observe that the choice of s2 in the above proof does not depend 

on q £ 0. q.e.d. 

(7.3 ) Suppose that X, {X } c c, Z C X , f : X - > X satisfy the. 
' S S titD 

assumptions of (7.2). For any U E X, there is U' E X such that, 
for each T, W C U', 0 = Vw . l,q W,q 

P r o o f . L e t V, s E S, n. f o r t ^ s be a s i n t h e proof 

of ( 7 . 2 ) . We t a k e U1 E X such t h a t Uf o u 1 C V. L e t T ,WC U1 and 

l e t , f o r s 2 , s 2 , s Q , P ^ q -= {e • , { H q ( i s )} s ^ , { H q ( f g ) ̂  ) , 

V q = ( e q ' { H q ( i B ) > B i B 2 ' « H q ^ B ) > B ^ 2
) - ^ k n ° W t h a t f ' ^ ™* 

i • f , for s £ s9, are W-homotopic and f • i , i • f , for 
S S •<-> s s s 

s ^ s2, are T-homotopic to each other, too. Let s^ ;> s2,s2. For 

t ^ s3, let h t : Xt * [0,1] - X be a W-homotopy such that ht(*,0) = 

= it • ft and ht(•,1 ) = f • ±t, let gt : Xfc * [0,1 ] - X be a T-

-homotopy such that gt(*,0) = it • ft and gt(»rl) = f • it- Let 
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kt : Xt x [0,1 J - X be given by the formula 

' nt • ht(x,2a) x G Xfc, a G [0,1/2], 

- nt # g t ^ x ' 2 ~ 2 a) x E xf a G [1/2,1]. 

We see that k. is a homotopy joining f and f . q.e.d. 

IV. Lefschetz mappings 

8. Let (X,X)r" be a space. We say that a mapping f : X -* X 

is a generalized Lefschetz .mapping (generalized L-mapping) if there 

exists a filtration {X } c of X (regular over compapt subsets 
S S vio 

of X) which is regular over f(X), f is an A-mapping w.r.t. {X } 
and, for each U 6 X, there is V E X , V C U, such that V = 

= IP-, } r̂. is an L-decomposition of H(f) w.r.t. e = {e } . n. For * V,q q^O ^ - q q^O 

such a mapping, we define the generalized Lefschetz number 

A(f,{Xs}sES) = lim A(H(f),0v) 

where the limit is taken w.r.t. the net of elements of X, directed 

by the inverse inclusion. The generalized Lefschetz number of f w. 

r.t. {X } is well-defined in view of (7.3). 
S S to 

(8.1) Example. If X is a Borsuk space (e*g. an ANR (metric)) 

and f : X - X is a compact mapping, then f is a generalized Lef­

schetz mapping. This is a simple consequence of the results from [4]~ 

The next important example is given in teh following proposition* 

(8.2) Let (X,X) be a space with a filtration {X } _e re-
-• — — — ~ — — — s stt> 

gular over compact subsets of X. Let Z C X be such that: 
« 

(id {X } c is regular and satisfies the condition (R) over Z, 

(iij there exists W € X such that, for s ;> S Q 6 S, W(Z)nXg 

is contained in a compact subset Z of X . 

Any A-mapping f : X -* X such that f (X) C Z is a generalized 

L-mapping. Let K = Q. If A(f,{X }) 7- 0, then f has an approxi­

mate fixed point, i.e. for any V G X, there is x G X such that 

(f(x),x) G V. 

P r o o f . Take a vicinity U G X such that U • U C T n W. 

There exists sn G S such that, for q £ 0, VT ' constructed in 

(7.2) (see the proof of (7.2)) is a decomposition of H (f) w.r.t.e . 
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Let s- £ sQ,s1,s2 where s, comes from the formulation of the con­

dition (R), and let s _ s7. We shall show that {H (f )} 
q_0 

an L-endomorphism of {H (X )} . First, we observe that f (X )c 
q s q_ u s s CU(Z) and cl U(Z) C U *U(Z) C T(Z) and clU(Z)CW(z; 

A_ = cl U(Z) Ґl X
g
 C Z

g is compact and A- C T(Z) n X = Y . 
s s s 

Hence, 

By (R), 

there exist a convex subset C of an LCTVS E , ' an open subset G 

of C and mappings r G - Y , 
s s 

ү
_ •* G_ s s such that r#j = s s 

The following diagram 

3s 
G 

= id 

( * * : 

where g = j •f»r , is commutative .and g (G ) c j (A ). Using the. _>_>_>_> s s s s 

technique of Schauder's projection (see [3]) we establish the exist­

ence of a finite, compact polyhedron P such that j (A )C P C G 
s s s s s 

and a mapping gc - P which is homotopic to g , hence 

Ha^ gs^ = Ha^s^ f o r a n y q - 0. The following diagram is commutatf 

ìve 

н
^9_

lp
J q s . s 

H (P ) 
q s 

н (P ) 
q -

q s 

H (g ) 
q
ч
^s 

H
q ^

s
) 

H (G ), 
q

ч
 s 

Since dim_,H (F ) < • for all q _ 0 and H (P_ ) = 0 for almost 
JS. q s q s 

all q, we gather that H (g IP ) is an L-endomorphism, hence, by 

(2.1) (i),
 H

a
(9

s
)
 a n c

*
 H

 (9
S
)
 a r e

 L-endomorphisms, too, and 

TH (G )} >
0
 is of finite type. Passing to the homological analogue 

of (**), by (2.1) (i), we gather that {H (f )}
 > n
 is an L-enio-

q s q _̂  u 
{H (X )} ._, 1
 q

ч
 s

/;
q_0 morphism of a graded VS 

_ -̂
 v

i -
w 

The last part of the theorem follows easily, if K = Q (the 

field of rational numbers), from Granas' version of the famous Lef-

schetz-Hopf theorem. Indeed, let V 6 X. Take a symmetric W e X 

such that W » W C V. If A(f,{X }) f 0 and W is sufficiently 

small we know that A(H(f),V ) f Q. So, for sufficiently large s, 

A(H(f )) ?- 0. By [4], this means that there is a point x G X such 
s s 

that f (x) = x. Thus (f(x),f (x)) = (f (x) ,x) ",a W • W C v. q.e.d. 
s s 



382 W. KRYSZEWSKI 

The next result is related to the fixed point theory of compact 

mappings. 

(8.3; Observe that if X, {X } satisfy the assumptions 
" S S cb 

of- (8.2) and f : X * X is a compact mapping, then f -is a gene­

ralized L-mapping, and if A(f, {X } ) ̂  0, then f has a fixed point. 

More generally, if all the assumptions of (8.2) are satisfied and f 

satisfies the so-called Palais-Smale condition, i.e. 

(PS ) VV e X 3x G X (f (x ),x ) G V = > 3 X Q 6 X f (X Q)=X O, 

then we shall obtain the existence of fixed points. 

Thus, we see that our algebraic setting is applicable for spaces 

which, in some sense, are more general than Borsuk ones (e.g. ANRs 

(metric ) ). 

As a simply corollary we get: 

(8.4 j Suppose X, {X } q, Z C X satisfy the assumptions of 

(8.2). Let K = Q. rf, for any s £ s , X is acyclic, then any 

A-mapping f : X :-> X smch that f(X;c Z has an approximate" fixed 

point. 

Recall that a space is called acyclic if H (X) = Q and 

H (X; = 0 for q > 0. 

The next results seem to be most interesting. 

(8.5; Let X, {X
S/S(ES' Z C X be as in (8.2) and let f: X 

"* x k6. £ uniformly continuous A-mapping such that {X } Ls regul-

ar over f(X) and, for some positive integer n, f (X)C Z. Then 

there exist an open subset G of X and V G X such that r (X)C 

C G and* V( f (G) ; C G. Moreover, we claim that f ijs a general­

ized Lefschetz mapping, and if A(f,{X }) ^ 0, then f possesses 

an approximate fixed point, provided K = Q. Additionally, if, for 

s Z s, , X ijs acyclic, then any A-mapping with the above-mentioned 

properties has such a fixed point. 

P r o o f . Let U G X , U C T f l W . Take a vicinity (open) W. 
n 

such that W «W C U. Next, we take vicinities V1,W,,W~,...,W . n n l z n-1 

such that V» C W, C W0 C . . . C w . c W„ and V1 • W, C W_ _ for 1 2 n-1 n i i+l 

i = 1,2,...,n-1. We define G = W (Z) n f"1 (W x ( Z)J n ... nf
-n+

vW1(Z)). 

Since f1 for any i is uniformly continuous, there is V. G X such 

that, for any y, z G X, if (y,z) G V±, then ( f i(y ), f 1( z ) ) G V . 
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Let V = Q V.. Now, let z E V(f(G)). Then, there is y 6 f(G) 
i=0 

such that (y,z) E V. Since y E f (G) C W (Z) n ... n f (W^ Z) ) n 

n f " n + 1 ( Z ) , therefore, for any i = 0,l,...,n-l, y e f" 1(W . ( Z) ) 

wheře W = A v, 
O A 

f = id. So, for i = 0,1, ,n-l, there is a.6Z 

such that (a i,f
1(y)) E W 1_ i. since ( f 1 (y ) , f 1 (z ) ) E V',' we ga­

ther that ( a . , f ( z ) ) 6 V f * W - . C W . v i' ' n-l-i n-i 

any i = 0,l,...,n-l. 

Observe that G 

Thus z e f (W _.(Z) for 

This shows that z e G. 

is filtrated by {G = G n X } _ in view of s s SES 

(6.1), and that the filtration (G } is regular over any compact 

subset of G, it is regular and satisfies (R) over f(G), since 

any open subset of a Borsuk space is again a Borsuk space. 

Now, we construct a sequence: U , U' ,U, , U|, . . . ,U ,U ! C v of ele­

ments of X such that U o U[(Z U - + 1 * U. c Ul. for i = 0,1,..., 

n-1, and such that, for (x,y) E U ± , (f(x),f(y)) E U^. Let s Q .6 S 

anđ = {V U o , q
} q ž 0 ' where V„ = (є ,{H (i )} ̂  

U
0
,q

 v
 q

 l
 q

ч
 s '

 J
 s=̂ s 

(VfЛ -=ŝ  

be a decomposition of H(f) w.r.t. e = {e } ^
Q 

o •* " o 
( s e e ( 7 . 2 ) ) . We know 

t h a t , for any s ^ s , ( f ( x ) , f ( x ) j E U

0 C . . U , . By i n d u c t i o n we prove 

t h a t ( f 1 ( x ) , f 1 ( x f ) E U ± C V for i = 0,1 

i = 0 , 1 , . . . , n - l , 

, n . Hence, for s ^ s , 

f ~ І + 1 ( G ') C f / t ø ) and fQ : f ^(G ) - f ľ ^ G ' s s s s s s s s s 

for i = 0 , 1 , . . . , n 
t h a t , i n view of ( 8 . 2 ) , 

Tak ing a s u f f i c i e n t l y smal l U we may assume 

V 1 G = - { V I G} qžO where Vтl I G = 

ì s an 

'o-q - . - - 0 

= ( { H q ( G s ) , H q ( i s t I G s ) } s S S o , { H q ( i s I G s ) } s , S o , { H q ( f s l G s ) } s 2 S o ) 

L-decompos i t ion of {H ( f IG)} S Q . Now, look a t the f o l l o w i n g diagram 

-2, 

(s ž s 0 ) 

- s П + 1 « * в > 

— - B

n + Ч > 

f " П ( G . = X 

-Г^V = X-

It is commutative, so, by applying (2.1) (i) several times to the a-

dequate homology diagram we get that Vr% is an L-decomposition of 
u
o 

(H (f )} .^A. The last part is father obvious. q.e.d. 
q 'q£0 ^ 
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The following theorem has connections with the asymptotic fixed 

point theory of compact mappings. 

(8.6) Let B denote the unit ball in a normed space E. Let 

{B } „ be a filtration of B of the form B = B n E„, where E , 1
 s sGS — . — --— — -* s s' s' 

for s e S, ij3 a finite-dimensional vector subspace of ' E and 

cl ( (J E- ) = E. Any uniformly continuous A-mapping such that, for 
s E S S

 n 
some positive integer n, f (X) is compact, has a fixed point. 

P r o o f . By (6.2) ( i i ) , the f i l t r a t i o n {B } i s regular 
S Scb 

and satisfies (R). Since;' for any s E S, B is acyclic, we get 

the assertion. q.e.d. 
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