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Let X9 Y be metric spaces. By a relation in X x Y we mean a nonempty subset 
of the product. A relation R is called closed if jR is a closed subset of X x Y. 

In the papers [1], [2], [8] are given some conditions under which there exist 
"well-behaved" functions that approximate closed relations. 

This paper studies properties of closed relations that are approximate by conti
nuous functions in the Hausdorff metric. Properties of a special class of such closed 
relations are also considered in [3]. We obtain a much more inclusive result. 

Let (Z, d) be a metric space. If Z D £ and e > 0, let Be[E] denote the union 
of all open e-balls whose centers run over E and Be[x] denote the open e-ball about 
a point x. 

If E and F are nonempty subsets of Z and for some e > 0 both Be[F] z> E and 
Bt[E] 3 F, then the Hausdorff distance hd between them is given by hd(E9 F) = 
= inf {e: Be[E] z> F and Be[F] => £} . Otherwise we put hd(E9 F) = oo. 

If we identify the sets with the same closure, then hd is well defined on the equi
valence classes so determined. Moreover, hd defines an extended real valued metric on 
the class of nonempty closed subsets of Z, called the Hausdorff metric. Basic facts 
about this metric can be found in [7] Castaing and Valadier. 

Now, let (X9 dx) and (Y9 dy) be metric spaces. We first need a metric on X x Y 
to induce the Hausdorff metric. For definiteness and computational simplicity, we 
take Q defined by Q((X19 yt)9 (x2, y2)) = max {dx(xl9 x2)9 dy(yl9 y2)}. 

Denote C(X9 Y) the set of all continuous functions from X to Y. Using the metric 
Q we can restrict the Hausdorff metric he defined on the closed subsets of X + Y 
to the graphs of functions in C(X9 Y). Denote this metric d2. 

Explicitly, i f /and g are in C(X9 Y)9 let us represent their graphs by G(f) and G(g) 
respectively. Then d2(f9 g) is defined by the formula d2(f9 g) = inf {e: Be[G(f)] => 
^G(g) and Be[G(g)]=>G(f)}. 

*) Katedra te6rie pravdepodobnosti a matematickej Statistiky, Komensky University, Mate-
maticky pavilon, Mlynska dolina 842 15 Bratislava, Czechoslovakia. 

67 



The Hausdorff metric on C(X, Y) was studied by Beer [3], Naimpally [9], Water-
house [10] and some other authors. 

Let F(X, Y) be the set of all functions from X to Y. In the same way we can use 
d2 to define the distance between any two functions from F(X, Y): iff and g are 
two such functions denote the closures of their graphs by cl G(f) and cl G(g) re
spectively, and let d2(f, g) be the Hausdorff distance from cl G(f) to cl G(g). The 
function d2 only defines a pseudometric on the space F(X, Y). 

The terminology and notation of J. Kelley will be used throughout. Moreover, 
we shall use the following notions and notations. 

The closure of a subset M of a topological space X will be denoted by cl M. 
Let X, Y be topological spaces. Let &>(Y) denote the collection of all subsets 

of y. A multifunction H from X to yis a function H: X -> &(Y). 
A multifunction H is called closed if its graph {(x,y):xeX and yeH(x)} is 

a closed subset of X x Y. We shall denote the graph of a multifunction H by G(H). 
A multifunction H from X to yis called upper semicontinuous at z in X if whenever 

Vis an open subset of ythat contains H(z) then the set {x: H(x) cz V} contains a neigh 
bourhood of z. It is called upper semicontinuous if it is upper semicontinuous at 
every zeX. 

Let .R be a relation in X x Y. We shall use the following notation for vertical 
section at x of R: R(x) = {y:(x, y)eR}. Define the multifunction HR induced by R 
by HR(x) = R(x). Then G(HR) = R. 

N will denote the set of positive integers. 
Let y be a metric space. Let 3C be a functional defined on 0>(Y) as follows #*(0) = 0 

and if A is a nonempty subset of Y, then %(A) = inf {e: A has a finite 2-dense subset}. 
In the literature X has been called the Hausdorff measure of noncompactness func
tional. 

Lemma 1. (see [4]) The Hausdorff measure of non-compactness functional acts 
as follows: 

(a) &(A) = oo if and only if A is unbounded 
(b) £(A) = 0 if and only if A is totally bounded 
(c) If A c B, then X(A) = 22£(B) 
(d) If .4 is totally bounded, then for each e > 0,X(Be[A]) = e 
(e) <F(cl A) = %(A). 

Theorem 1. Let X, Y be metric spaces. Let X be a locally compact space and Y 
be a complete metric space. Let {/„} be a sequence from C(X, Y) such that the graphs 
of the terms of {/„} converge in the Hausdorff metric to a closed relation R in X x y. 
Then the multifunction HR induced by .R is upper semicontinuous and R(x) is a non
empty compact set for each xeX. 

Proof. Put A = {xeX: R(x) 4= 0}. The set A is dense in X (see [1]). Suppose 
that A * X. Let x e X \ A. There is 5 > 0 such that cl 53[x] is compact. Put B = 
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= \J{R(a): aeAn Bd/2[x]}. We show that &(B) = 0, where 3C is the Hausdorff 
measure of noncompactness functional. Let e > 0. Put tj = min {fi/2, 5/2}. There 
is j e N such that hQ(R9 G(fn)) < rj for every n i> j (1). 

Let n =f. Then B c Bn[fn(B5[x])]. Let yeB. There is aeB5/2[x] such that 
(a,)/)e.R. By (1) there exists a point (b9fn(b)) for which e((a,y), (b,fn(b))) < rj. 
Then >> e £,[/„(&)] and fc e Bn[a] c Ba/2 c flJVj. Thus we have B a Bn[fn(Bd[x])]. 
Since fn(c\B[x]) is compact, by (d) of Lemma 1 we have &(B„[fn(cl B3[x])] = rj ^ 
= s/2 and by (c) of Lemma 1 we have %(B) g e. Since %(B) = s for any & > 0, 
#(fl) = 0. Thus #(cl 5) = 0. By (b) of Lemma 1,5 is a totally bounded set. The 
completeness of Y implies that cl B is compact. 

There is a sequence {xn} of points of A n -Sa/2[x] such that {xn} converges to x. 
Let {yn} be a sequence of points of Ysuch that cl (xn9 yn) e R. Since \yn} is a sequence 
of points of B and cl 2? is compact there is a cluster point z of the sequence {yn}. 
Then (x, z) is a cluster point of the sequence {(xn9 yn)}9 i.e. (x, z) e cl .R. But (x, z) $ R 
contradicting to the fact that R is closed. 

For each x e X there are an open neighbourhood Vx and a compact set Cx such 
that (J{-R(M): ueVx} C CX. Let x e X. There is 5X > 0 such that cl -B x̂[x] is compact. 
Put Vx = B5x/2[x] and C* = cl u {-R(V): u e F j . The proof of the compactness 
of Cx is similar as above. 

By result of Berge (see [6]) any closed multifunction with the compact range 
space is upper semicontinuous. Thus HR is upper semicontinuous on Vx for each x. 
It is easy to see that then HR is upper semicontinuous. Since R(x) is a closed subset 
of the compact set Cx for each xeX9 R(x) is a compact set for each xeX. 

Corollary 1. Let X9 Y be metric spaces. Let X be a locally compact metric space 
and Y be a complete metric space. Let {/„} be a sequence of functions from C(X9 Y) 
d2-convergent to a function/: X -* 7 with a closed graph. Then / i s continuous. 

The following example shows that the assumption of the locally compactness 
in Theorem 1 and Corollary 1 is essential. 

Example 1. Let Y be the set of real numbers with the usual metric. Let neN. 
Let {x"}^! be a sequence of points of the open interval (1/n, 1/n — 1) which is 

00 

convergent to 1/n. Put X = {0} u (J {x":j = 1, 2,...} and consider X with the 

usual metric. It is easy to verify that X is not a locally compact space. Define the 
function / by f(x) = n for x = x) j = 1, 2, . . . and /(0). Let gn (n = 1,2,...) be 
a bijection from the set {x":j = 1, 2,...} to the set {jeN: j = n) and define the 
functions /„ (n = 1, 2,...) as follows: 

/gn(x) for x = x1} j = 1,2,... 
/n(x) = <J-/(x) for x = xj m<n9 j = 1,2,... 

0 otherwise. 
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It is easy to verify that the sequence {/„} is a sequence of continuous functions 
d2-convergent to the discontinuous function / with a closed graph. 

Proposition 1. If a metric space 7 is not complete, then there exist a compact 
metric space X and a sequence of continuous functions from X to Y d2-convergent 
to a discontinuous function with a closed graph. 

Proof. There exists a Cauchy sequence {yn} in Y which has no cluster point in 7. 
Let ?be a completion of Y. There exists y e 7 such that {yn} converges to y in 7. 
Put X = {y, yu y2,..., yn,...} and consider X with the induced metric. Then X 
is compact. Define the functions /„: X -> Y(n = 1, 2,...) by f„(yt) = yt for i ^ n 
and fn(x) = j ^ otherwise. It is easy to see that the functions fn (n = 1, 2,...) are 
continuous. Now define the function/: X -» 7 as follows:/(y,) = y* and/(y) = yx. 
Since the sequence {yn} has no cluster point in Y the function/has a closed graph. 
But/is not continuous. (There exists an open set Fin Ysuch that yx e Fand y„ $ V 
for every n ^ 2. Then/ '^V) = {y, j^} is not open in X.) 

It remains to prove that {/„} d2-converges to / . Let e > 0. There exists jeN 
such that for every n, m ^ j dy(yn, ym) < e and dx(y, yn) < e/2. We show that 
G(f) c Be[G(fn)] and G(/„) c -Be[G(/)] for every n = / Let x e Xand n = I. If x = >>; 
for j ^ n or x = y then £((*,/(*)), (*>/•(*))) = 0. Let x e X and x = y( for i > n. 
for Then J ^ , ;;„) < s and thus g((j>„ f(yt))9 (yn, fn(yn))) = ^((yf, yt), (yn, yn)) < e, i.e. 
(x*f(x))eBlG(fn)l 

Now choose (yi9fB(yt)) for i > n ^I . Thus /„(>?,) = yx. Hence Q((yi9fn(yi)), 
(y>f(y))) = m a x ( ^ y)5 ^ i ' 3>i)} ^ c/2 < e, i.e. (yi5/iyO) e 5,[G(/)] and thus 
G(fn) cz 5fi[G(/)]. 

Theorem 2. Let X be a locally connected metric space and Y be a locally compact 
metric space. Let R be a closed relation in X x 7 such that JR(X) is a nonempty 
compact set for each xeX. Let {/„} be a sequence from C(X, Y) such that the graphs 
of the terms of the sequence {/„} converge in the Hausdorff metric to R. Then R(x) 
is a connected set for each x e l , 

Proof. Fix xeX. If R(x) is a singleton, then R(x) is connected. Otherwise, suppose 
that R(x) contains at least two distinct points. Then x is not an isolated point of X 
(see [1]). 

Suppose that R(x) is not connected. The compactness of R(x) implies that there are 
nonempty compact sets C, D such that C n D = (j) and R(x) = C u D. Since 7 
is a locally compact metric space, there exists s > 0 such that cl Be[C] n cl Be\D\ = 0 
and cl -Bfi[C], cl.Bc[D] are compact sets. Fix u e C, oeD, Let {Bn} be a sequence 
of connected neighbourhoods of x such that Bn cz Blfn[x] for each n e N. 

The convergence of the sequence {/„} to R in the Hausdorff metric implies that 
there are an increasing sequence of positive integers {fc6} and sequences {xn}, {yn} 
of points of X such that Q((x,u),(xn,fkn(xn))) < l/«, Q((X, V), (yn, fkn(yn))) < ljn 
and xn, yn e Bn for each neN. 
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Put L = {y e Y: inf dy(y9 c) = e/2}. The connectivity of sets fkn(Bn) (n = 1, 2,...) 
implies that there is jeN such that LnfkjBn) + 0 for each n *>j. Let {*>„}£= I 
be a sequence of points of Y such that t;„ e Lr\fkn(Br) for each n *> j and { n̂}ii=j 
be a sequence of points of X such that fkn(an) = t>n and an e B„ for each n ^ j . Then 
{an}nssJ converges to x. 

Since Lis a closed subset of the compact set cl5e[C], Lis compact. Thus there 
exists a cluster point z e Lof the sequence {vn}n=sj, i.e. (x9 z) is a cluster point of the 
sequence {(an, !>,.)}„% (2). 

We show that (x, z) e .R. Suppose that (x, z) £ R. The closedness of R implies 
that there is 5 > 0 for which (Bd[x\ x J-^[z]) n .R = 0. There is leN such that 
ft,(K, G(/„)) < 5/2 for every n = / (3). 

By (2) there is meN such that km ^ / and (am,fkm(am)) eBdl2\x\ x £j /2[z]. By 
(3) there is (a, b)eR such that Q((am,fkm(am)),(a,b)) < S\2. But then g((a, b), 
(x, z)) < 5 and that is a contradiction. Thus (x, z) e R. Then z e C u D . But z e L. 
Thus R(x) is connected. 

Theorem 3. Let X be a locally connected, locally compact metric space and Y be 
a locally compact complete metric space. Let {/„} be a sequence from C(X, Y) such 
that the graphs of the terms of the sequence {/„} converge in the HausdorfF metric 
to a closed relation R i n I x Y. Then HRis an upper semicontinuous multifunction 
and R(x) is a nonempty compact connected set for each xeX. 

Proof. By Theorem 1HR is an upper semicontinuous closed multifunction and R(x) 
is a nonempty compact set for each xeX. By Theorem 2R(x) is a connected set 
for each xeX. 

Let/eF(K , Y). Define the limit set multifunction Hf induced b y / (see [3]) as 
follows: Hf(x) = {y e Y: (x, y) e G(f)} for each xeX and put U(X, Y) = {fe 
eF(X, Y): Hf is upper semicontinuous and Hf(x) is a compact connected set for 
every xeX}. 

From Theorem 3 we can obtain the following results 

Theorem 4. Let X be a locally compact, locally connected metric space and Y 
be a locally compact complete metric space. Then the closure of C(X9 Y) in (F(X, Y), 
J2)isasubsetofU(K, Y). 

Proof. Let feF(X9 Y) and {/„} be a sequence from C(X9 Y) d2-convergent to / 
The graphs of the sequence {/„} converge in the HausdorfF metric to the closed 
relation G(Hf). By Theorem 3 HG(Hf) is upper semicontinuous and G(Hf) (x) is 
a compact connected set for each xeX. Since HGiHf) = Hf and G(Hf) (x) = Hf(x) 
for every x e l w e have the assertion of Theorem. 

If Y is the set of real numbers, Theorem 4 is proved in [3]. 
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