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1. Introduction 

In this paper we discuss approximations of infinite dimensional mappings by 
smooth mappings. We study two types of approximations: convolutions with smooth 
measures and spherical means. The main results are Theorem 4 and its corollary 
on approximations of functions on uniformly convex spaces. Recent researches in 
the theory of differentiable measures on infinite dimensional spaces and the Malliavin 
calculus have brought new ideas in solving traditional problems in this field and 
stimulated further investigations. Recall some known things about approximations 
in Banach spaces. 

We shall start with the results on smoothing of real valued functions on Banach 
spaces and then briefly discuss the situation with infinite dimensional maps. 

Let X be a Banach space with the unit ball U, f — a uniformly continuous real 
function on X or U. It is well known that / can be approximated by Lipschitz 
functions uniformly on X (or on U), see [ l ] . If X is separable, then such approxima
tions can be taken to be differentiable in the sense of Hadamard (see [2]). Recall 
that for Lipschitz mappings Hadamard and Gateaux differentiabilities are equivalent. 
The problem of approximations by Frechet differentiable functions is more delicate. 
There exist spaces, where even the norm can not be approximated uniformly on the 
ball by Frechet differentiable functions (see [3 — 5]). If X is superreflexive, then 
each Lipschitz function on U is approximated by functions with Lipschitz Frechet 
derivatives [6, 7], but even in the Hilbert space the class CU(U) of functions with 
uniformly continuous second Frechet derivative is not dense in the space Cu(U)y 

see [6]. 

Remark 1. Recently I. Tsarkov has proved that any Lipschitz function / on the 
unit ball in the Hilbert space can be approximated uniformly by functions with 
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uniformly bounded continuous second Frechet derivatives (thus, uniform closures 
of Cl{U) and C2

U(U) do not coincide). 
Another similar problem which often arises in infinite dimensional analysis is 

nonexistence of smooth functions with bounded support on many important spaces 
(see [4], [5]). Such functions are called bump functions and now we recall some 
basic facts about their properties. 

1) There are no nontrivial Frechet differentiable bump functions on C [0 ,1] . 
2) X is superreflexive if and only if there exists a nontrivial bump function with 

uniformly continuous Frechet derivative [8]. 
3) On c0 there exists a nontrivial C00 bump function (c0 has an equivalent norm 

which is C00 and even analytic outside of the origin). 
4) For spaces X, not containing c0 isomorphically, the existence of a C1 bump 

function with locally uniformly continuous derivative implies superreflexivity. If 
this derivative is locally Lipschitzian then X has type 2, see [9]. 

5) If X and K* have nontrivial bump functions with locally Lipschitz derivatives 
then X is Hilbert [9]. 

6) The existence of a nontrivial bump function with Lipschitzian derivative is 
equivalent to the existence of an equivalent norm with Lipschitzian derivative on the 
sphere, see [9]. 

7) If X admits a nontrivial C00 bump function then either X contains an iso
morphic copy of c0 or X contains an isomorphic copy of l2k for some k [10]. 

8) The following assertions are equivalent [11]. a) X doesn't contain c0 and for 
every k there exists nontrivial Ck bump function; b) there exists C00 bump function 
on X with uniformly continuous derivative; c) there exists a continuous polynomial P 
on with P(0) = 0 and P(x) > 1 for ||x|| = 1. 

The situation with approximations of maps with infinite dimensional ranges is 
even more complicated. According to [7] there exist uniformly continuous mappings 
with values in separable reflexive Banach spaces which are not approximated by 
Lipschitz mappings (moreover, there exists a separable reflexive E such that for each 
infinite dimensional Banach space X one can find uniformly continuous F : X -* E 
without Lipschitz approximations). According to a private communication of S. V. 
K6nyagin there exist Holder maps from separable Banach spaces X to Hilbert space 
which can not be approximated by Lipschitzian maps. But Lipschitz approximations 
are possible for uniformly continuous maps F between Hilbert spaces (see [12]). 
It is also known [13] that uniformly continuous maps with values in a Hilbert 
space Z can be approximated by maps satisfying the Holder condition of the order 1/2. 
Moreover, for each superreflexive separable Banach space Z there exists a = a(Z) 
such that every uniformly continuous map f with values in Z is approximated by 
Holder maps of the order a and for Z = LP, p > 1, it is possible to take a = min 
(1/2, 1/p), see [7], S. V. Konyagin has proved recently that the last number can not 
be improved. This problem is closely connected with the problem of extension of 
a map G which is defined on a closed subset in X and takes values in some Banach 
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space Z, with the preservation of the modulus of continuity (see [12,13]). If F: X -* Z 
is already Lipschitzian then it can be approximated by better maps Fn. For example, 
if X is separable, then Fn can be chosen Hadamard differentiable and Lipschitzian 
with the same constant (see Theorem 2 below). For Hilbert spaces X, Z maps Fn 

can be taken Frechet differentiable with bounded derivatives [7]. If boundedness of 
derivatives of approximating functions is not required then much more can be 
obtained. As shown in [3], if there exists a continuous polynomial P on X with 
P(0) = 0, strictly positive on the unit sphere in X then for any continuous map 
F: U -> X and any strictly positive continuous function r:U -* R there exists a real 
analytic map G: U -» X with ||F(x) — G(x)\ ^ r(x)- A map G is called analytic 
in [3], if for each point x there exist continuous homogeneous forms Jn of the degree n 
such that G(x + h) — G(x) — £ Jn(h), where the series converges uniformly in 

n 

somi neighbourhood of the origin in X. Meanwhile, for many applications (for 
example, to the stochastic analysis) it is necessary to have approximations by suf
ficiently many times differentiable function wtih the controlled growth of norms 
of derivatives. Moreover, sometimes it is necessary to approximate discontinuous 
mappings. So the natural thing to do in this situation would be to discuss some other 
concepts of approximation^ Recall that it was too rigid notion of Frechet dif
ferentiability to cause the described difficulties. Now We are going to discuss a weaker 
form of differentiability. 

2. Subspace-differentiable approximations and convolutions 
with smooth measures 

Let X be a locally convex space (LCS). An LCS E is called continuously embedded 
in X, if E is a linear subspace in X and the natural embedding E -> X is continuous. 
A map F from X to an LCS Z is called differentiable in a point x along the subspace E, 
if the map h \-• F(x + h) is differentiable, provided that we fix a notion of dif
ferentiability for E. Usually it will be Frechet differentiability and E will be a Banach 
space. However, other definitions of differentiability with respect to the system of sets 
are possible. Recall that a map F from an LCS E to an LCS Z is called differentiable 
in a point x with respect to the system of sets si in E if there exists a continuous 
linear map D: E -> Z such that 

lim *<* + '*> ~ *<*> - D(h) = 0 
t-*0 t 

uniformly in he S, Se si being fixed. 
The definitions of Gateaux, Hadamard and Frechet are covered by this definition 

if we choose for si the classes of finite, compact, bounded subsets correspondently. 
Recall that a Radon measure m on an LCS X is called differentiable along a vector 
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h e X, if for every Borel set A c X there exists 

(1) lim m(A + ^ ~ m ^ 
f->0 t 

It is known that in this case there exists a measure dhm on &(X) such that the 
limit in (l) coincides with dh m(A) and besides dhm <̂  m. The measure dfcm is called 
the derivative of m along h and its Radon - Nikodym derivative with respect to m 
is denoted by Qh(m). The property above is equivalent to the differentiability of the 
map 11-> mth from the real line to the Banach space M(X) of Radon measures on X, 
equipped with the variation — norm. Here mth(A) = m (A + th). The n-fold dif
ferentiability of a measure m along a continuously embedded subspace i f c l i s 
defined in a natural way as the rc-fold differentiability of the map h i—> mh, H -> 
-> M(X). The basic facts concerning differentiability of measures can be found in [14]. 
A Radon measure m on X is called Skorohod-differentiable along a vector h e X if 
for every / e Cb(X) the function 

11-> J / (x — th) m(dx) 

is differentiable. This property is equivalent to the following: all functions t -> 
-> m(A + th) are Lipschitz (see [14]). 

Denote by D(m) and Dc(m) correspondently the sets of all vectors along which the 
measure m is differentiable and Skorohod different iable. The spaces D(m) and Dc(m) 
possess the natural structures of Banach spaces compactly embedded in the original 
space X [14]. For this aim we can take the norm ||h|| = ||dftm||. 

Lemma 1. Let F: X -> Z be a locally Lipschitz map between normed spaces. 
E a X be a dense linear subsapce. If F is Gateaux differentiable along finite dimen
sional subspaces L c £ a t a point x then F is Hadamard differentiable at x. 

Proof. We can assume that F is Lipschitzian with the constant 1. It is sufficient to 
establish Gateaux differentiability of F (see [15]). Let heX. Choose a sequence 
hn c E tending to h. By Lipschitz condition uniformly in t + 0 

K m F(x + thn) - F(x) = F(x + th) - F(x) 

n->oo t t 

Hence, by the differentiability along h„, F is differentiable along h. Moreover, the map 
D: h -> F'(x) (h) is linear on E and satisfies the condition ||D(h)|| ^ ||h|| on X. Thus, 
D is a bounded operator. 

Lemma 2. 1) If a measure m on X is k times differentiable along vectors from 
a linear subspace E (or k times differentiable along continuously embedded E) and 
F: X -> Z is uniformly continuous with ||F|| e l}(m), ||F|| E l}(dhl ... dhjm), ht e E, 
j g k (correspondingly, norms of ||F|| in these ^-spaces are uniformly bounded for 
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|| hf || ^ 1), then the map G: x -> JF(z + x) m(dz) has the same properties and 

G'(x) (h) = JF(z + x) dhm(dz) . 

The proof is simple and uses compositions with linear functional on Z and the 
mean value theorem. 

Theorem 1. Let E be a Banach space, continuously embedded in an LCSX and 
E <=• Dc(m), where m is a nonzero Radon measure on X. Then for every keN 
there exists a probability Radon measure vk on X with a compact support, k times 
differentiable along E. Any uniformly continuous map F from X to a Banach 
space Z can be uniformly approximated by maps Fn: X -> Z which are uniformly 
continuous and k times Frechet differentiable along E. If X is Banach and F 
satisfies the condition \\F(a) — F(b)\\ ^ |[a — b\\a then for every e > 0 there exists k 
times Frechet differentiable along E map G with the same Holder condition such 
that \\F(x) - G(x)|| = e, 

\\DJ
EG\\ = const. e~s/x . 

Proof. The first statement was actually proved in [14] where the measure v with 
a compact support and Dc(m) a D(v) was constructed. Taking vt = v * v we obtain 
the measure which is twice differentiable along directions from D(v). Moreover, 

KMI = |->.| = Rv.cVi = IMI2 = IN2 

and ((vx)rft — vx)/r — d ^ belongs to the closed convex hull of the set ^t2dl(y^)sh, 
s 6 [0,1] . This ensures the Frechet differentiability along D(v). Then we apply 
analogous arguments to convolutions of k copies of the measure v1:vk = vl*...*v1. 
Now it is sufficient to prove the second statement for E = Dc(m) and so we can 
apply the first statement also for this case. Take the corresponding measure v and 
define the approximation by the trivial formula 

G(x) = f F(x + Ss) v(ds) 

which is usually used (see [1, 2,14,15,16]). Here 8 = 5(e) is to be chosen according 
to the uniform continuity, for example, S(e) = e1/a, if F is Holder. Now apply 
Lemma 2. 

Theorem 2. Let F: X -» Z be a Lipschitz map, X being separable. Then for 
every e > 0 there exists an Hadamard differentiable Lipschitzian (with the same 
constant as F) mapping G:X -> Z such that for all x 

| r ( x ) - G ( x ) | = £ . 

Proof. We can assume that F is Lipschitzian with the constant 1. Find a probability 
measure m on X with the compact support in the ball B(0, e) and infinitely dif-
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ferentiable along dense subspace E <=. X (it is possible, see [14]). Let G(x) = 
= JF(x + z) m(dz). Obvious estimates and application of lemmas complete the 
proof. 

All known examples of pairs (E, X) for which Lipschitzian functions on X can 
be approximated by k ± 3 times differentiable along E functions with bounded 
derivatives are constructed by means of differentiable measures (on the space X or 
its isometric extensions). It is unknown whether it is always so. We conclude this 
section with a concrete example of subspaces of differentiability in the space C[0,1]. 
The following result was obtained in [17], for the proof see [14]. 

Denote by H^ the Banach space of all functions on [0,1] satisfying the condition 
\f(t) - f(s)\ = C(f) co(\t - s\), co being a modulus of continuity (this space has the 
natural Banach norm). 

Theorem 3. 1) If a> satisfies the condition 

co(0 = 0(t/(log(l/0r), />>3/2, 

then there exists a probability measure m on C[0, l ] which is infinitely differentiable 
along #«,. 

2) If Ha cz Dc(m) for some nonzero measure m on C[0,1] then 

00 

£ co(\\n)\y/n < oo . 
n = i 

In particular, the first statement is not true for /? = 1. 
It remains open whether the last condition is equivalent to the existence of a mea

sure, differentiable along H& 

Remark 2. There exists an example of a probability measure m on c0 (or C[0,1]) 
with a compact support, infinitely differentiable along a dense subspace E such 
that no Gaussian measure g exists with E cz D(g), see [14]. Thus, Gaussian measures 
are not the best in this aspect. 

The problem of characterization of subspaces of differentiability of measures 
(introduced in [18]) is open. Such subspaces with the norm indicated above are 
isomorphic to subspaces in L^O, 1] and all spaces lp, 1 z% p ^ 2, can be represented 
in this form. It is unknown for what subspaces of l}[0,1] this is true. Properties 
of subspaces of differentiability for measures are investigated in [14,17]. V. Bentkus 
and A. Rachkauskas elaborated a method of estimating the rate of convergence 
in the central limit theorem in Banach spaces based on the use of such subspaces 
(see [19, 20]). The idea to use the subspace-differentiability plays an important role 
in the Malliavin calculus (see [14]). Recall that solutions of stochastic differential 
equations can be regarded as functionals of the Wiener process which are differentiable 
along the reproducing kernel of the Wiener measure on the space of trajectories but 
in general they are not even continuous on the whole space. 

14 



3. Approximations by spherical means 

Another natural way of approximating was suggested by A. V. Uglanov [21j_ 
The main idea is the following. Assume we have a bounded set V c X with nonempty 
interior such that for all measures m, infinitely differentiable along dense subspaces, 
functions x h-> m(V + x) are in Ck (have k continuous Frechet derivatives). Fix one 
of these measures m positive on open sets in the unit ball U and infinitely differen
tiable along E. If / : U -> R is Lipschitzian and infinitely differentiable along E (with 
bounded derivatives) then maps 

/«(*) = hv+xf(z) m(dz)lm(eV+ x) 

can serve as Ck approximations o f / Now we combine both types of approximation: 
first approximate g c CM(CI) by Lipschitzian h and h approximate by / of the in
dicated type using convolutions, then take fe. Clearly in many spaces there are no 
measures m and bounded sets V with the property that x i—• m(V + x) is Frechet 
differentiable not vanishing identically, since m(V + x) -• 0 when ||x|| -* 0. However, 
for some spaces this plan can be carried out. Below we develop some ideas of 
A. V. Uglanov [21] (he considered spaces LP), but instead of his methods of studying 
surface measures we apply the Malliavin calculus. 

Remark 3. Let g be a nondegenerate Gaussian measure on a Banach space X, 
R(x, t) = g(B(x, t)), B(x, t) being a closed ball of the radius t > 0, centred in x_ 
As noted in [22, 23] for every a and r > 0 there exists C = C(a, r) such that 
\R(a, t) — R(a, s)\ = C\t — s\ if s, t > r. This implies local Lipschitzness in both 
variables since the symmetric difference of B(x, r) and B(y, r) is contained in 
B(x, r + q)\B(x, r — q), q = \\x — y\\. Thus F: XH> R(X, t) is Hadamard dif
ferentiable by Lemma 1 since D(g) is dense (more complicated proof of Gateaux 
differentiability of F is given in [24]). It is clear from the above that F need not (in 
C[0,1] even can not) be Frechet differentiable, in particular its Gateaux derivative 
need not be continuous. It would be interesting to examine analogous questions for 
other smooth measures on general spaces. 

Now let F be a measurable function possessing almost everywhere a Gateaux 
derivative F' with locally integrable norm, S = {x: F(x) = 0}. 

Definition. A locally finite measure a is called a local surface measure for a measure 
m if each se S has a neighbourhood V such that measures 

rit(B) = (It)-1 $BnVn{-t<F<t) IF'H m , t[ 0 

converges weakly to <?(• n V). 
We call a a surface measure for m and denote it by ms if a has bounded variation. 

If {Sn} is a countable union of surfaces of considered type then we define the surface 
measure ms on S = \JSn as the sum of the series £m5rt converging weakly. 
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Proposition 1. If D(m) is dense, F has locally bounded Gateaux derivative and 
partial derivatives dhF9 h e D(m), are continuous and, at each se S, not identically 
zero, then the local surface measure on S exists. 

Proof. For se S find a ball B = B(s, r), a vector h e D(m) and cl9 c2 > 0 such 
that c1 < l\dhF < c2 on B. Take a function q>: X -> [0, l ] with bounded derivative 
dhq> and q> = 1 on Bt = B(s, 3r/4), cp = 0 on X\B The measure v = <pm is dif
ferentiate along h and c1 < 1/OVF < c2 on the support of v Hence the function 
11-* v(x: F(x) < t) has a bounded continuous derivative p. This follows from the 
existence of differentiable conditional measuies on lines y + Rh, see [14, 25], Iff is 
a bounded Borel function on X with bounded dhf then the same arguments can be 
applied to the measure r\ = fv. Moreover, 

|iy(x: -t < F < f)| ,, „ , , 
° ^ = \\P\U S U P III> 

p being a density of the measure |v| oF " 1 which is also bounded since D(v) cz 
cz D(|v|). The set of such functions f is uniformly dense in CU(B). So 

lim-— fv 
ř->o 2t J -t<ғ<t 

exists for allfe CU(B). The space of Radon measures on B is weakly sequentially 
complete and this gives us the weak limit X of the family 

— v(- n{-t <F < t}), t-+0. Let < r = | | F ' | | , l . 

Remark 4. It is possible to derive from the proof above that for any fe C(X): 
(fm)s = fms. Besides, if S(t, r) = F_1(0 + ra, aeX, then surface measures 
o(t, r) on S(t, r) converge locally weakly to o,t,r -+ 0. 

Notation. Write ms = a if \a\ < co. If X in the proof has bounded variation we 
denote it by Xs and call a nonnormalized surface measure. Denote by n(x) the unit 
normal to S at a point x, i.e. if S is locally F_1(0) then n(x) = F'(*)/||F'(x)||. 

Note that Xs varies if we replace F by const F while ms depends only on the geo
metry of the surface. 

Proposition 2. If m is differentiable along a vector field v: X -> X (in the sense 
of [14,25]), F is twice differentiable along v, d2

vF\(dvF)2 e l}(m), \\dJF e l}(dvm) 
and ||F'|| is bounded and continuous (or ||F'||, 3j .F'| | , ||F'|| Qv(m), d2

vF\(dvF)2, 
l\dvF e L2(m)) then there exist bounded surface measures mSt on St = F_1(0-

Proof. According to [14,25] m o F"1 possesses a bounded continuous (even 
absolutely continuous) density p. This gives the first assertion. To prove the second 
repeat the same for the measure v = ||F'|| m (note that dvv = dv\\F'\\ m + ||F'|| 
Qv(m) m). 
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Remark 5. Sometimes it is useful to define a surface measure in another way 
replacing ||F'|| by ||-9F||H where the derivative and its norm are taken with respect 
to some continuously embedded Banach space H c X. In a similar way surface 
measures on surfaces of codimension n > 1 can be defined [26]. This modification 
is especially useful for introducing surface measures on level surfaces of functions 
from Sobolev spaces over abstract Wiener spaces since such functions need not be 
even continuous. The same definitions have sense for surface measures on manifolds 
of general type considered in [14, 25], A, V. Uglanov defined surface measures in 
another but equivalent way; his results can be proved by these methods. 

The next result, which appeared in [27], is very important for the integration 
theory because it connects surface integrals with integrals over the space. 

Proposition 3. Let V be an open set with a boundary S which locally has a form, 
indicated in Proposition 1, n be a continuous normal. If D(m) is dense, m5 is finite, 

00 

{at} cz D(m), the series G = X(^«i^ + ^ai(P 0«.(m)) converges in l}(m), the series 
00 1 

dvq> = Y, dat<p(n> ai) converges in l}(ms), then 
I 

\s dv<pms = jV Gm . 

Proof. It is sufficient to prove equalities 

U dai<p(n> ai)ms = \v (ftt<P + daiq> Qai(m)) m . 

But the right-hand integral coincides with jV daiv, where v = dat<pm, while the left-
hand one equals to js(n, a;)vs. So we have to prove the formula J s(n, at)v

s = 
= \v daiv- We can assume that v has a compact support K since it can be approxi
mated in variation by measures Vj = cpjV, cpj being functions with compact support 
with derivatives along D(v), see [14]. This makes possible to consider the following 
case: V = {x = z + se: z e Q, s < F(z)}, where X = Z + Ra, \a\ = 1, Z is a hyper-
plane, Q is a ball in Z, F|Q = 0. In this case (n, a) — dflF/||F'||. Hence for the surface 
Sx = {x: z e Q, s = F(z)} we have 

ISx * - 0 t 

It is not difficult to show that this expression equals to lim v(Vr)/r, where Vt denotes 
the region Q + [0, t] a. Besides, t~*° 

vs(Q) -= lim - v(x: z e Q, s ^ t). 
t-K) t 

Now we use the relationship 

dav(V) = lim(v(V+ to) - v(V))\t = 
t->o 

= lim (v(x: z e Q, s ^ t) + v(Vt))jt. 
t-+o 
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Proposition 4. Assume that conditions of Proposition 3 are fulfilled for surfaces 
V+ ta, 0 ^ t ^ r, where aeX is fixed. Then for such t 

m(V + ta) - m(V) = ft j s + r a (n, a) ms+'°dr = ft | s + r a 5aFAs+"dr . 

Proof. Let a e £>(m). Then the derivatives of both terms coincide as we have seen 
above in the proof of Proposition 3 (the derivative of the left-hand term is dam(V + ta) 
which equals to the integral 

\s+ta(n,a)ms+ta. 

Since D(m) is dense in X we can use Remark 4. 

Remark 6. Similar arguments are valid in a more general situation (see [21]). 
A modulus of convexity of a Banach space B is defined by the formula 

*-(-) = inf | l - liLt-J ; | , | , |H| g 1, ||x - >>|| ^ aj . 

The norm | • || is said to be uniformly convex of the order q if SB(e) ^ ceq for some 
c > 0. Each superreflexive space admits a norm with the modulus of convexity 
5(e) ~ eq, q > 1 [28]. The following statement was mentioned in [29] without 
proof. 

Lemma 3. The following assertions are equivalent: 1) a norm p is uniformly 
convex of the order k; 2) there exists C > 0 such that p'(b + te) ^ Ctk~x for all 
t e(0, 1) and b, e with p(b) = 1, p(e) = 1, p'(b) (e) _ 0 where p' states for lower 
derivative. 

Proof. Note that a function 11-> p(x + ta) has a continuous derivative except at 
most countable set. Assume that for some b, e we have p'(b) (e) ^ 0 but p'(b + tte) . 
. (e) ^ df*"1, d = cfc(3/2)k_1 for some fx e(0,1/2). By the above argument we can 
consider that p'(b + te)(e) ^ 2dtk~l for all f in the interval (t2 — r, t2 + r). We 
can assume also that p'(b + te) (e) ^ 0 for f e [r2, f2 + f\,r < 1/4, since the function 
11—> p'(b + te) (e) has only one zero. Replacing b by ft + f2e we come to the case 
t2 = 0. Find q e (0, 1) with \\qb + re | = 1. It is clear that q > 3/4. Then (p = || • |[): 

1 - \\qb + re/2|| = ft2 p'(qb + te) (e) df = 

= fo/2 P'(«* + qte/q) (e) dt = ft'2 />'(*> + '«/«) W ^̂  = 

- « W ' - / € - * - ^ 1 ^ ) ' < crk , 

On the other hand 1 — \\qb + re/2|| ^ crk. This contradiction proves the implica
tion 1) => 2). Now assume that 2) is true and ||x|| = ||y|| = 1, ||x — y|| = e < 1J4> 
e = (x — y)l(\\x — y\\). Denote by b the point on the segment, connecting x and y, 
with the minimal norm. Then p'(b) (e) = 0. Note that P'(b/||b||) (e) = p'(b) (e) = O 
and ||61| = 1 - e = 3/4, from where p'(b ± te) (e) = P'(b/||b|| ± te/||b||) (e) ^ 
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= C(tl\\b\\f-1
 = CWif-1 tk~K If b 6 ftx + y)\2, y], 5 = ||(x + y)\2 - b\\, then 

Theorem 4. Lef B be a Banach space with a norm p, which is uniformly convex 
of some order d and has k Lipschitzian Frichet derivatives on the unit sphere. 
If a measure m on B is infinitely differentiable along vectors from infinite dimen
sional linear subspace D and together with all derivatives possesses all moments, 
then the function M: 11-» m(x: p(x) < t) is k times differentiate and M(fc) is ab
solutely continuous. Besides, the function Q: x i—• m(U + x) has k continuous 
Frechet derivatives, U being a ball. Moreover, the map (t, x) n-> m(tU + x) is in Ck. 

Proof. 1) We shall use the results [14, 25] where a variant of the Malliavin's 
method is described. According to these results for the proof of the first statement 
it is sufficient to construct a vector field v: X -> X along which the function p and 
the measure m are k times differentiate with l\(dvp)q e I}(v), v = dl

vp . dr
vm, qeN, 

n 

I, r _ k. Let v(x) = £ dei p(x) et, where ||ej|| = 1, et e D are linearly independent 
I 

and n will be chosen later. All differentiability conditions hold and the only thing 
to verify is the inclusion (dvp)~q e L*(v). For this end it is enough to obtain estimates 

|v| (x: G(x) = 8) ^ fiS , G = dvp = i (detpf . 
1 

Denote by Ythe topological complement to L = span (el9..., en) in X. By [14, 25] 
there exist smooth conditional measures vy on subspaces y + L,yeY. Affine spaces 
y + L are equipped withLebesgue measures ky translated from L, L being identified 
with Rn: e{ -> (0,..., 1,..., 0). Denote by m(y) the point in y + L where p attains 
the minimum. Note that for all z e Lwe have 

G(z + m(y))2:(}(\z\l\\m(y)\\y*-2, /} > 0 , 

| • | being the new norm on L taken from Rn. Indeed, p'(m(y) + e) (e) _ 0, hence 
p'(m(y)l\\m(y)\\ + e)(e) = 0 and p'(m(y)l\\m(y)\\ + te)(e) = C**"1. Thus p'(m(y) + 
+ 'hOOII e)(e) = ctk'1 a n d f o r H = 1 P'(m(y) + se)(e) _ c(sl\\m(y)\\)k-1. Since 
norms ||'|j and |-| are equivalent on Lp'(m(y) + se)(e) _ c1(s/||m(j;)||)fc"1. From 
this equivalence we have also 

i(deiP(m(y) + se)f = (c,(5/|m(y)|)»-y , 
1 

since 

p'(x) (e) = X «i Sei p(x) , e = X afť?f, 
i i 

I I «< deiP\ = V(Ž «?) • V ( I (de,p)2) = \e\ VG • 
i i i 
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Finally we get the following estimate: 

G(m(y) + z) = c3|z|2*-2/|m(y)||2*-2 . 

Since ||w(>>)|| ^ ||j;|| we have 

{xeL+y: G(x) = s} <= {x eL+ y: (\x - m(j;)|/||y||)2*-2
 = e//J} = 

= {xeL+y:\x- m(y)\ = (£//?)'/<2*-2> \\y\\} . 

The |vy|-measure of the last set is majorized by 

| p | U Xy(x: \x - m(y)\ = (W^ \y\\) = 

^\\fyUcn\y\nmnim-2)> 
where fy denotes the density of vy with respect to Xy. Accodding to [14, 25] 

\\r\U = \dei...dey\\. 
This gives the estimate 

\v\(G = e) = lYv'(G = e)a(dy) = 

• =£n,i2k-2'UZn\y\n\dei...dey\c(dy), 

where a denotes the projection of |v| on Y. By the closed graph theorem there exists 
d > 0 with \\a + j ; | | = d\\y\\, aeL. Hence 

JYIIylNl^...^y||^y) = 

= d~n \Y JL+, WAY K •- *.y\ (dz) <j(dy) = 

= d-nSx\\x\\n\dei...denv\(dx)< oo 

The last inequality holds by the condition since 

v = dl
vp. dr

vm = £ (pjdh ... dhm 
jûr 

(dtj states for the derivative along etj)9 <pj are polynomials of p and dj
h_tjp. Now we 

can make our choice of n and write n = (2k — 2) r. This completes the proof of 
the first statement. 2) The second statement follows from the first and Propositions 
3, 4. Indeed, the first derivative of t H-> m(U + ta) coincides with 

[ W+,a = f £ (daiPf -J^— As+" = 
js+.„ js+ta i z(eatPy 

-Í. (E tftP + daatP QaM) V , 
IS + ta -

N 

where al9 ...,aNe D are linearly independent, v = (dap/£(daip)2) m- From the 
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reasonings of part l) it is clear that for sufficiently large 1V the measure v is correctly 
defined. By the induction we get the desirable statement. From the arguments above 
it is possible to obtain continuity of partial derivatives of investigated map in both 
variables, which completes the proof. 

Corollary. IfX satisfies the condition of Theorem 4 then Ck(X) is dense in CU(X). 

Remark 7. Theorem 4 permits also to approximate Lipschitz maps from X to 
Banach spaces using the same formula. 

Remark 8. a) If we are interested only in the boundedness of the density of distri
bution of the norm then we can omit the condition of differentiability (for Gaussian 
measures it is proved in [23]). b) For stable measures the first statement of Theorem 4 
was proved in [29]. c) In some cases the described approximations are the best 
possible. For example, according to [4] the results [21] for spaces Lp can not be 
improved. 

4. Additional remarks 

Introduce the following conditions on a Banach space X. CkN — X admits a norm 
||-|| which is C * o n X \ { 0 } ; 

CkN - X admits a norm || • || which is Ck on X \ {0}; 

CkB — X has a nontrivial bump function fe Ck; 

CkD - Ck(U) is dense in CU(U), U being a ball. 

In section 1 we have mentioned some results concerning the connections between 
these properties. It is interesting to investigate other cases. Certainly, there are 
evident connections: CkN => CkB, CkD => CkB. To prove the second one find g eCk 

with 0 < g(x) < 1/4 for ||x|| = 1 and g(0) > 1. Let f(x) = g(x) - 1/2 if ||x|| = 1 
and g(x) = 1/2, f(x) = 0 in other cases. It is easy to verify that f2k belongs to Ck. 
The same argument shows that CkB is equivalent to the existence of a nontrivial Ck 

function tending to zero at the infinity. Theorem 4 ensures CkD for sufficiently smooth 
norms || • || which are uniformly convex of some order. This theorem enables also 
to obtain the implication CkB => CkD if one can construct fe Ck such that f_1(0) 
is a "good" surface. It might be of interest to characterize geometrical properties 
of the sphere in a Banach space X in terms of differential properties of functions 
11-> m(tU) for smooth measures. We conclude by mentioning some relevant questions. 

1. It is interesting to study possible supports and critical points of bump functions 
of different classes. Such functions in infinite dimensions can have surprising proper
ties. For example, S. A. Shkarin [30] constructed a function f on Hilbert space H 
possessing uniformly bounded Frechet derivatives of all orders such that f is vanishing 
outside of the unit ball while f =t= 0 in the open unit ball. Below we give his example 
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of a continuous polynomial P of the fourth degree on H, vanishing on the unit 
sphere and having no critical points in the open unit ball (similar example was 
constructed also by Yu. Prostov). 

Example 1. Let H = L 2 [ - l , 1], Ax(t) = tx(t),f = c(l - t2)2, \c\ < 1/20, P(x) = 
= (1 - (x, x)) [(Ax, x) + (f, x)l 

2. A group of interesting questions is connected with results on extension of smooth 
mappings in infinite dimensional spaces and different versions of the Whitney theorem 
(constructing a map with prescribed restrictions of derivatives on some closed 
subsets), see [31]. 

3. It may be of interest to consider a problem of uniform approximation of 
maps F: U -> U by maps with fixed points or with invariant measures. Some dis
cussion on this subject can be found in [32], where there is an example of a poly
nomial diffeomorphism F of the closed unit ball U in a real Hilbert space which has 
no invariant measure (in particular, has no fix points). It remains open whether 
a polynomial map F: U -> U must have s-fixed points xe for all s > 0 (i.e. 
\\F(xs) - xe\\ < a). 

We don't know any example of a polynomial map F:U -> U without fixed points 
but with invariant measures. Another problem — differential properties of invariant 
measures of smooth transformations in infinite dimensional spaces (for example, 
corresponding to infinite dimensional dynamic systems). 

At last note that in this paper we have not touched the theory of Sobolev spaces 
over infinite dimensional manifolds which is now the object of intensive studies. 

In conclusion I would like to thank the Organizing Committee of the 19 Winter 
School on Abstract Analysis for the invitation and hospitality. 
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