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We consider some known special subsets of the real line R and their use in decision 
of a few questions arised in the theory of trigonometrical series. 

Let us remind some definitions. 
A set E c= U is called a Luzin set if it is uncountable and has countable intersection 

with every nowhere dense set. 
A set E c [0,1) is called a N-set if there exists a trigonometric series in the form 

a °° 
— + Yjan c o s 27rnx + bn sin 2nnx (1) 
2 n = l 

oo 

which is absolutely convergent on £, but ]T \an\ + |bn| = oo. Otherwise E is called 
an A.C.-set. " = 1 >/ 

A set E c [0,1) is called a R-set if there exists a trigonometric series in the form 
(1) convergent on E, but a\ + b\ -H- 0. 

It is known that N- and R-sets have measure zero and are meager or of first 
category. If a set is countable it is N- and R-set ([1], p. 173, 174, 736, 737, 757). 

The question if any A.C.-set (not N-set) must have a cardinality continuum c is 
unsolvable in ZFC (usual system of axioms of Zermelo-Fraenkel of set theory with 
axiom of choice). 

It is trivial that assuming the continuum hypothesis CH the answer is positive. 
But assuming the failure of the CH the answer is ambiguous. Assuming Martin's 
axiom every set of cardinality less than c is N- and R-set ([2]). (Z. Bukovska showed 
that it is truth by assuming Booth's lemma). On the other hand there is correctly 

Theorem 1. It is consistent that there exists a subset of cardinality less than c 
of the Cantor set which is neither N- nor R-set. 

Proof. It is consistent with ~| CH that there exists a Luzin set ([3], p. 205). Let us 
take a subset E of cardinality Kx (where i ^ is the first uncountable cardinal) of 
a Luzin set on [0,1). A set £ is a Luzin set on [0, 1). Let us put their elements in 
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order: E = {xa)a<0)l where (ox is the first uncountable ordinal. As Steinhaus proved 
(see, for example [ l ] , p. 739) any t e [0,1] is representable in the form t = x + y, 
where x and y are from Cantor set K. Then any xa e E is ya + za where ya, za e K. 
Then A = {ya}a<(0l u {za}a<(0l u {0} i the required set. 

Really, let A be a N-set. It is known ( [ l ] , p. 756) that there exists a trigonometric 
00 00 

series in the form £ K sm 2nnx absolutely convergent on E, but £ \bn\ = oo. 
n = l n = l 

Then for any xae E 

* oo oo 

£ \bn sin 2nnxa\ = £ |b„ sin 2;rn(ya + za)| ^ 
n = l n = l 

oo oo 

= £ \bn sin 27rnya| + £ |&,. sin 27wza| < oo . 
n = l n = l 

But E can not be N-set as it is not meager. This contradiction proves that A is not 
N-set, i.e. A is an A.C.-set. 

Let now A. be a R-set. As 0 e A then there exists a sequence {/v} of natural numbers 
such that lim sin Zv 2nx = 0 for x e A. But then lim sin 27rZvxa = 0 for xa e E (see [ l ] , 

v-*oo v-+oo 

p. 741). It is impossible since E is not meager. So, A is not R-set and we are done. 
Further we consider concentrated sets, defined by Besicovitch in 1934. 
A set X is concentrated on a set A iff for any open set G if A cz G, then X \ G 

is countable. 
On the whole there were studied sets concentrated on a countable set (see, for 

example [3], § 3). 
Let us formulate some simple propositions on concentrated sets. 

Proposition 1. Let i c R and X be concentrated on A, then X\A is totally 
imperfect, i.e. doesn't contain any perfect set. If the complement of A is totally 
imperfect, then any set is concentrated on A. 

Proposition 2. [CH]. Let A a U, A e G8. Then there exists a set X concentrated 
on A such that X\A is uncountable. 

We will need some definitions. 
A set of reals X has universal measure zero iff for every atomless measure \i on the 

Borel sets there is a Borel set of jx-measure zero covering X. 
A set of reals X is called universally measurable if for any given positive Borel 

measure \i it equals to a Borel set modulo a set of /^-measure zero. 
Borel, analytic and coanalytic sets are universally measurable. 

Proposition 3. If a set A c U is universally measurable and X is concentrated 
on A, then X\A has universal measure zero. 

Proposition 4. If a set A c R is analytic, but not Borel set, then there exists 
a set X concentrated on A such that cardinality of X\A is Kx. 
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We obtain such set selecting by one point from each of the constituents of a com
plement of A. Such a construction was used by Luzin to construct a perfectly meager 
set ([4], p. 283). 

In [5] it is proved the next 

Theorem 2. [MA + ~| CH]. Let A c U, A e Fa and X is concentrated on A. 
Then X\A is countable. 

Let us consider a question if a set concentrated on an N-set is itself an N-set. 
This question is unsolvable in ZFC. 

Really, assuming CH there exists a Luzin set X on [0,1] , which is concentrated 
on the set of rationals being a N-set, but X is not an N-set. 

By theorem 2 it can be proved 

Theorem 3. [MA + ~1 CH]. A set concentrated on an N-sef is an N-sef. 
In [5] it was expressed the conjecture on independence of the statement: if A c 1R 

is Borel set and X is concentrated on A then X \ A is countable. 
V. Malychin and A. Roslanowski suggested the proof of the next theorem in which 

follows that this conjecture is true and even more strong statement is true. 

Theorem 4. Ifb > Kx then the following statement is true: 
If A is an analytic set onU,XczA and \X n P| :_ K0for any compact subspace 

F c A, then X is countable. 
Here b is the least cardinality of unbounded sets in cow, where co03 is the space of 

all functions from co to co given the product topology. Remark, thatb > Kx assuming 
M A + 1 CH. 

Proof of the Th. 4. Since A is an analytic set, then there exists a continuous map 
f: of" -+ AJ{or) = A. Let X be uncountable and yis a subset of X, \Y\ = Hv Let 
us put elements of yin order: Y = {xa}a<(0l. Let us take za e f " 1 ^ ) . The set {za}u<(ai 

is bounded in cow, since b > Kx and therefore is contained in a countable union of 
00 

compact sets U <Pk (see, for example [3], p. 215). Since f is continuous, thenf((Pk) 

are also compact sets in A and hence Y is covered by countable numbers of compact 
sets and so yis countable. This contradiction proves that X is countable. 

From here it follows 

Theorem 5. Letb > Kx. If A is a coanalytic set on U and X is concentrated on A 
then X\A is countable. 

Corollary, [b > K-]. An analytic set A is a Borel set iff for every set X con-
centrated on A a setX\ A is countable. 
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