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More Facts about Conjugate Banach Spaces 
with the Radon-Nikodym Property 

C. STEGALL*) 

Austria 

Received 11 March 1990 

We generalize some results given in [F] which, in turn, answers a question of K. Musiah 
A Banach space that is an Asplund space and the unit ball of its dual is a Corson compact in 
the weak* topology is (hereditarily) weakly compactly generated and has an equivalent Frechet 
differentiable norm. A compact space that is simultaneously a Corson compact and (the countable 
union of compacta) a compact with the Radon Nikodym property is (a Talagrand) an Eberlein 
compact. 

Introduction 

A routine consequence of the results of [F] and the interpolation method as used 
in [S8] is the following result: if a compact space K is a GuTko compact and is 
such that C(K) is generated by an equimeasurable set (such spaces are sometimes 
called Radon Nikodym compacta) then K is an Eberlein compact. From this it 
follows that an example given in [Tl] (see also [Pol]) is not a Radon Nikodym 
compact. This has also been observed for rather different reasons by others1. Except 
for the details of constructing Frechet differentiable norms, which can be found 
in [F] and itŝ  references,> this paper can be read independently of [F]. We say that 
a Banach space Yis an Asplund space if its dual space 7* has the Radon-Nikodym 
property. This is equivalent to Z* being norm separable for any separable linear 
subspace Z of 7. For references, start with [DTJ], The basic point here is that a Banach 
space that is an Asplund space and the unit ball of its dual is a Corson compact 
in the weak* topology is weakly compactly generated. The ptoof of this is1 only 
combinatorics of previously known results. The fundamental result, due to GuPko, 
is that a Gul'ko compact is a Corson compact (see [Gu] and [S4l for a differerent 
point of view). 

*) Institut für Mathematik.. Johannes Kepler Universität, AItenbergerStrasse, A-4040 Linz» 
Austria 

*) See the note at the end of this paper. 
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Results 

We use the following concept. 

Definition. Let O: X -> p(Y) be a multivalued map from the metric space X 
to the subspaces of the metric space Y. A near selection for O is a sequence of 
continuous mappings {(/>„: X -> Y\ such that lim (f>n(x) exists for all xeX and 

distance (lim (j>n(x), $>(x)) = 0 . 

See [S3] for a direct and easy proof of the following. 

Theorem. [JR] 1/ X is any complete metric space and Y is an Asplund space 
then any Q>: X -» @(Y*) that is upper semicontinuous and compact valued with 
respect to the weak* topology has a near selection. 
" If K is a compact space, then 3>K: C(K)"'-.» p(K) denotes the support mapping, 
also known as the subdifferential, We use the theorem above in the following case, 
whiph, depends on [S2]: suppose that X is an Asplund space then there exists a se
quence {(j)n: n e Jf\ of norm continuous functions $„: X -* Bx*(0, 1) (the unit 
ball of X*) such that limn <l>n(x) = (j)(x) exists in norm for all x e X and <j)(x) (x) = 
= ||x|| for all xeX. The converse is true also as has been known for some time. 
In [R] Rode observed, as a straightforward consequence of some hard results of 
R. C. James (an outline of the proof of the part that we need is incorporated in the 
next Proposition), the following: if X is a separable Banach space and S =~ Bx*(091) 
is norm separable, norm closed, convex and for every xeX there exists an x*eS 
such that x*(x) = ||x|| then S = Bx*(0,1). The only complete proof of this result 
including the results of James with which we are familiar is in [SI]. Suppose such 
a sequence {<j>n: ne Jf\ exists. Something resembling the next Proposition can be 
found in [R], [S2] and [FG]. It is somewhat stronger than we require. 

Lemma. Let Y be an Asplund space and let K be a weak* compact and convex 
subset of Y*. Let {</>„: Y-+ Y*}be any near selection for 

^j-(y) = {y* e K: y*(y) = sup y} 
K 

J 

and let 4>(y) = lirn,, <t>n(y). Let S be the smallest norm closed and convex set con
taining {<j>(y): yeY\. Then, S = K. 

Proof. Suppose that x*eK\S. Choose 5c** e l * * and 5 > 0 so that 

sup x** + 5 < <x**, x*y . 
s 

Recall the theorem of Goldstine: if x** e X** and K ^ X* is norm compact then 
for any e > 0 there exists x e X So that ||x|| = ||x**|| and 

|<x** — x, x*}\ < e 
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for all x*eK. Construct a sequence {xn: ne^}, [|x„|| = ||x**||, in the following 
way: let x t be such that flxj ^ ||***|| and |<x** - x l 5 x*>| < 1 and having the 
chosen {xu ..., xn} choose x n + 1 so that |<x** - xw+1, x*>| < l/(w + l)for all x* in 

{xi}u(\J4>jAmnBA0,n))) 

where An «= [{xl9 . . . ,x„}]. Since every element of Z = [{x„: n e , / } ] attains its 
supremum on S, the results of James (see [SI]) say that there exists an increasing 
sequence of integers {mp} and non negative scalars {An} >such.that ' 

mp<;n<rnp + i 

for all p and if 

. yr= I, tem , 
mp is n < mp +1 

then sups yp < sups lim sup xn + d. Clearly, 

<***, x*> = lim <yp, x*.> ^ lim sup (Sup yp) ^ sup lim sup xn + 5 < <x**, xj> 
p p > » , Su- ~* s 

whith is nonsense. ; 
If y is an Asplund space, K = B(Y*), I: Y-+ C(K) is the canonical operator and 

{<!>„: C(K) -> y*} any near selection for I* o O^ we denote £* for a subspace E 
of y the smallest norm closed subspace of Y* containing 

U U 4>Jp(x)). 
, xeE n . 

Usually, we suppress the I and K in this case. The following are special cashes of the 
Lemma above. 

To our knowledge, the clever idea of using the results of [JR] in connection with 
long strings of projections first appears in [F], 

Proposition. If Yis an Asplund space then y* = Y*. 

Proposition. Let Y be an Asplund space, T: Y-+ C(K) any operator, and let 
{<j)n: C(K) -» y*} be any near selection for T* o Ox . Define S to be the smallest 
norm closed subset of Y* that contains -

U <t>n(C(K)) • 
n 

Then, T*(K) s S. 
Define the following: 

Y = {Z c 7: Z is normed closed, linear, and Z norms Z*} . 

Observe* that if Ye Y then restriction carries y* isometrically onto Y*. For each Z 
in Y, this canonically defines a contractive projection P of y* onto Z* by P(x*) 
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is the unique element of Z* such that (P(x*) — x*) \ Z = 0. Also, if F is an increasing 
filter in Y then 

U ^ e Y . 
ZeF 

If Tis a subset of a Banach space, denote by d(T) the norm density of T. 

Proposition. Let Ybe an Asplund space, U £ Y and V £ Y* be infinite sets such 
that d(U) = d(V). Then there exists Z s Y such that d(Z) = d(U) = d(V), U c Z, 
V £ Z* and Z norms Z*, hence, Z 6 Y. 

Proof. Choose Y0 ^ X such that yo contains V, d(y0) = d(U) (see above) and we 
also assume that U £ Y0 and Y0 norms [V]. Having chosen linear spaces Y0 i= ... 
... c y„ with d(yn) = ... = d(y0) = d(U) choose yB c yw+1 so that d(U) = d(Yn+i) 
and yn+1 norms Yn. Let Z = \Jn Yn. It is easy to see that Z* = (J* -£ and it follows 
that Z e Y and d(Y) = dKU) = d(V). 

The two Propositions above allow the construction of a projectional resolution 
of the identity for Y* (see [FG] for this case and [AL] and [S4] for the canonical 
case). Suppose that [co, y] is an ordinal interval and { y a : o ) ^ a ^ y} is an increasing 
family in Y such that Yy = Y, d(Ya) ^ a and for any limit ordinal fie [co,y] we 
have that 

o<,a<fi 

We make a pair of absolutely trivial remarks concerning this decomposition. 
Suppose Qa is the projection of Y* onto Ya as defined above. Because the kernels and 
images have the prpper order, these projections commute. Then for any y* e Y* 
and for any e > 0 we have that 

- I = {«:\\(Qt+1-Q,)y*\\>e} 

is finite. Suppose that {an} c I is strictly increasing. Let /? be the supremum. Then, 
with the closure taken in the norm topology, 

Q„(Y*) = Y< = \JY:n, 
n 

Choose x* e Y*n so that {x*} converges to Qfi(x*). It follows that 

i*:-Gj**)ii-o 

le^*)-&„(**)!-o 

\Q*.M**)-QJi*'M-*<> 
which is a contradiction. k J 

Another banal observation is the following: suppose, and just suppose, that we 
were, able to find the family {Ya: co £ a £ y} such that each Ya is weak* closed 
(equivalently, the projections {Qa} are all weak* continuous). Then, Yis generated 
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by a weakly compact set and the unit ball of Y* is an Eberlein compact (see [DFJP]). 
This follows trivially by induction on the norm density of Y. If Y is separable there 
is nothing to do. Suppose that for each a, Pa is a projection on Ysuch that P* = Qa. 
For a > co choose a weakly compact subset Wa, a subset of the unit ball of 
(P a + 1 — Pa)(Y), that generates (Pa+l - p*)(Y)l for a = co, choose a weakly 
compact, convex and symmetric subset Wm of P^Y) that generates P^Y). We shall 
show that JV= \Ja Wa is weakly compact. Choose any sequence {yn: n e Jf} in W. 
Since any separable subspace of Y has a norm separable dual, we may, by passing 
to a subsequence, assume that lim y*(y„) exists for all y* e Y*. If {yn} intersects 
some fixed Wa infinitely often, then it has a weakly converging subsequence. We 
may suppose that {an} £ J is a strictly increasing sequence such that 

(p«n+i - pJyn = yn. 
Thus, 

lim y*(yn) = y*((Pan+i - Pj yn) = ((Qan+1 - fij y*) (yn) . 

But, ||(<2an+1 - e a n )y* | | -»0 which proves that lim y*(yn) = 0 for all y*eY*. 
Since 0 e W, the Eberlein-Smulian theorem says that W is weakly compact. For 
a fixed non zero y* e Y* choose the minimal a, which cannot be a limit ordinal 
other than co, such that Qa(y*) # 0. Either, Q^y*) * 0 or (Qa - (>a-i) (y*) = 
= Qa(y*) 4= 0. This proves that y* does not vanish on JVand that Yis weakly com
pactly generated. This is the case of [S5] that is correct. Now, to more Serious matters. 

To show that Y*a is weak* closed it suffices to show that the unit ball of Y* is weak* 
compact. This can be done by playing the usual games with the bounded weak* 
topology [D]. We prefer, however, the more pleasant approach given in the first 
four pages of [Al] . 

Theorem. [S8] The following are equivalent fdr a compact space K: 
(i) there exists an Asplund space Y such that K is homeomorphic to a weak* 

compact subset ofY*; 
(ii) there exists an Asplund space Yand an operator T: Y-* C(K) such that the 

image T(Y) separates the points of K; 
(in) there exists an Asplund space Y and an operator T: Y-» C(K) such that the 

image T(Y) is dense in C(K). 

Definition. [S8]A bounded subset S of a Banach space X is GSP if there exists 
an Asplund space Ynad an operator T: Y-> X such that S £ T(B(Y)). 

Compact spaces that satisfy the conditions of the Theorem above are sometimes 
called compacta with the Radon-Nikodym property. The canonical examples of such 
creatures are dispersed compact spaces and Eberlein compacta (see [S8]). 

Theorem. (Grothendieck) A bounded subset E of C(K) is GSP if and only if for 
every nice probability measure \i on K and every s > 0 there exists a compact 
Ke £ K such that {f\Ke: f e E} is relatively norm compact in C(Ke) and \x(Ke) > 
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> ' l — e. It follows that if a bounded subset E of C(K).is GSP then its closure 
in the pointwise topology is also GSP. 

„ Theorem. [S7] IfYis an Asplund space and K is any weak* compact subset (0r, 
even a subset that is k-analyticin the weak* topology [SI]) of Y* then the norm 
density of K is no greater that the weight ofK in the weak* topology. 

A related result, in a context more general than the following, can be found in [H] 
(see[DU]). 

Theorem. (Stegall, Huff, Morris) A Banach space Y is an Asplund space if and 
only if every norm closed, convex and bounded subset of Y* is the norm closed 
convex hull of its extreme points. 

Theorem. [Pol] There exists a class 3T of topological spaces such that the fol
lowing are equivalent for a compact space K: 

(i) K is a Corson compact; 
(ii) in the simple topology, C(K) is the continuous image of an element of 2T; 

(iii) every subspace of C(K) that is closed in the simple topology is the con
tinuous image of an element of 3T\ 

(iv) there exist TeZT and f: T-> C(K) continuous in the simple topology such 
that f(T) separates the points of K. 

The proof of the following is contained in the special case of the main theorem 
below. See [Di] and [F] about renormings and differentiation. 

Theorem. IfYis an Asplund space and the unit ball of Y* in the weak* topology 
is a Corson compact, then Y has a projectional resolution of the identity as above 
with the Y* weak* closed. Moreover, 

i = {*--l«U.t-QJy*lZe} 
is finite for all y* in Y* and all e > 0. It follows that every subspace ofYis weakly 
compactly generated and Y has an equivalent norm that is Frechet differentiable. 

Let PA denote the A-fold product of [0,1]. For each X e A define px to be the 
projection into the X coordinate. Suppose K ^ PA is compact and each point in K 
is countably supported on A (the definition of a Corson compact). If Q .= A then 
we say that Q is good if the canonical retraction on PA defined by Q leaves K invariant. 
Clearly, if one has an increasing filter 3F of good subsets of A then \J^ is also 
good. If {Q„} is increasing, then Q(k) = O(fc') if and only if Qn(k) = Qn(k

f) for all 
n e Jf. We shall use Q to denote the subset, the retraction on K and the projection 
defined on C(K) by gfj) = f o Q. A result of Benyamini says that given any infinite 
Q ^ A there exists !j.= ( j c A such that a is good and a has the same cardinality 
as Q. The continuous image of a Corson compact is a Corson compact (see [Gu], 
[Pol] and [Ne]). 

Main Theorem. A compact space that is both a Corson compact and a RNP 
compact is an Eberlein compact. 

112 



Proof of a special case. Let Y be an Asplund space and let K be the unit ball of y* 
in the weak* topology and suppose that it is sitting in PA as a Corson compact. 
Since y separates the points of K we may approximate each pk as a function on K 
by a polynomial in any dense subset of Ytogether with the constants. We may assume 
that the cardinality of A is no greater than d(Y). Fix a cardinal T smaller than the 
cardinality of A. Fix a closed and linear subspace Z0 so that d(Z0) = T and fix 
a subset T0 of A that has cardinality no greater than T. A pair (R9 Q) is valid if d(R) <^ 
^ T, Q ^ A is good, has cardinality no greater than T, Z0 .= R and T0 .= T. We shall 
designate a valid pair (R, Q) as beautiful if it fulfills the following, perhaps redundant,, 
conditions: 

(i) R* n fl(y*) s o(K); 
(ii) g leaves R invariant; 

(iii) R norms [<2(K)]; 
(iv) R generates the algebra Q(C(K)). 

The point of the proof is to verify that if (R, Q) is a valid pair then R* is weak* 
closed. There are two parts to the proof. One part of this is to prove that if {(R$, Q^)} 
is an increasing (coordinatewise) family of beautiful valid pairs then 

{(U*e,Uft» 

is also very beautiful. The other part is to show that if we begin with a valid pair 
(R9 Q) then we may construct a larger valid and beautiful pair. With these two parts,, 
the construction of a projectional resolution of the identity follows in exactly the 
usual way [AL]. We begin with a valid pair (R, Q) and we construct a larger valid 
pair in the following way. Choose D £ R norm dense and for each xe D choose 
a countable subset QX of A such that x is in the algebra generated by {pk: XEQX}^ 

For each n e / and each xe D choose onx countable so that onx is the support 
of <i>n(x). Choose a good o containing 

^ ( U ^ ) n ( U U °n,x) 
xsD n keD 

so that (R, O) is valid. Now, choose R ^ S so that S norms o(K)9 the algebra gen
erated by S (always understood, and the constants) contains o(C(K)) and 5* contains 
Q(K). This is possible because the weight of o(K) in the weak* topology is no more 
than T and, because of the Radon-Nikodym property, the norm density of [ff(K)] 
is also no more than T. We say that (S9 o) extends (R, Q). Start with (Z0, Q0) and let 
(Zl9 ot) be an extension. Let (Zn+1, on+l) extend (Zn9 on) and let Z = \JnZn and 
o = \Jn on. Observe that 

Z * n B ( Y * ) s < r „ + 1 ( K ) ^ Z * + 2 

and on+1 is invariant on Z,. (which means that z 0 on+1 = on+l(z) = z for z e Zn). 
By continuity, o is invariant on Z, and because o is multiplicative, also invariant 
on the algebra A generated by Z. By the construction, A also contains on(C(K)) 
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for each n e JT. By the remarks above, we have that A = G(C(K)). This means 
that if i: Z -> ydenotes injection then i* is one to one on o(K). But, 

a{K) = \J7jKJ* 2 U A n B(Y*) 2 U ^ ) . 
n n n 

This proves that o(K) is convex and symmetric and we already know that i* is one 
to one on o(K). Thus, V = \Jnn o(K) is a weak* closed subspace of Y* such that 
Z* s Vfor all n, thus Z* s V, and Vn Z 1 = {0}. This means that V = Z* and the 
projection defined above is weak* continuous. The general case can be proved by 
a bit more omplicated version of this process, which we leave to the reader. We 
prefer, however, the following. 

Proof of the general case. This is rather delicate. Firstly, suppose that K is a Corson 
compact and S is a GSP subset of C(K) that separates the points of K. It follows 
from [SI] and [S8] that we may also assume that S is a subset of the unit ball, 
is closed, convex, symmetric and \Jn nS is norm dense in C(K). We may also assume 
that S is closed in the simple topology. Let Y be an interpolation space for S (see [BL], 
[DFJP] and [S8] for this case). That is, there exists a Banach space yand an operator 
T: Y-+ C(K) with the following properties: 

(i) T** is one to one; 
(ii) S = T(BY)); 

(iii) [ T - ( 5 ) ] = Y; 
(iv) yis an Asplund space. 

There exists a space H in Pol's class and a function h: H -» S that is onto and con
tinuous in the simple topology. We show that T" 1 o h: H -> yis weakly continuous. 
Since T*(CK)) is norm dense in Y* we need only show that each T*(/i) o T" 1 o h 
is continuous for a probability measure \i in C(K)*. A fundamental result of the 
Radon Nikodym property in Banach spaces is that T*(/x) may be approximated in 
norm by a finite combination of the extreme points of T*(C(K)*), but the extreme 
points are continuous. Thus, T" 1 o h : H -> Y is weakly continuous and 
[ T " 1 o h(H)\ = y. If Lis the unit ball of Y* then the canonical operator from Yto 
C(L) is, by definition, weak to simple continuous. From Pol's criterion, we know 
that Lis a Corson compact. From the special case, we know that y is weakly com
pactly generated and it follows that C(K) is also weakly compactly generated and K 
is an Eberlein compact. 

A Talagrand compact K is a compact space such that C(K) is k-analytic in the weak 
topology. A Corson compact that is the countable union of Eberlein compacta 
is a Talagrand compact [So], but not necessarily an Eberlein compact [T l ] . It 
follows that a Corson compact that is the countable union of Radon-Nikodym 
compacta is a Talagrand compact. Another immediate consequence of the above is 
that the example given in [Tl] has a fragmenting metric (using another vocabulary, 
this was essentially proved in [Gr], see also [S9]) but does not have a lsc fragmenting 
metric (see [Na] for facts about this). A compact space K is dual non lt if there 
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exists a Banach space X not containing lt and K is homeomorphic to a subset of X* 
where, of course, X* has the weak* topology. Obviously, a Radon-Nikodym compact 
is dual non lx. We shall use a great deal of the very large literature about Banach 
spaces not containing lt (beginning with [Ro], [H] and [SI] for more; also [S10]). 
Let PA be as above. Suppose that K is a Corson compact subset of PA. We say that K 
is solid if for any t in K and any s is in PA such that s(X) ^ t(X) for all X then seK. 
Any Corson compact is contained in a minimal solid Corson compact. A Gul'ko 
compact is contained in a solid Gul'ko compact [So]. There exist some very exotic 
Corson compacta; it would be very interesting to know the examples in [To] and the 
examples of Haydon, Talagrand and Kunen (see [Ne]) fit in with the results given 
here. 

Theorem. A compact space K that is both a solid Corson compact and dual 
non lt is a GuVko (Vasak) compact. 

Proof. We may assume that there exists a closed, bounded, convex and symmetric 
subset A of C(K) that does not contain a / t basic sequence and ~A] = C(K). Assume 
that K sits in PA as a solid Corson compact. For each X e A define pk to be the projec
tion into the X coordinate. For each n and m define 

A„,m = {px: distance (PA, mA) ^ 2~n} 

Let M c jf" be such that C ~ M if and only if 

0 A„,c(W) =1= 0 . 
JI 

Define O: M -* p(C(K)) by 0>(C) = C\„ AM>C(n). Fix C e M and choose C„ in M con
verging to C- We may assume 

C„(0 = C(0 for all . = n . 

Choose arbitrarily rn e A„^ln). We shall show that {rn} has a subsequence that 
converges weakly to the origin. Firstly, we show that { r j has a weakly Cauchy 
subsequence. If not, then it has a subsequence {ym} that is a lt basic sequence [Ro]. 
Well known computations (see, for example [Si]) yield a <5 > 0 such that if {zm} is 
any sequence such that \\zm — ym\\ < 3 then {zm} is also a Zx basic sequence. Choose n 
sufficiently large so that 2~n < d. There exists p such that if m ^ p then 

distance (ym, C(n) A) <2~n . 

This means that £(n) A contains a Jt basic sequence which is impossible. As 
a matter of notational convenience, assume that {r„} is weakly Cauchy. Assume that 
there exists t e K so that lim rn(f) =+= 0. Since K is solid choose s e K so that s has 
the same value as t in the r„ coordinate if n is even and is zero in all other coordinates. 
Clearly, lim r„(s) does not exist. This shows that {r„} has a subsequence that con
verges weakly to zero. Although we shall not repeat the details here (see [V],[T1] 
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and [S9]), this argument with the Eberlein-Smulian theorem shows that we may 
extend <£ to a mutivalued map *F: M -> p(C(K)) that is upper semicontinuous and 
compact valued in the simple topology. Also, *F(M) contains {rA: l e A ) and separates 
the points of K. This extension may be defined in the following way: 

T(c)-n«( u <%)) 
n distance^ ,5) < 1 fn 

where cs(£) denotes the smallest norm closed, convex and symmetric set containing E. 

This means that K is a Gul 'ko (Vasak) compact (see [S4]). 
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Note. Since the submission of this mss. for publication we have obtained (June, 1989) more 
precise information about the references alluded to. We have been indirectly informed that some 
time ago Reznicenko constructed a compact space that is a Talagrand compact that is not an 
Eberlein compact and explicitly demonstrated that his example is not a RN compact. In February, 
1989, Orihuela and Schachermayer presented us with computations necessary to show that Tala-
granďs own example [Tl] м not a RN compact. In response, we immediately reciprocated their 
generosity by showing how the general result, any Guľko compact that is also a RN compact must 
indeedbe an Eberlein compact, follows from [F] and an interpolation technique. Also, in February, 
1989, we provide Orihuela and Schachermayer with the notes on which this, our present paper, is 
based. We received, also in June, 1989, the preprint "Every Radon-Nikodym Corson compact 
space is Eberlein compacť9, by Orihuela, Schachermayer and Valdivia, which contains the com-
putations mentioned above as well as their own thoughts about related matters. We acknowledge 
the expression of gratitude to us "Every Radon-Nikodym Corson compact space is Eberlein com-
pacť'for discussing these matters with them andproviding them with a copy ofour notes in February, 
1989. We express our gratitude to several audiences in Spain in January, 1988, for patìently listening 
to our thoughts on long strings ofprojections, part of which are incorporated into this paper. The 
question at the end ofEvery Radon-Nikodym Corson compact space isEberlein compacť9 is stated 
rhetoricálly at the end c/[S8]. Any closed, bounded and convex subset ofL^џ), џ a finite measure 
(hence L^џ) is weakly compactly generated), that is GSP (indeed, that does not contain a l^ 
basis) is weakly compact; this is a classic result ofDunford and Pettis. Thus, the space constructed 
by Rosenthal, a subspace ofsome L^(џ), is not GSG (indeed, not non lx generated). References 
and abundant detail can befound in [S8]. A different order ofgratitude is due to Michael Bourvier, 
Dr. med., the doctors, the ordained and secular nursing sisters ofSt. Josef Krankehaus ofBraunau 
am Inn, particularly the accident station, for their care and advice from March to June of 1989. 
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