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1992 ACTA UNIVERSITATIS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 33. NO. 2 

A Note on Banach Spaces and Subdifferentials of Convex Functions 

JOSEF KOLOMY 

Czechoslovakia*) 

Received 10 May 1992 

A characterization of the reflexivity of Banach spaces by means of bilinear forms is given 
and subdifferenials of convex functions are studied in connection with the properties of Banach 
spaces. 

Introduction 

We characterize the reflexivity of Banach spaces by means of the so-called Lax-
-Milgram property of bilinear forms and the sequential weak completeness of Banach 
spaces. A necessary and sufficient condition for the fact that a point u**eX** 
belongs to the range R(J*) of the duality mapping J* defined on X* is derived. 
In particular, we have that u** e J*(u0) for some u* of the unit sphere in X* if 
and only if there exists a weak Cauchy sequence (un) a X such that un -> w0* 
weakly* in X** and <«*, «„> -> 1. 

Recall that the duality mapping J : X -* 2X* which is a subdifferential of the con
vex function 1/2 [|w||2, ueX, plays an important role in the theory of monotone 
and accretive operators, the fixed point theory and the solvability of the operator 
equations and the geometry of Banach spaces. 

The proof of the last main result depends on the properties of the subdifferentials 
of convex functions and the conjugate functions. 

If X is a dual Banach space (i.e. X = Z* for some Banach space Z), M c X* 
an open convex subset, u0 e M, where u0 is a canonical image of u0 e Z in X* = Z**, 
andf : M -* R a weak* lower semicontinuous convex functional having the Gateaux 
derivative f'(w0) at u0, then f'(u0) -s a weak* continuous linear functional on X*9 

i.e. f^uo) G ^. In particular, if X is a dual Banach space and X* is smooth at the 
point w0 of the unit sphere of X*, where u0 e Z, then J*(u0) e £, where J* denotes 
the duality mapping on X*. 

*) Mathematical Institute of Charles University, Sokolovská 83, 186 00 Praha 8, Czecho-
slovakia. 
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Definitions and notations 

Let X be a real normed linear space, X* and X** its dual and bidual, respectively, 
<,> the pairing between X and X*9 Bt(0)9 B*(0)9 B**(0) the unit closed ball and 
Si(0)> S*(°)> S**(0) its unit sphere in X, X*9 X**9 respectively. By R9 R+9 C we 
denote the set of all real, nonnegative and complex numbers, respectively. By 
T : X -> X** we mean the canonical mapping, while A denotes the image o f i c l 
under T in X**. Recall that the duality mapping J : X -> 2X* is defined by J(w) = 
= {u*eX* : <w*, w> = ||wf, ||w*[| = jw||}, ueX. For each ueX9 the set J(w) 
is nonempty convex and weak* compact in X*. Let T: X -• 2X* be a multivalued 
mapping (2** denotes the system of all subsets of X*)9 D(T) = {ueX : T(u) * 0} 
its domain, G(T) = {(w, u*)eX x X*9 u e D(T), w* 6 T(w)} its graph in the space 
X x X*. A mapping T: X -*• 2** is said to be: (i) monotone [26], if for each u9ve 
e D(T) and each w* e r(w) and v* e T(v) there is <w* — v*9 u — vy = 0; (ii) maximal 
monotone [26], if T is monotone and if (w, w*) eX x X* is a given element such 
that <w* - v*9 u - vy = 0 for each (w, v*) e G(r), then (w, w*) e G(T); (iii) locally 
bounded at w0 e D(T'), if there exists a neighborhood Fof w0 such that T(D(T) n V) 
is bounded in X*. Let M c l b e a convex nonempty open subset, f: M - > i ? a con
tinuous convex function. A subdifFerential map df off is defined [23] by Ma w -• 
-> 3f(w) = {w* eX* : <w*, v - w> = f(u) - f(w) for each veM} a X*. Note that 
df is maximal monotone on M and J(w) = 2^(||w|[2) = ||w|| d[|w||, w e Z (see [26]). 
We shall use the notion of Giles [10] for rotund (i.e. strictly convex) spaces, convex 
functions, Gateaux and Frechet differentials and derivatives. Recall that X is said 
to be: (i) smooth (Frechet smooth), if the norm of X is Gateaux (Fr6chet) differen-
tiable on St(0); (ii) sequentially weakly complete, if each weakly Cauchy sequence 
(xn) has a weak limit point in X; (iii) a dual Banach space, if there is a Banach space 
Z such that X = Z* (in the sense of the topology and the norm). A sequence (xn) a X 
is a weak Cauchy one, if <x*, xn — xm> -> 0 as n9 m -> oo, for each x* eX*9 i.e. 
lim <x*, x„y exists for each x*eK* . Recall that ll9 Lx are sequentially weakly 
n->oo 

complete [30], while the Orlicz space L0 is sequentially weakly complete if 0 satisfies 
A2-condition ([25]). Recall that a real Banach space X is said to be weakly compact 
generated (WCG), if there exists a weakly compact set K a X such that X = span K. 
This class of spaces includes separable and reflexive spaces, furthermore c0(P), 
Lx(/i) for finite \i9 C(K) spaces, where K is a weakly compact subset of a Banach 
space, etc. A Banach space X is said to be a weak Asplund, if each convex continuous 
function f on X is Gateaux differentiable on a Gd dense subset of X. By R(T) we 
denote a range of a mapping T and the symbols or(X, X*)9 G(X*9 X) are used for 
the weak and weak* topology on X and X*9 respectively. 

Results 

Lemma 1 ([8]), Let X be a Banach space, G c X an open subset, T:G -> X* 
a lipschitzian mapping such that <Tx — 7>, x — yy ^ cllx — y\\2 for some c > 0 
and each x9 y e G. Then X is reflective. 
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In view of Lemma 1, the assumption of reflexivity of X is included in the hypotheses 
of the following 

Theorem (Lax-Milgram). Let X be a Banach space, B :X x X -» C a bounded 
bilinear form such that B is coercive, i.e. \B(u, U)\ ^ c||w||2 for some c > 0 and 
each ueX. Then for each u*eX* there exists a unique point u0eX such that 
<M*, M> = B(u, u0) for each ueX. 

Hayden [13] proved the following assertion: Let X and Y be Banach spaces, 
5 : Z x 7 - > C a bounded nondegenerate bilinear form. Assume that for each 
v* e Y* there is a unique point u0eX such that <i?*, t>> = B(u0, v) for each v eY 
and for each u* eX* there exists a unique point v0 e Y such that <M*, M> = B(u, v0) 
for each u e X. Then X and Y are reflexive. If X is a Banach space which admits 
a totally nonsingular bilinear form, then X is reflexive [28]. 

Definition 1 ([18]) Let X, Y be normed linear spaces. W& shall say that X has 
the Lax-Milgram property (LMP) with respect to Y, if there exists a nondegenerate 
bilinear form B:X x 7-> C with the following property: For a given linear 
closed separable subspace F of X there exists a closed separable subspace P of Y 
such that B is bounded on F x P and for each u* e F* there exists a unique point 
vPe P such that (u*, M> = B(u, vP) for each ueF. 

Similarly, we shall say that Y has the (LMP) with respect to X, if there is a non-
degenerate bilinear form B :X x Y-» C with the following property: For a given 
linear closed separable subspace V of Y there exists a closed separable linear 
subspace E ofX such that B is bounded on E x V and for each v* e V* there exists 
a unique element uE of E such that <i?*, v> = B(uE, v)for each ve V 

The following result improves the corresponding one in [18]. First of all, we need 
the following simple 

Lemma 2. Let X be a normed linear space. Then X is sequentially weakly 
complete if and only if each closed linear separable subspace M ofX is sequentially 
weakly complete. 

Theorem 1. Let X, Y be normed linear spaces. Then: 
(i) If X has the (LMP) with respect to Y, then X is reflexive if and only if X is 

sequentially weakly complete. 
(ii) If X, Y are complete and X has the (LMP) with respect to Y and Y has the 

(LMP) with respect to X, then X and Y are reflexive. 

Proof. Let (M„) be a bounded sequence of X. Put F = span {(un)}. Then F is 
a closed separable subspace of X. By our hypothesis there exists a separable closed 
linear subspace P of Y*and a nondegenerate bilinear form B : X x Y-+ C such that 
B is bounded on F x P, i.e. \B(u, V)\ = M F P | M | | • ||i?[| for each ueF and veP 
and some constant M F P > 0 and the representation of the elements u* eF* by 
means of B and the unique points vPe P are valid. Let (vn) be a dense sequence in P. 
Define ([28]) (M*) C F* by <M*, M> = B(u, vn) for each u eF and n (n = 1, 2, . . . ) . 
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Clearly, w* e F* for each n. We claim that the sequence (w*) is dense in F* and that P 
is isomorphic with F*. Define a linear continuous mapping A : P -> F* by <w, Av} = 
= B(u, v) for each fixed veP and each ueF. Since B is nondegenerate, we have 
that A is one to one and by our assumption, onto F*. Hence by the open mapping 
theorem A'1 is continuous. As w* = A(vn) for each n and (vn) is dense in P, we 
conclude that (w*) is dense in F*. 

Now (<wf, uny)n=1 is a bounded sequence for each fixed i (i = 1, 2, . . . ) . By the 
diagonal process, one can extract a subsequence (uk) of(un) such that (<wf, uky)k=1 

is convergent for each i. In view of the density of (w*) in F*, we have that <w*, wfc> 
is convergent for each w*eF*. Hence (uk) is a weak Cauchy sequence in F with 
respect to F*. Assume that X is sequentially weakly complete. By Lemma 2, F 
is sequentially weakly complete and therefore (uk) has a weak limit point w0 in F, 
i.e. uk -> w0 weakly in F. Since G(X, X*)\F = a(F, F*), we have that uk -> w0 

weakly in X, which implies that X is reflexive, it is well-known that X is sequentially 
weakly complete, (ii) It is sufficient to apply the Hayden ([13]) result to separable 
closed subspaces of X and Y, respectively, and use the fact that if each closed se
parable linear subspace of a given Banach space is reflexive, then this space is re
flexive. 

Note that in the proof of the first assertion of Theorem 1, we need not assume 
in Definition 1 that a separable linear subspace P of Yis closed (or that a separable 
linear subspace E of X is closed, compare [18]). 

Lemma 3 ([22]). Let X be a Banach space, Y a norm closed subspace, of X. 
Then X**j£ is separable if and only if Y**jfand (X\Y)**j(X\Y) are separable. 
Moreover, X** is separable if and only ifX andX**jJC are both separable. 

Lemma 4. Let X be a Banach space such that the closed unit ball B**(0) of 
X** is sequentially weakly* compact. Then X is reflexive if and only if X is 
sequentially weakly complete. 

Proof. Assume that X is sequentially weakly complete and 5**(0) is sequentially 
weakly* compact. Let (un) a Bt(0) be arbitrary. By our hypothesis, there exists 
a subsequence (w„k) of (un) such that u„k -> w** weakly* in X** and w** e B**(0). 
Hence (u„k) is a weak Cauchy sequence in X. According to our assumption (unk) -> w0 

weakly in X for some u0eX and clearly w0 e Bx(0). The converse assertion is clear. 

Proposition 1. Let X be a Banach space such that one of the following three condi
tions is satisfied: 

(i) X**\X is separable; 
(ii) X* is a weak Asplund; 

(iii) X is separable and X contains no isomorphic copy of lt. 
Then X is reflexive if and only if X is sequentially weakly complete. 

Proof, (i) We prove that if X**\l is separable, then the closed unit ball B**(0) 
is sequentially weakly* compact. Suppose that (w**) c B**(0). Since X**l% is 
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separable, then the sequential G(X**9 X*)-closure of ^ ( 0 ) in X** is equal to B**(0) 
(see [22]). Hence for each fixed n (n = 1, 2,. . .) there exists a sequence (u„fc)r=i i n 

Bt(0) such that unk -+ u** in the o-(X**,X*)-topology of X** as k -> oo. Set Y = 
CO 

= span ( U {unk})9 then y is a closed separable Banach space. By our hypothesis 
n,k=l 

X**jf is separable and Lemma 3 implies that Y** is separable and therefore Y* 
is separable. Hence the G(Y**9 y*)-topology is metrizable on B**(0) = {u** e Y** : 
: ||w**|| = 1}. From the sequence («**) c= B**(0) one can extract a subsequence, say 
(u**)9 such that u** -+ u** in the G(Y**9 y*)-topology of Y** and u*0* e B**(0) cz 
c fl**(0). Since G(Y**9 Y*) = <7(K**,X*)| Y**9 we have that B**(0) is sequentially 
<r(X**, X*)-compact. Now (i) follows at once from Lemma 4. (ii) If X* is a weak 
Asplund space, by the Stegall result [31] we have that B**(0) is sequentially weakly* 
compact. Lemma 4 gives at once the result, (iii) follows at once from the Rosenthal 
and Odell theorem (see [5]) and Lemma 4. 

Remark 1. Let X be a Banach space such that one of the following three condi
tions is satisfied: 

(i) X is quasi-reflexive i.e. dimX**/^ < oo; 
(ii) X* is (WCG); 

(iii) X* admits an equivalent smooth norm. 

Then X is reflexive if and only if X is sequentially weakly complete. 
Indeed, if X is quasi-reflexive, thenX**/^ is separable. If X* is (WCG), according 

to the Amir and Lindenstrauss result (see [4]) X* admits a smooth and rotund 
equivalent norm such that its dual norm on X** is rotund. Hence X* is a weak 
Asplund space (see [1] or [17]). (iii) From the general result of Preiss, Phelps and 
Namioka [27], it follows that X* is a weak Asplund space (or use the Hagler and Sul
livan result [12] that if X satisfies (iii), then B**(6) is sequentially weakly* compact). 
Proposition 1 (ii) (or Lemma 4) gives at once the result. 

Let us remark that the result of Remark 1 (i) was proved by Civin and Yood [6] 
using a different method, while the assertion of Remark 1 (iii) can be proved at 
once on the base of the Smulian characterization of differentiability of the norm 
in X* and the James characterization of reflexivity. Cudia [2, Theorem 5.4] proved 
that if a Banach space X is weakly fc-rotund, then X is reflexive if and only if X 
is sequentially weakly complete. 

If X is a Banach space, then X**j% is separable if and only if X has a norm closed 
subspace Y such that Y** is separable and X/Yis reflexive. A Banach space X is 
quasi-reflexive of order ^n (i.e. dimX**/^ ^ n) if and only if K**/J? is separable 
and X has the property Pn that every norm-closed subspace Yof X* has codim Y ^ n 
in its G(X*9 X)-sequential closure KX(Y) in X* (see McWilliams [22]). If X is 
a Banach space and X**l% is separable, then X is a direct s u m l = A © B of the 
closed linear subspaces A and B9 where A is separable and B is reflexive. A similar 
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result is valid, if X is a Frechet space and the bidual X** is provided by the strong 
topology P(X**,X*) (McWilliams [22] and Valdivia [32]). 

Note that Orlicz spaces containing an isomorphic copy of Zt were characterized 
for non-anatomic and purely anatomic measures by Hudzik [14]. 

Smith [29] pointed out that there exists a nonreflexive Banach space X such that 
X** is rotund and smooth (and hence both X and X* are rotund and smooth) and 
X*** is rotund. However, smoothness of X*** implies reflexivity of X (Giles [11]). 
Note that the James space (which is quasi-reflexive of order one and separable 
with its separable dual) admits an equivalent norm such that its third conjugate 
space X*** is rotund (Smith [29]). By Proposition 1 (i), the James space is not 
sequentially weakly complete. 

Let X be a real normed linear space, J and J* the duality mappings in X and X*, 
respectively. 

Theorem 2. Let X be a normed linear space, (M*) a sequence dense in X*, MJ* G 
e S?*(0). Then: (i) M** G R(J*), i.e. M** G J*(M*) for some u*0 e S*(0), if and only 
if the following condition is satisfied: There exists a weak Cauchy sequence (un) in 
X such that [[MJ = 1 + X\n for each n, <M**, M*> = <M*, M„> for each fixed n 
(n = 1, 2,. . .) and each i = 1, 2 , . . . , n, <M0, M„> -> 1, \un\ -> 1 and un —> M** 
weakly* in X**. 

(ii) If, in addition, X* is smooth at M* and X is sequentially weakly complete, 
then <M* M0> = 1, M0 G Si(0) and M** = J*(u0) = u0. 

Proof. Let (M*) be dense in X*, M** G S**(0), M£* G R(J*), i.e. M** G J*(M£) for 
some M* G S*(0). According to the Helly theorem, there exists a sequence (un) <= X 
such that [|MM| = []M**|| + ljn = 1 + 1/n for each n and <M**, M*> = <M*, M„> for 
each fixed n (n = 1, 2,. . .) and each i = 1, 2 , . . . , n. Define u** eX** by M** = Mn, 
i.e. <M**, M*> = <M*, M„> for every M*GK* and each fixed n. Then (M**) is uni
formly bounded in X** and (M**) converges pointwise for each fixed M* (i = 1,2,...), 
since <M**, M*> = <M*, M„> = <M**, M*> for each n and each i = 1, 2 , . . . , n. By the 
Banach-Steinhaus theorem (M**) converges weakly* in I * * to a point M**. Since 
lim <M**, M*> = <M**, M*> = lim <M*, M„> = lim <M„, M*> for each M*GK*, we 
n-+oo n-+oo n-»oo 

conclude that (u0, M„> -> 1, un -> MJ* weakly* in K** and (M„) is a weak Cauchy 
sequence in X. We have that 1 = lim <M0, M„> = liminf ||MW| ^ lim sup [|Mn|| ^ 

n-*oo n-->oo n->oo 

= lim (1 + 1/n) = 1 and therefore [[M Î —> 1. Conversely, if un -> M** weakly* inK** 
n-*oo 

and <M0, MII> -> 1 for some sequence (un) a X and some u0 e S*(0), then 1 = 
= lim <M0, M„> = lim <M0, Mn> = <M0, M**>, which gives that M** G J*(M*) and 

n->oo n-*oo 

M** eR(J*). Let us assume (ii). We have that un -> M0 weakly for some u0eX. 
Hence <M0, M0> = 1 and ||M0|| _ 1. On the other hand, we have that |M0[| — lim inf. 
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. Jii.,11 = lim \\unl = 1. Hence w0 e St(0) and u* e J(u0). Since X* is smooth at u*9 
n->co 

we have that w0 = J*(u*) = u**9 which proves our theorem. 

Corollary 1. Let X be a normed linear space, u** e S**(0). Then w** e J*(u*) 
for some u* e S*(0) if and only if there exists a weak Cauchy sequence (un) a X. 
such that un -> u** weakly* in X** and <w*., wrt> -> 1 as n -> oo. 

Recall that by the Bishop-Phelps theorem each Banach space X is subreflexive, i.e 
the set of all linear continuous functionals of X* which attain their norm on S^O) 
is norm dense in X*, which implies that R(J) = X* and R(J*) = X**. By the James 
theorem, both R(j) and R(J*) are not closed in a nonreflexive Banach space X. 
Using the properties of the duality mapping reflexivity of Banach spaces was studied 
in [3], [18], [19] and [24]. If X is a normed linear space, then X is reflexive if an 
only if R(J) = X* and R(J*) = X** (De Prima and Petryshyn [3]). If X is a Banach 
space, J : X -> 2X* a duality mapping, F = span J(X), then X is reflexive if and 
only if the closed unit ball of X is a(X, F)-compact (Laursen [24], see also [20] 
for another proof of this result). If X is a real Banach space, q> :X -> R n { + 00} 
a lower semicontinuous convex function such that intdom q> -# 0, then the following 
are equivalent; (i) R(dq>) = X*; (ii) X is reflexive and for all w* eX*9 the function 
w* — q> is bounded above (Fitzpatrick, Calvert [8]). 

Let X be a normed linear space, J, J* duality mappings on X and X*, respectively. 
Then (see [3]) w* e J(u0) for some u0eX if and only if w0 e J*(w*). 

Propositon 2. Lei" X be a Banach space (a sequentially weakly complete Banach 
space) such that X* is Frechet smooth (X* is smooth) at some point u* e S*(0). 
Then there exist sequences (un) c 5^0), (w*) c: S*(6) and a point u0 e Si(0) such 
that u* -> w0, <w*, w„> = 1, <w0, w0> = 1, un -> w0 in the norm of X (un -> w0 

weakly in X) and J*(u*) e %. 

Proof. By the Bishop-Phelps theorem for a given w* e St(6) there exist sequences 
("„) c Si(0), ("*) c -5?(0) such that w* -> w0 in the norm of X and <w*, ww> = 1 
for each n. Then |<w*, w„> - l | = <w*, w„> - <w*, wn>| ^ ||w* - w*||. Hence 
<wo> M«) ^ 1 as n -^ 00. Since X* is Frechet smooth (X* is smooth) at w0, according 
to the Smulian theorem, we conclude that (wj is a Cauchy (a weak Cauchy) sequence 
in X. By our hypothesis, there exists a point u0eX such that un —> w0 in the norm 
of X (un -> w0 weakly in X). Clearly <w0, w0> = 1 and w0 e S^O), which implies 
that w* e J(w0). Since X* is smooth at u*, we have that J* is singlevalued at w* 
and therefore w0 = J*(u*). Hence J*(u0) e %. 

Theorem 3. LetX be a dual Banach space (i.e. X = Z* for some Banach space Z), 
M != X* a convex open subset, u0 e M, where u0 is a canonical image of u0eZ 
in X*. Let f: M -> R be a weak* lower semicontinuous convex functional having 
the Gateaux derivative f(u0) at u0. Then: 

(i) f'(u0) e $, i.e.f(u0) is a weak* continuous linear functional on X*; 
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(ii) if (w*) e M , w* -> w0 in the norm of X* and xn e df(un) for some sequence 
(xn) <= X, then xn -> f'(w0) weakly in X. 

Proof. Since f is weakly* lower semicontinuous convex and finite on M, we get 
thatf is continuous on M. Hence D(df) = M and the mapping M a w* -> df(u*) is 
maximal monotone on M ([26]). As f is a weak* lower semicontinuous convex 
function and M equals the domain of the norm continuity off, then, by the Phelps 
variant of the Bishop-Phelps theorem ([10]), the set of all w* e M, where df(d*) n 
n $ #= 0, is norm-dense in M. Hence there exist sequences (w*) c M and (x„) c X 
such that w* -> w0 in the norm of X* and xn e Of(w*), where &n denotes the weak* 
continuous subgradients of the subdifferential df at the points w*. As w* -> w0 and 
Of is monotone on M, we have that Of is locally bounded at the points of M. Therefore 
(xn) is bounded in X** and hence there exists a subnet (xn<x) of (£,.) and a point 
x** G X** such that (X„K) converges to x0* weakly* in X**. We have that <ĵ „a — w**, 
u*x - M*> = 0 for each (w*, w**) e G(df). Since Of is locally bounded on M, (£,.J 
is bounded and therefore <x0* — w**, w0 — w*> ^ 0 for each (w*, w**) e G(Of). 
By the maximal monotonicity of the mapping M a w* -> Of(w*) on M we get that 
*o* = df(u0) = f'(w0). Now we prove that f'(u0)eX> i.e. that f'(w0) = {*o} for 
some x 0 e K . First of all, xnedf(u*) gives that ([16]) <*„, w*> =f(w*) + /*(*,,) 
for each w, wheref* is a dual convex function defined byf*(w**) = sup {<w**, w*> — 
f(w*) : w* e M } , u** e l * * . By our assumption, X is a dual Banach space, hence 
there exists a Banach space Z such that X = Z* in the sense of the topology and 
the norm. Since (x;i) is bounded, thee exists a subnet (xnfi) of (x„) and a point x0 eX 
such that xM/? -> x0 in a(Z*, Z)-topology of X. We have thatf*(^„) = sup {<£,., w*> — 
— f(w*) : w* e M} = sup {<xw, w*> — f(w*) : w* e M} = f*(x„) for each n. Let us 
embed X into X**. Since f* is weakly* lower semicontinuous on X** and xn0 -> x0 

weakly* in X, we get that f*(x0) g lim^ inff*(xn/}). Furthermore, \(unp,xn/iy — 

- <w0> ^o>| -̂  !<«», - w0, xn^>| + |<w0, xW/? - x0>| and <w0, xn/, - x0> = 
= <w0, xnp — x0> -> 0, as xnfi -> x0 in the cr(Z*, Z)-topology and w0 e Z. Since 
(xM/}) is bounded, we get that <w*/J, xn/}> -> <w0, x0>. Now the continuity off on M 
gives that f(w0) + f*(x0) ^ lim^/(n* ) + Jim, inf f*(xj ^ lim, inf(f(«* ) + 
+ / * W ) = Hm, inf <u* , jcBil> = lim, <w* , xw^> = <w0, x0>. 

On the other hand, the Young-Fenchel [16] inequality gives that <w0, x0> g 
^f(w0) +f*(x0). Therefore <w0, x0> = f(u0) +f*(x0), which implies that £0 = 
= x0 = f'(w0) = x**, where ^0 denotes the canonical image of x0eX in X**. 
Hence for the whole sequence (xn), we have that jtn -> x0 weakly* in X** and there
fore xn -+f'(u0) weakly in X, which proves (ii). 

Note that the assertion (ii) of Theorem 2 follows also at once from the fact that 
the mapping M a w* -> df(u*) is norm to weak* upper semicontinuous on M, the 
result (i) of Theorem 2 that Of(w0) = f'(w0) e X and the fact that the canonical 
embedding x : X -> X** is a homeomorphism of (X, c(X, X*)) into 
(X**,<r(X**,X*)). 
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Let X be a linear normed space such that X is smooth at u0 e X. Then J(u0) = 
= a(i|«0|-) = |K|| grad |«0|. 

Corollary 2. Let X be a dual Banach space (i.e. X = Z* for a Banach space Z) 
such that X* is smooth at u0, where u0 e Z, [|w0||z = 1 and u0 is a canonical image 
of u0 in X*. Then J*(u0) e l , where J* denotes the duality mapping on X*. 

Giles [9] proved that if X is a Banach space, x e Si(0), then X** is smooth at £ 
if and only if every support mapping Sx(0) B X -> x* e S*(0) is continuous at x 
when X has the norm topology and X* has the cr(X*, X**)-topology. Recall that 
a Banach space is said to be very smooth, if there exists a support mapping Si(0) B 
B x -> x* e S*(0) which is norm to weak continuous on Si(0). Corollary 2 and the 
Giles result imply the following 

Corollary 3. Let X be a dual Banach space such that Z is very smooth. Then 
{J*(u) : u e Z , ||n||z = 1} c= X, where J* is the duality mapping on X*. 

Recall that if X is a Banach space, then X is reflexive and rotund if and only if X* 
is very smooth (Giles [11]). 

The following useful result was proved by John and Zizler [15]. Assume that X 
and X* are both (WCG). Then there exists an equivalent norm ||| • ||| on X such that: 
(i) HI • HI is locally uniformly rotund; (ii) the dual norm of ||| -||| on X* is locally uni
formly rotund; (iii) the second dual norm of ||| 'HI on X** is rotund. Since the second 
dual norm of ||| "||| on X** is rotund, we conclude that the dual norm of ||| *||| on X* 
is smooth. 

Let X = Z* for some Banach space Z. Assume that X and Z are both (WCG). 
Let I • I be an equivalent norm on Z such that its dual norm on X* is smooth. 
Then {grad |||u||| : u eZ, \\\u\\\z = 1} c X. 

Let G cz Rn be an open subset such that mes G < + oo, <P and M-function (in the 
sense of [21]), L0(G) an Orlicz space provided by the Orlicz norm, B(G) the set of 
all bounded functions defined on G. Then E0(G) cz L0(G) cz L0(G), where L0(G)is 
the Orlicz class of all measurable functions u defined on G and such that Q(U, 0) = 
= JG 0(u(t)) dt < +00. Let E0(G) be a space defined as the closure of B(G) in the 
Orlicz norm || • J^ of L0(G). Then E0(G) cz L0(G). Moreover, if 0 satisfies the 
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-condition, then E0 = L0 = L0. Let 0* be a dual function. Then E0*(G) cz L#*(G) 
and (E0*)* = LQ and hence L 0 is a dual Banach space. If &*(t) has a continuous 
derivative which is monotone and positive for each t > 0, then the Orlicz norm of 
Eq>* is Frechet differentiate on E0* away the origin. Hence {s — grad [|w|| : u e E0*, 
||M|| = 1} c= L0, where s-grad ||w|| denotes the Frechet gradient of the norm at u. 
A similar result is valid for the gradient of the norm of L0 under the weaker assump
tion that E0* is only very smooth. 

Each dual norm, each dual function [16] and each support function of a convex 
closed subset of X are weak* lower semicontinuous functionals on X*. Moreover, 
if X is a Banach space, M a weakly* closed linear subspace of X*, then the pseudo-
norm X* B u* -+ dist (u*, M) is a weak* lower semicontinuous function on X* [10]. 
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Recall that Asplund [1] proved the following assertion: LetX be a Banach space, 
f:_Y -• ( — co, +oo] a lower semicontinuous function such that f =£ -j-oo. If the 
dual function f* denned on X* is Frechet differentiable at some point M*eX*, 
then (/*)' (a*) e 1 . 

The results of Theorems 1 — 3 have been communicated at the 19th Winter School 
on Abstract Analysis, January 1991, Srni, Czechoslovakia. I thank J. Danes for 
helpful comments which allow to shorten the part of the original proof of Theorem 1. 
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