
Acta Universitatis Carolinae. Mathematica et Physica

Zsolt Tuza
Theorem proving through depth-first test

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 33 (1992), No. 2, 135--141

Persistent URL: http://dml.cz/dmlcz/701986

Terms of use:
© Univerzita Karlova v Praze, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/701986
http://project.dml.cz

1992 ACTA UNIVERSITATIS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 33. NO. 2

Theorem Proving Through Depth-First Test

ZSOLT TUZA

Hungary*)

Received 10 May 1992

We point out that the basic concept of depth-first search is not only an efficient tool in algo
rithmic graph theory but also it provides a powerful approach for proving theorems of a non-
-algorithmic nature. The main application in this note is a sharp extremal result concerning the
maximum number of clauses that can be satisfied simultaneously in a Boolean formula in con
junctive normal form, with at most two literals per clause. We prove this theorem by designing
a linear-time algorithm whose worst-case performance is at least as good as the general lower
bound. Some results on graph k-colorability are recalled, too. Applying depth-first search or
its variations, linear or polynomial algorithms can also be obtained for solving some subpro-
blems of those NP-complete problems.

0. Introduction

Depth-first search (DFS, for short) is one of the basic graph-search techniques
in computer science, because it can easily be implemented in linear time. It has
found many applications in algorithmic problems, see e.g. [7, 14]. In graph theory,
a typical area where DFS is efficient is to test various sorts of connectivity (to find
a spanning tree if the graph is connected, to list the connected components and the
2-connected blocks of an undirected graph or the strong components of a directed
graph). References to further applications (3-connectivity, planarity, planar graph
isomorphism, dominators) can be found in [14, 15].

For a long time, DFS was applied to design fast algorithms only. Recently it has
turned out, however, that this algorithmic approach is powerful in solving problems
of a purely theoretical nature as well. In the present note we briefly describe two
areas of such applications. The basic problems are:
(a) Satisfiability of clauses of a Boolean formula in conjunctive normal form —
estimate the number of clauses that can be satisfied simultaneously.

*) Computer and Automation Institute, Hungarian Academy of Sciences, H - l l l l Budapest,
Kende u. 13—17, Hungary.

135

(b) Chromatic number of graphs — find necessary and/or sufficient conditions
ensuring that a graph is k-colorable, for a given natural number k = 3.

The problems Maximum Satisfiability and Graph k-Colorability both are NP-
-complete. Using DFS, however, one can obtain fast algorithms that provide
estimates for either of them when the formulae or the graphs in question satisfy some
further requirements.

We mention a third field of application of DFS, namely that one can also find
fairly large k-colorable subgraphs in a graph by a linear-time algorithm. Details
concerning this subject are given in the paper [11].

Graph theoretic notions not defined here can be found e.g. in [1].

1. Satisfiability of clauses

Let <P be a Boolean formula on n variables xl9..., xn9 in conjunctive form, i.e.
= Aiei <i>i where <Pt = VJejit) ytj (|I| finite> KOI = n f o r a11 ieI> a n d -VIJ e

e Ui^k^n{xk> "I**} f° r i e I and j e J(i)9 each xk occurring at most once in each<£,).
If there are no restrictions on the clauses (j)i9 then it is NP-complete to decide whether
or not a formula 0 is satisfiable; what is more, the satisfiability problem is NP-complete
even on the class of those formulae in which evety clause has at most three variables
[2]. For this reason we shall concentrate on the class &2 of formulae 0 with |^f | : =
:= |J(0 | =- 2 for every i el.

For the restricted class of 0l9 it is well-known (see e.g. [3]) that the satisfiability
problem is polynomially solvable; in contrast, for a 0 e <P2 it is NP-complete to
determine the maximum number m'(0) of clauses that can simultaneously be satis
fied in 0, as proved by Garey et ah [6]. (The problem of finding m'(<P) is sometimes
referred to as Maximum Satisfiability.)

For 0 e <P2 we shall denote by m = m(<P)9 t = t(0)9 and s = s(<P) the number |/ |
of clauses, the number of clauses with precisely two variables, and the number of
clauses with a single variable, respectively (t + s = m). Throughout we shall assume
that each pair of distinct variables defines at most one clause in 0 (i.e., for i 4= j at
most one of xt v xj9 xt v 1xj9 1xt v xj9 and ~lxt v IXj may be a clause in 0);
it is not necessary, however, to exclude clauses occurring more than once.

Define a graph G = G(&) = (V, E) as follows. The vertex set V of G is [n] : =
:= {1, 2 , . . . , n}; the edge set E consists of the unordered pairs {i,j} such that
Uj e [n], i 7-- j , and the variables x(and Xj occur together in some clause of 0
(hence, |V| = n and |£ | = 0- We denote by k = k($) the number of connected
components in the graph G(0).

In [12], Poljak and Turzik proved the following result which is sharp in infinitely
many cases. (For a real number x9 [x\ denotes the least integer not smaller than x.)

Theorem 1. ([12]) For every formula 0e02,

m'(0) = 3*(<f>)/4 + s(0))2 + \(n(0) - fcf*))/2] J4.

136

Moreover, in [12] an algorithm of running time 0(n3) is given that finds a 0—1
assignment of the variables xt (representing TRUE by 1 and FALSE by 0) which
satisfies at least as many clauses as claimed in Theorem 1.

In Section 3 we prove the extremal result of Theorem 1 by a method that leads
to an algorithm whose running time is proportional to the length of #, i.e. it is
optimal apart from a multiplicative constant.

Theorem 2. There is an algortihm that finds a 0—1 assignment of variables
in 0(m + n) time for an arbitrary function 0 e &2, such that at least 3t/4 + s/2 +
+ l(n — k)/2]/4 clauses of <P are satisfied.

Let us formulate a related result more general than Theorem 1 (valid for all
Boolean functions, not only those in <P2) that can be proved by different methods.

Theorem 1. [8,9]) If <P = Ai^j^m &J I5 a Boolean function in conjunctive
form with m clauses, then at least m — £ i g j ^ m 2" '^ ' clauses of <P can be satisfied
simultaneously.

Also, a satisfying truth assignment (whose existence is guaranteed by Theorem 3)
can be found in polynomial time. For a 0 e <P2, however, Theorems 1 and 2 yield
a slightly stronger sufficient condition and a faster algorithm.

2. Graph colorings

In this section, recalling some results from [16], we illustrate the power of DFS
in connection with graph colorings. The chromatic number %(G) of a finite un
directed graph G = (V, E) (with vertex set Vand edge set E) is the minimum number
of independent sets (= sets of pairwise non-adjacent vertices) whose union is V.
Call G k-colorable if %(G) ^ k. Although it is NP-complete to decide whether or
not G is k-colorable (for any k ^ 3), there are some necessary and sufficient condi
tions for k-colorability in terms of orientations of G. (A directed graph D = (V9 A)
with arc set A is an orientation of G if for each edge eeE there is precisely one arc
in A with the same two vertices as e, and vice versa.)

Relating the chromatic number with the orientations of a graph, the following
results were established in the 1960s. Throughout, k _ 2 is an arbitrary integer.
(1) A graph is k-colorable if and only if it has an orientation containing no directed
path on more than k vertices. (Gallai [5] and Roy [13])
(2) A graph G is k-colorable if and only if it has an orientation D in which every
cycle C of G has at least |C|/k arcs in each direction. (Minty [10])

These two results are complementary in the sense that the assumption in (2) ex
cludes directed cycles, while (1) is fairly obvious for acyclic orientations and the
more interesting part of its proof is when the orientation of the graph providing

137

minimum length for the longest directed path is not acyclic. Those classic results
have the following common generalization.

Theorem 4. ([16]) A graph G is k-colorable if and only if it has an orientation
in which every cycle C of G with |C| = 1 (mod k) has at least |C|/k arcs in each
direction.

To show how DFS can be applied to prove results of this kind, we present the
proof of an ,,undirected version" of Theorem 4. (It was verified independently by
Dean and Toft [4] by another method not leading to a coloring algorithm but
proving the existence of many cycles in a non-k-colorable graph.)

Corollary 5. If an undirected graph G = (V, E) contains no cycle of length
= 1 (mod k), then G is k-colorable, and a k-coloring of G can be found in
0(| V| + \E\)time.

Proof. Let T be a spanning tree in G (or in one of its connected components),
with root r, found by a DFS algorithm. For v e V denote by d(v, r) the length of the
(unique) v — r path in T. It is known (see e.g. [14]) that if v, v' e Vare two adjacent
vertices and d(v, r) = d(v', r), then in fact d(v, r) > d(v', r') and v' is an internal ver
tex of the path joining v and r in T Consequently, the assumption on cycle lengths
implies that {v, v'} $ E whenever d(v, r) — d(v', r) is a multiple of k. Thus, assigning
color d(v, r) (mod k) to each vertex veV, the monochromatic sets of vertices are
independent, proving k-colorability of (each component of) G. Such a coloring can
be found on-line, during the DFS algorithm, assigning the corresponding color to
each vertex when it is reached by the procedure for the very first time.

Variants of DFS in directed graphs provide us with a linear-time algorithmic proof
of the Gallai-Roy theorem and a 0 (k . \E\ • \V\2) algorithm for Theorem 4 (and hence
also for Minty's theorem). One reason why such results are of interest is that the
(generally NP-complete) problem of finding the chromatic number of a graph
becomes linearly solvable when a „good" orientation is available on the edge set.
Of course, the time bound of 0(|V | + |K|) is optimal, but most probably
0 (k • \E\ • \V\2) is far from being best possible.

3. A linear-time algorithm

In this last section we sketch the proof of Theorem 2. The algorithm, applying
several ideas also from [12] and [11], consists of the following basic parts.

1. Construct the graph G = G(#) = (V, E) and define a 0—1 assignment / on its
edges as follows. Say, e = {i,j} eE. If the clause <f)i corresponding to e is xt v Xj
or ~]xt v ~lxythenlet/(e) = 0, andif^z = ~lxf v Xjorxt v ~]Xj then let f(e) = 1.
2. In the connected components of G, find spanning trees Tl9..., Tk with arbitrarily
chosen roots rl9 ..., rk, using DFS. In the record of each vertex v of Tt store the

138

distance of v from ri9 the list of its „sons" (immediate successors in T()9 and the
number n(v) of sons that are not leafs (= endvertices distinct from the root) of Tt.
If this number is 0 and v is not a leaf of Ti9 then v will be called a semi-leaf.
3. Compile a two-way list Lt of semi-leafs for each Ti9 containing those v in in
creasing order of their distances from rt.
4. Find a decomposition of the Tf into vertex-disjoint stars by choosing the last
element v of Lt as the center of the next star whose other vertices will be the sons
of v. Delete this small branch from Ti9 and decrease n(v') by 1 at the father v' of
v; if v' becomes a leaf (i.e. it had just one son v)9 then n(v") should be decreased
by 1 at v"9 the father of v'. Of course, v has to be deleted from Lt and if n(v') or
n(v") becomes zero then the corresponding vertex has to be inserted in Lt.

The stars (some of which possibly consist of just one vertex) obtained by this
procedure will be denoted by Sl9 S2,...
5. In each Sj split the vertices into two sets Xj and X) (some of them may be empty)
in such a way that the following property is satisfied; if f(e) = 0, then e meets both
of Xj and X'y, iff(e) = 1, then e is contained in Xj or in X'j.
6. Define a preliminary 0—1 assignment c on the vertices as follows. In Sl9 let
c(v) = 0 for veXt and c(v) = 1 for veX[. Having fixed the assignment of St_l9

try a c' in St with c'(v') = 0 or 1 according as v' e Xt or v' e X'(. Scan the edges
joining St with V\ St. If the other endpoint of an edge is in \Jj>i Sj9 then count it
with weight 0; otherwise, if an edge e = {v9 v'} (v' e Si9 ve(Jj<i Sj) has c(v) +
c'(v') + f(e) = 1 (mod 2) then count e with weight + 1 and if c(v) + c'(v') + f(e) = 0
(mod 2) then count e with weight —1. If the total sum of those weights is nonnega-
tive, then we put c(v) = c'(v) for all v e St; if the total is negative, then we put c(v) =
= 1 — c'(v) for all of those vertices. Having fixed the values of c on Si9 we mark
the edges of weiht + 1 , as well as the edges of 5£. Denote by <!>' the set of clauses
belonging to the edges marked, and by #" the clauses of # \ $' (hence, the s clauses
with a single variable are in <P").
7. Check whether or not the assignment c satisfies at least half of the clauses in <P";
if it does, then the algortihm assigns c(v) to each vertex v; otherwise it assigns
1 — c(v) to each v.

Proof of correctness

From the following simple claims, we shall deduce that the 0 — 1 assignment
provided by the above algorithm indeed satisfies at least 3i*/4 + s/2 + \(n — k)j
/2]/4 clauses of $.

Claim I. The leafs in each star St are pairwise non-adjacent.
(Since each Tt has been found by DFS.)

Claim 2. Every clause is satisfied in 0'.
(This follows from the definition off)

Claim 3. At least half of the clauses of <P" are satisfied.

139

(If a clause is not satisfied by c(v) then it always is satisfied by 1 — c(v).)
Claim 4. The stars St have at least \(n — fc)/2] edges in all.

(Each of the k components of G can contain at most one star of just one vertex,
and in any other star St on st vertices there are precisely st — 1 ^ s£/2 edges.)
Claim 5. Denoting by q the number of star-edges, $' has at least (t + q)/2 clauses.

(Applying induction on i, one can prove that — in accordance with the appropriate
modificalion done in c' when it was necessary — in the subgraph induced by \Jj^ t Sj
at least half of those edges will be marked which are in G but not in any Sj. For
i = m this yields (t — q)J2 clauses for <P'9 plus those q clauses from the Sj.)

By Claims 1 through 5, denoting by m" the number of clauses in <P\ we obtain
that m'(<2>) = (m - m")/2 + m" = m\l + (t + q)/4 = 3t/4 + s/2 + \(n - fc)/2]/4
as stated.

Time analysis

Steps 1, 2, 6, and 7 require 0(m + n) time, and steps 3, 4, and 5 can be executed
in 0(n) time. Hence, the total running time is a linear function of the input size.
Notes on implementation and complexity
Step 2: Distance from the root can be recorded on-line; to determine n(v), add 1
each time when returning to v from a leaf son.
Step 3: In order to speed up insertions in Li9 maintain a pointer vector vt of length
n, the / h coordinate of which tells the location of the last semi-leaf contained in Lt

whose distance from rt is j .
Step 5: A list of star-edges can contain at most n — 1 records, yielding time com
plexity 0(n) for this step.

Step 6: During the recursive definition of c, each edge of G is visited at most three
times (twice when the algorithm arrives at its two endpoints, and once when the
edge is marked). This fact implies the bound of 0(m + n).

References

[1] BERGE C : Graphs and Hypergraphs. North-Holland, 1973.
[2] COOK S. A.: The complexity of theorem proving procedures. Proc. 3rd Ann. ACM Symp.

on Theory of Computing, Association for Computing Machinery, New York, 1971, 151—
158.

[3] DAVIS M . and PUTNAM H.: A computing procedure for quantification theory. J. ACM 7
(1960)201 -215 .

[4] DEAN N. and TOFT B., private communication, 1990.

[5] GALLAI T.: On directed paths and circuits. In: Theory of Graphs (P. Erdos and G. O. H .
Katona, Eds.), Proc. Colloq. Math. Soc. J. Bolyai, Tihany (Hungary) 1966, Akademiai
Kiado, Budapest, 1968, pp. 115-118 .

[7] GOLOMB S. W. and BAUMERT L. D.: Backtrack programming. J. A C M 12 (1965) 516—524.
[6] GAREY M . R., JOHNSON D. S. and STOCKMAYER L.: Some simplified NP-complete graph

problems. Theor. Comp. Sci. 1 (1976) 237—267.

140

[8] JOHNSON D. S.: Approximation algorithms for combinatorial problems. J. Comp. Syst.
Sci. 9 (1974) 256-278.

[9] KRATOCHVIL K., SAVICKY P., and TUZA ZS.: One more occurrence of variables makes
SATISFIABILITY jump from trivial to NP-complete. SIAM J. Comput., in print.

[10] MINTY G. J.: A theorem on «-colouring the points of a linear graph. Amer. Math. Monthly
67(1962)623-624.

[11] NGOC N. V. and TUZA ZS.: Linear-time approximation for the Max Cut problem to appear.
[12] POLJAK S. and TURZIK D.: A polynomial algorithm for constructing a large bipartite sub

graph, with an application to a satisfiability problem. Canad. J. Math. 34 (1982) 519—524.
[13] ROY R.: Nombre chromatique et plus longs chemins d'un graphe. Revue AFIRO 1 (1967)

127-132.
[14] TARJAN R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1 (1972)

146-160.
[15] TARJAN R. E.: Complexity of combinatorial algorithms. SIAM Review 20 (1978) 457—491.
[16] TUZA Zs.: Graph coloring in linear time. J. Combin. Theory Ser. B, to appear.

141

		webmaster@dml.cz
	2012-10-06T01:38:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

