
Acta Universitatis Carolinae. Mathematica et Physica

V. I. Bogachev
Remarks on integration by parts in infinite dimension

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 34 (1993), No. 2, 11--29

Persistent URL: http://dml.cz/dmlcz/701989

Terms of use:
© Univerzita Karlova v Praze, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/701989
http://project.dml.cz


1993 ACTA UNTVERSITATIS CAROUNAE-MATHEMATICA ET PHYSICA VOL. 34. NO. 2 

Remarks on Integration by Parts 
in Infinite Dimension 

V. L BOGACHEV 

Moscow*) 

Received 14 April 1993 

0. Introduction 
1. Notations and terminology. 
2. Integration by parts formula in infinite dimensions. 
3. Logarithmic derivatives, subspaces of differentiability and their applications. 
References 

0. In troduct ion 

The theory of differentiable measures suggested by S. V. Fomin about 25 years 
ago now is playing more and more significant role in infinite dimensional analysis, 
stochastics and applications in mathematical physics. The survey of this theory was 
given in [BS]. This paper is devoted to some new results and directions connected 
with this theory. In section 2 we discuss integration by parts formulae and applica
tions to the notion of smooth conditional expectation (introduced by Malliavin, 
Nualart, Ustunel and Zakai). Section 3 is devoted to the study of properties of 
logarithmic derivatives. In particular, it is motivated by recent researches in infinite 
dimensional stochastics and quantum field theory. In sections 2 and 3 we also 
discuss Cameron - Martin type formulae. Preliminary version of this paper ap
peared as [Bo9]. Main results were presented at the Winter School-92 in Strobl 
and I would like to thank J. B. Cooper, P. Muller, M. Schmuckenschlager, C. Stegall 
and W. Schachermayer for this opportunity. Valuable discussions with M. Rockner, 
J. Tiller, E. Mayer-Wolf and M. Zakai are gratefully acknowledged. 

*) Department of Mechanics and Mathematics, Moscow State University, 119899 Moscow, Russia 
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1. Notations and terminology 

Let X be a real locally convex Hausdorff space (LCS X) with a topological dual 
X*. In this paper a measure ju on X means a bounded Radon measure (may be, 
signed) on the borelian a-field 3S(X). For a measurable map F: X — Y we 
denote the image measure A -* ju(F~1A) on Y by fi o F"1. In particular, 
juh(A) = ju(A + h). If ju is equivalent to juth for all t then it is called quasi-invariant 
along h. The a-field generated by a family & of functions is denoted by o(&~). 

Recall that a measure /* on Jf is called continuous (resp. Fomin differentiable) 
along a vector /t e Z if for each Borel .4 e Z the function t -* //(.A + t/i) is 
continuous (resp. differentiable). If ju is differentiable along h then the formula 

d„ fi(A) = lim (//(_4 + th) - fi(A))/t 
f -0 

defines the measure dfju absolutely continuous with respect to /i. The density 
gh(ju) = dhju/ju is called the logarithmic derivative of ju along h. Higher derivatives 
dhfu as well as mixed derivatives d* dfji are defined in a natural way. Let E be a LCS 
continuously embedded into X and M be some locally convex space of measures 
on X. We say that fi is differentiable along E (in some sense) if the map h -* juh 

from £ to M is differentiable in this sense. If E is Banach then always the Frechet 
differentiability is meant. Note that the differentiability along a subspace is 
stronger than the differentiability along all vectors from this subspace. 

Two other types of differentiability were introduced by Skorohod [Sk] and 
Albeverio - Hoegh-Krohn [AHK]. 

We say that // is Skorohod differentiable along h if for each bounded continuous 
function / on X the function t -* jf(x — th) ju( dx) is differentiable. In this case 
there exists a measure v (called a weak derivative) such that for all bounded 
continuous / 

/ - 0 

1 j(f(x - th) - /(*)) џ(dx) - Г lim Гl (f(x - th) - /(*)) џ(dx) - /(*) г<dx) (1.1) 

This measure v is denoted by the same symbol dfju since Fomin differentiability 
implies Skorohod differentiability. The difference is that Skorohod derivative need 
not be absolute continuous with respect to ju. Note that Fomin differentiability is 
equivalent to Skorohod differentiability and continuity of the weak derivative 
along h. It is equivalent also to absolute continuity of the weak derivative with 
respect to ju. 

Note that (1.1) can be rewritten as 

/»«"•--/' făø. (1.2) 
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This permits to define differentiability of fi along a nonconstant vector field h on 
X as the existence of a measure dhju satisfying (1.2) for a suitable class of/. We 
discuss this below. 

On the line continuity along nonzero h means existence of a density with respect 
to Lebesgue measure, Fomin differentiability means existence of absolutely con
tinuous density p with p e L^/?1), while Skorohod differentiability means the 
existence of the density of bounded variation. 

We say that a nonnegative measure ju on X is Albeverio - Hoegh-Krohn (AHK) 
differentiable along h (or L2-differentiable) if there exists a measure X such that 
ixth < X, fith -• ftX and the map t -* f/2 from R1 to L?(X) is differentiable. Accord
ing to [Bo5] this differentiability is equivalent to Fomin differentiability with 
square integrability of Qh(ju). 

Let Dc(fi) •• {h: // is Skorohod differentiable along h], D(ju) •- {h: ji is Fomin 
differentiable along h}, H(ju) -• {A e £>(//): £/.(/!) 6 1?(H)Y For further informa
tion see [BS], [Bo3], [YH]\ 

A probability measure y on Z is called gaussian if all measures y° fl, / e AT*, 
are gaussian on the line (i.e. have gaussian densities or are Dirac measures). For 
each gaussian measure JU there exists a vector a € X and a centred gaussian 
measure y such that /* — ya. For centred y denote by X*Y the closure of X* in L2(y), 
i.e. the space of measurable linear functionals. Note that in this case D^y) — 
— D(y) — H(y) equals to the Cameron - Martin subspace (reproducing kernel) 
and can be identified with the dual to X*Y since Qh(y) e X* and each / e A"J, admits 
such representation. Let ||-fc||y — ||e*(y)||i?-

With a gaussian measure y one can associate Sobolev spaces W^-completions 
of the class &W° of cylindrical functions of the form / -» (p(gx,..., gn), 
<p e C?(Rn), gi e X\ with respect to norms ||/||Ar - ^ || V*/| mx^k), V being the 

derivative along H •• //(y), ^ being the space of .fc-linear mappings of the 
HUbert - Schmidt type with the natural norm (see [IW]). Let W00 = f| Wp'r. In a 

P,r 

similar way one defines W,r(X, Y) for Hilbert Y. 

2. In tegrat ion by parts formula in in f in i te d imens ions 

A. Constant directions. 
Let ju be a measure differentiable along a vector field v and / be a function 

differentiable along this field. The equality 

/ » . > - - / / / < U . (2.1) 

is called an integration by parts formula. 
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In the case of constant vector fields the first nontrivial formula of this type in 
infinite dimensional setting was proved in [ASF] for Fomin differentiable measures 
(on linear spaces) under assumption of the existence of both sides of (2.1) and 
some additional technical condition of "stable integrability". In this particular 
situation during some time the formula from [ASF] was remaining the most 
general, though in [Bo2] it was shown that the condition of differentiability of 
/can be replaced by the Lipschitz condition. In 1988 M. Khafisov [Khl] noticed 
that using results on the existence of smooth conditional measures obtained by 
Yamasaki and Hora in [YH] one can reduce the problem to the one-dimensional 
case and thus proved (2.1) under the following conditions: 

1. ju is Fomin differentiable along V, dj exists //-almost everywhere, 
/ e L\dvju), dvfz L\JU), 2. for /*-a.a. x* X the function t - f(x + tv) is 
continuous and possesses the Lusin (N)-property (for example, is absolutely 
continuous or everywhere differentiable). 

To get this result it suffices to use corresponding results [S] for functions on the 
line. For example, in [Khl] the following theorem was used: if/has the (N)-pro-
perty, g is absolutely continuous and both ffg dt, — ffgf dt, exist, then they are 
equal. 

2.1. Remark. In [Bo6], [BS] a particular case of Khafisov's result (for/absolu
tely continuous or everywhere differentiable on lines x + Rlv) was mentioned 
with a more elementary proof. I would like to stress that this particular case was 
also indicated first by M. Khafisov (unfortunately, this was not pointed out 
explicitely in our earlier papers). 

In all papers cited above the natural question about extending these results to 
Skorohod differentiability was left open. The following proposition answering this 
question follows the same ideas, but uses a little bit more refined one dimensional 
integration by parts formula [S, Theorem 2.5, Chap. 8, p. 355]: 

/•b b /• 

Fgdx-GF - ( S ) 
Ja a Ja 

(S) G(x)dF(dx), 

provided F is of bounded variation, g is 3^- or 2?*-integrable on [a, b] (under 
these conditions Fg is integrable in the same Denjoy sense), G being a primitive 
of g. In particularly, this formula covers the case where G is locally absolutely 
continuous or everywhere differentiable with G e L}(dF), g e l}(F dx). 

2.2. Proposition. Let /* be Skorohod differentiable along v, f e l}(dvju), for 
ju-a.a. x functions t -* f(x + tv) are differentiable or locally absolutely con
tinuous, dv e l)(^). Then (2.1) holds. 

Proof. For measures on the line this follows from the formula above since ju 
admits a density F of bounded variation and dvju — dF (for extending that formula 
to the whole line it suffices to consider compositions <pn° G with cpn € C^(K), 
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<pn(t) = t if |t| ^ n, cpn(t) = n + l if t £ n + 1, <p ( - t ) = - < K O > 
sup |<?(„m)(t)| ™ Km < <*>). In the general case take a hyperplane Y complementary 
to Rlh and Skorohod differentiable conditional measures //y on lines y + R^hy 

y^Y, such that ju(B) •• j/*y(B) o( dy), o being the projection of |//| on Y (see 
[BS], [YH]). * 

The exists an interesting connection between differentiability and quasi-in-
variance found by Skorohod [Sk]. His result can be extended to locally convex 
spaces as follows. 

2.3. Proposition. Let ft be a measure on a LCS X differentiable along h. If 
exp (\Q h(ju)\) e U(ju) for some e > 0, then ju is quasi-invariant along h and for 
rh "" Ph/M> we have: 

rh(x) - exp ( I Qh(x - sh) dsj (2.2) 

Proof. In one-dimensional case one can use the arguments from [Sk]. In general 
case it suffices to choose differentiable and quasi-invariant conditional measures 
fiy on lines y + Rlh, which is possible because exp( |^ (^) | ) e U(juy) a.e. This 
implies quasi-invariance of ju and the equality (2.2). 

2.4. Remark. The measure ju is h-quasi-invariant and (2.2) holds under the 
following weaker condition: ju has the logarithmic derivative Qh(ju) such that 
joQh(x "" sh) ds exists for a. a. x. 

Proof. Again it suffices to consider the one-dimensional case and h = 1. In this 
case // possesses an absolutely continuous density /. Then we have: f(x + t) = 
«= exp (jof(x + s)/f(x + s) ds) f(x). Indeed, choose some x with nonzero 
f(x). Then due to integrability of / / / the formula above holds for small t, since 
(In / ) ' — / / / near x. Both parts of this equality being continuious, we conclude 
in view of the integrability of / / / that / is non vanishing. 

Nevertheless, it should be noted that less general initial Skorohod's condition of 
exponential integrability of Qh can be easier for verification. In [AR] the formula 
(2.2) was proved under conditions: Qh(ju) e L2(ju) and ju admits conditional 
measures on lineson lines y + Rxh with densities f such that 1/f are locally 
integrable (if Qh(ju) € L}*£(ju) the condition (l/f)l/e e I}loc is sufficient). In par
ticularly, this is true if Qh(fi) is continuous (this was also proved in [Bl] under 
additional conditions). There are interesting generalizations of the formula (2.2) 
for shifts along vector fields. We will discuss this question (connected also with 
Onsager - Machlup functionals) in the next section. 

B. Vector fields. 
Infinite dimensional integration by parts formulae involving vector fields app

eared first for Gauss measures, in particular, in connection with stochastic integra-
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tion in infinite dimension and Skorohad stochastic integral (see formulae and 
references in [DF], [NZ]). Researches in this direction has become especially 
active after celebrated Malliavin's works (see [B2], [BS]). It should be noted that 
implicitely formulae of these type were appearing even earlier in quantum field 
theory (sometimes at heuristic level) and in mathematical statistics (see 
[P1]-[P4]). 

Recall that a collection (X,&,ju,g) is called a measurable manifold [Bo6], if 
(X,3S, fi) is a measurable space equipped with an algebra*? c p| If(ju), consisting 

P>\ 
of -^-measurable functions and satisfying the following condition: 
for all / , . . . , fn € g and <p e C?(Rn) one has <p(fl9..., /„) e g. 

Sometimes the following stronger condition is useful. 
2.5. Definition, g is said to satisfy the condition (C) if whichever be an open 

t / c Rn, tpe CW(U) and F = ( / , . . . , /„ ) : X - U with/• eg, d^xp(F) «- (]lf 
one has tp(F) e g. 

It isn't difficult to check that W™ satisfies this condition. 
We say that a linear map v: g -* g is a smooth vector field on X if, denoting 

K/) bY dvf> we have for all cp e q?(Rn), f e g: 

n 

dv(p(fu • • •> fn) = E dXi<P(fl> • •'» fn) dyfi . 
i - 1 

A measure A on (X,&) is called differentiable along the vector field v if 
g c l}(X) and there exists a measure dvA such that for all bounded / e g the 
following formula holds: 

/̂ --J" /d vЛ. (2.3) 

If JtД < X then the corresponding Radon - Nikodym derivative is denoted by 
QV(X) (or just by QV if there is no risk of confusion) and is called a logarithmic 
derivative of A along г;. 

It is possible to extend the notions of a vector field and corresponding differen-
tiability to include also the case of not necessarily smooth fields v: g -* L°(A). 
Namely, in (2.3) one has to take only / with дj є L1. 

A map F — (f,..., fn), f є g, will be said nondegenerate, if there exist smooth 
vector fields vl9..., vn, such that 

2.6. Definition [Ml]. Let sć be subalgebra in g, FҐ being the conditional 
expectation corresponding to the ír-algebra o(s/). We say that Ff is smooth if 
E*(g) c g. 

Formally this definition differs from that of [Ml], where the equality 
E^(g) = J / was claimed. But in the case of the definition above one can always 
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replace the initial algebra sf by its extension sfx = g n L2(sf) and thus obtain 
equalities o(sf) = O(J / -), £•*(£) = F^(<?) = sfx. If J ^ was closed in*f, then sfx is 
also closed. 

2.7, Remark. It would be interesting to investigate the question when the 
closeness of sf implies the equality sf = g n l}(sf). In general this is not true as 
the following easy example shows. Let g = Cb(R), sf = {/ e«?: 3 lim /(t)}. Then 

j / is closed in g, o((f) = o(sf) = «#(/?), but F*^ = g is bigger than j / . 
An important example of a smooth conditional expectation is delivered by sf, 

generated by a nondegenerate map F = ( / , . . . , fn). This has been proved for 
functionals on the Wiener space by Ustunel and Zakai in [UZ] (see the proof of 
their Proposition 2.10) and by Malliavin in [Ml]. Below we prove the same in 
a general setting. 

2.8, Remark. Assume that g is equipped with a structure of a Frdchet (or 
barreled) space such that the natural inclusion g -+ L2(//) is continuous and let sf 
be closed x&g. Then the map Ff\ g -+ g is automatically continuous, provided Ff 
is smooth (and E*\g -+sf is continuous, provided E? is smooth in the Malliavin's 
sense). Indeed, since the map E*\g -+ L2(ju) is continuous, we can apply the 
closed graph theorem. In particular, this is the case under conditions in [Ml], so 
in Definition 4.2 in [Ml] the map E* is automatically continuous. 

2.9, Proposition. Let F = (fu . . . ,/„) be nondegenerate and sf' = o({/}). 
Then E^g c g, provided g satisfies the condition (C). 

Proof. Let \j) e g and denote by R the Radon - Nikodym derivative of v = 
= (ipfi) o F" 1 with respect to A = ju o F"1. Using the Mallivin's method it was 
proved in [Bo6] (see also [BS]) that measures v and X admit densities pv and px 

belonging to the Schwartz space S?(Rn). Hence R(x) = pj(x)/px(x) on U = 
™ i\Px\ > 0} and R(x) = 0 on Rn\ U. Notice that E*y = R o R So it suffices to 
show that Ro F zg. Now we verify the inclusion d(a)_R o f e f\Lp. First consider 
the case d{a) = dXi = d. Let / e C£(U). Then dR(F)f(F) is a bounded and 
measurable function which coincides with dT(F)f(F) for some Te C£(U) 
where T = /? in a neighbourhood of suppf. Hence for all £ e ̂  we have: 

E(dR(F)f(F) S) ^ E[d(RF) (F) £ - /?(F) df(F) §] = 

= £[<?(/?/) (F) £]-F(V>d/(F) {J. 

The first integral in the r.h.s. can be represented as follows: 

YM^dvf{Rf)oF) E[д(Rf)(F) Sl = E\^ү'ojkдk(Rf)(F) 
j,k 

I J(-V) (E> d.X ř̂/í) - £[/(F) /?(F) Q], 
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where Q e g doesn't depend on /. In analogous way one can represent 
E(tpdf(F) £]. So we obtain the equality 

E[dR(F)f(F) £] - E[f(F) R(F) Q] + E[f(F) G] « 

- E[f(F) y>E*Q] + E[f(F) G], 

where Q>G*ff don't depend on /. For d{a)R we apply this formula several times 
starting with £ — 1. Thus we get: 

E[d<a)R(F)f(F)] - E(f(F) R(F) V] + E[f(F) W] -

- E[f(F) y>E*V] + E[f(F) W] - E[f(F) Z], V, W, Z e «?. 

By Holder inequality the r.h.s. is majorated by \\f(F)\\p- \\Z\\r This implies that 
d(a)R(F) e [)If and hence R(F) e «f. 

A vector field v on X is called ĵ -basic [Ml] if dv(ff*) c <P*. 

2.10. Proposition. Assume that v is sf-basic and E* is smooth. Then the 
following Malliavin's identity [Ml] holds: 

dv(E«f) - E"(dJ) + E\fQv(M)) - (E*f)(E«6v(»))9 /€ g. (2.4) 

Proof. Both sides of (2.4) being o(j/)-measurable, it suffices to prove the 
following equality for all g esf: 

[g dv(Eff) M = \g[Ef(dJ) + E"(f QJM) - (E*f) (E* Qv(fi))) fi. (2.5) 

Applying the integration by parts formula to the function gEff and using 
o(ĵ )-measurability of dvg we get: 

\gdv(Eff) fi - - J dvg(Eff) fi - J g(E?f) dvfi -

gETfQjMfl. 

On the other hand, the right-hand side of (2.5) equals to 

[gdj+gf QV(M) ~ g(E*f) Qv(fi)) ft, 

-faMM-f, 

> 

and now it suffices to notice that applying the integration by parts formula again 
we have: 

I dvgfft - - I gdjfi - gf Qv(fi)fi. 
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C. Examples of vector fields and nonlinear Cameron - Martin formula. 
There are two main ways to construct vector fields of differentiability. The first 

one is to form vector fieds of the type v(x) -• £/„(*) an on the space equipped 
with some measure fx differentiable along an9 where fn are differentiable in a 
suitable sense. The second way (considered below) — fields generated by flows of 
transformations. Certainly, there is also a possibility to take nonlinear images of 
fields of these two types. 

Consider the following situation appearing in the generalized Girsanov's trans
formations and in Bismut's approach to the Malliavin calculus (see [B2], [BS], 
[NZ], [Sm] for references). It should be noted that first such situation was 
investigated by T. Pitcher [P1]-[P4] for the purposes of estimating of parameters 
of stochastic process. 

Let Tg, e ^ 0, be measurable transformations of the probability space (Q93S9 P) 
such that maps e -* / o Te into Ll(P) are differentiable for sufficiently large 
algebra«P of functions/. Define v by dv(fo T0) — dfo Te/de\e_0. Assume that 
Qe

mm P° Te
l «» geQ0 and e ++ ge is differentiable at zero as a map to I}(Q0). 

Then P is differentiable along v and QV(P) — —dgeo T0/de\£m.0. 

2.11. Example. Let wt be a standard Wiener process on [0,1] and u be an 
adapted process with \u\ e p|Lp. Define %£ by 

dfi - a(t9 fij) dwt + [b(t9 £ ) + ea2(t9 g ) ut] dt, g - JC , 

where a, b satisfy some usual conditions. Transformations Te are given by 
TJ(o)) (t) — £€

t(a)). By the Girsanov theorem measures Qe
sss P° T'1 are equiv

alent and ge are given by the formula 

ge - exp \e J u, d # - 2- !c | wr(26(t, 5?) + ea2(t, g?) ut) dt 

So 5gc/d£|£.-0 exists and is equal to jl ut dt£ — jl utb(t9 £?) dt. Hence 

Qv-* o(t9 g)utdwt. 

In the case a * 1, 6 » 0 we have the following expression for v: 

v((o)(t) - w5ds. 

Recently the Malliavin calculus has been developed for processes with jumps 
(see references in [BS], in particularly, papers by J. Bismut, K. Bichteler, J. 
Gravereaux, J. Jacod, R. Leandre) and this also leads to vector fields of differen
tiability. In [CP] there is a special construction of a vector field on a standard 
Poisson space such that the corresponding logarithmic derivative coincides with a 
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stochastic integral as in the example above. It would be interesting to compare this 
construction with that of [Sm] suggested for more general spaces of configurations. 

The described method of constructing of vector fields of differentiability is 
especially convenient if one deals with groups. In [AM], [Kh2], [M2], [M3], 
[MM1], [MM2], [Sha] there are interesting examples of this kind for loop-groups 
and groups of diffeomorphisms. Similar results can be derived from constructions 
in [Sh2], [Sh3], [Ho3] for infinite dimensional rotation group and infinite dimensi
onal torus. There are also interesting relations between stochastic integration and 
differentiability along vector fields (which appear also in the example above). In 
particular, one of the possible constructions [N] of a stochastic integral is to define 
it as a logarithmic derivative along a suitable vector field (possibly, operator-valu
ed). Some information concerning these connections and further references can be 
found in [NZ], [N], [Nu]. We return to this question in the next section. 

2.12. Remark. It is natural to ask how to determine densities g£ or transformati
ons Te knowing QV (like in Proposition 2.3 and Example 2.4). Up to now the best 
result in this direction is due to A. B. Cruzeiro [Cr] and is as follows. Let y be 
a symmetric gaussian measure on a LCS X, v: X -* H *» H(Y) be a vector field, 
satisfying the conditions i) v e W*(X, H), ii) for all A 

exp ( A H ) + exp (A||VF||) + exp (X\dv\) e L\Y) . 

Then there exists a family of transformations Ut such that 

Jo 
Ut(x) «= x + J v(Usx) ds for all t and y-a.e. x, 

/LI o UJX has a density kt with respect to pi and denoting dv by QV 

fc,-exp( iQ^U^ds). (2.6) 

In [DS] the formula (2.6) was announced in a more general case of a Banach 
manifold with a family of transformations Ut generating the field v and with a 
measure ju differentiable along v provided Qv(U~tx) is continuous in t. But in fact 
the proof (analogous to that of [B2]) consists in differentiating in t the integral 
jf( U tx) ktju and applying the integration by parts formula for dvkt. Unlike 
Remark 2.4 both operations claim in general additional conditions (cf [B2]). One 
of the possibilities here is to claim integrability of Cexp(sup \Qv(U-tx)\. In 

i«l<ui 
[AM], [M3], [MM1], [MM2] there are generalizations of the Cruzeiro's theorem 
to the case of some infinite dimensional groups. 

Various applications of infinite dimensional integration by parts formulae can be 
found in [AKR], [AR], [Bo7], [BS], [CZ], [K]. 
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3 . Logari thmic d e r i v a t i v e s , subspaces of d i f f erent iab i l i t y and their 
app l i ca t ions 

In this section we discuss the following topics: integrability and differentiability 
properties of logarithmic derivatives, subspaces of differentiability and some 
applications of these objects. 

A. Properties of logarithmic derivatives. 
In [U] A. V. Uglanov suggested the following useful lemma. 

3.1. Lemma [U]. There exists a constant Csuch that for each nonnegative twice 
differentiable function <p: R1 -+ R1 with absolutely continuous qf the following 
holds: 

J(<P)- J W ^ d í á cl\[\qt I + \<P"\ + \<pm\]dt\, 0/0 = 0. 

3.2. Corollary [U]. If a nonnegative measure fx onaLCS X is 3 times differenti
able along v then Qv(fi)

 € -L2(/*). 
In particular, if a stable measure /u is differentiable along v then it is infinitely 

differentiable (see [Bo3]) and hence QV(/U) G L2(JU) which gives an affirmative 
answer to Problem 6 in [BS]. In [Kr] E. Krugova found exact connection between 
the order of differentiability of a measure and integrability of its logarithmic 
derivative. We formulate her result in 3.4. 

An easy example [U] (<p(t) — |t| |log |t||_1 in ( — d, d)) shows that J(<p) can't be 
estimated by means of \\<p'\\i and ||<p1i. 

3.3. Remark. Notice that 3.2 is trivial for measures with bounded supports. 
Indeed, if the support of <p belongs to the segment of the length I and qf is 
absolutely continuous, then 

i> (<p')2 q,-1 £ 31/2I sup 1^1.5 2 / 1 ^ 1 . . 

Proof. Fix d > 0 and put tp - <p + d, f = xtf'2. Then 

\(<P"f - J (V*)2/2 + 4 Urr + 8 \ff(f) 2 = 

- 4 J (T)2/2 + 4 J (/y + 8/3 \ f((n y = 

- 4 J (T)2/2 + 4/3 f( /)4 -= 4 f(f)2 /2 + 3"1 f(V')4 r2 • 

Hence f(<p')* q>~2 ^ 3 f(q>")2 and we obtain the estimate above. 
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3.4. Proposition [Kr]. Let ju be nonnegative. Ifdjju exists then Qh(ju) e L2 £(ju) 
for all e > 0. In addition, 

IftOOh-. £ (1 + e-1) ||d^|| + (1 - e) c -^d^l (3.1) 

7/d^a exists tftert £/.(//) e L*-£(ju) for all e > 0 and for some constant c(e) 

IfcOOh-. -S < e ) ( l d ^ | + ||d2^|| + ||d3^||) (3.1') 

3.5. Remark. It would be interesting to find conditions ensuring inclusions 
QH e Lp for all p > 1. Even analyticity is not enough for this as the following trivial 
example (suggested by A. Popov) shows: cp(t) — t2exp( — t2), functions 
I^XOr fl^O1"' a r e n o t integrable at the origin for all p ^ 3. 

3.6. Proposition. Assume that jun are differentiable along hn, hn converge 
weakly to h, sup„ \\Qhn(jun)\\p - C for some p > 1. ////„ converge weakly to a 
measure X (in fact weak convergence of finite dimensional projections suffices) 
then X is differentiable along h and \\Qh(ju)\\p ^ C. 

Proof. On the linear space L spanned by / = exp (ig), g£ X* define a fun
ctional F(f) = - / dJX. Note that 

F(f) ig(fy exp (ig) A - lim -ig(hn) exp (ig) /*„ -

= lim exp (ig) d„^rt - lim exp (ig) ej/*,,) ^ - lim fQhn(^in) jun. 

The same is true for all/ e L. By Holder inequality and weak convergence of finite 
dimensional projections of jun we have: 

|F(/)| ^ C lim sup | J 1/IV.J ' - CM |/|Uj \ 

Therefore there exists g e LP(A) with F(f) - //gA and ||g||p ;g C. This implies 
differentiability of A and the equality Qh(X) — g e LP(A). 

3.7. Proposition [UJ. Let measures ju andX on a LCS X be n times differenti
able along vectors from a finite dimensional linear space L and pi < X. Then there 
exists a density F = JA/X that is X-a.e. n times differentiable along directions in L. 

Proof. In order to simplify notations consider the case n =* 1, L = Rxh. Choose 
a complementary hyperplane Y and differentiable conditional measures juy and Xy 

with absolutely continuous densities f, gy on lines y + Rlh. It is easy to see that 
ju < vX I, X < vX I, where v is the projection of |A| on Yand / is the standard 
Lebesgue measure on R1. Thus fi = f(v X 1), X — g(v X I), dfju = q)(v X I), 
dhA - rp(v X I). Then v-a.e. f(y + t/i) - f(t) - / I . <?()> + s/i) ds, g(>> + th) -
" £y(0 - / - • V<y + **) d-?. It suffices to notice that F = fig. 
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3.8. Corollary. / / /a is twice differentiable along h, then Qh(ju) admits a.e. 
h-differentiable version. 

Not always Fhas a continuous version even if ju, X are smooth: take the standard 
Gaussian measure ju on the line and X — tju or X = t*ju. 

3.9. Remark [U]. If X S 0 and d3
hX exists then Qh(X) admits a version g that 

satisfies the equality d2
hX — g dAA + (5Ag) X in the sense that Q e Lx(dAA), 5^p e -

I)(X). But if A is only twice differentiable or signed this does not hold as easy 
examples show. 

B. Subspaces of differentiability. 
Subspaces of differentiability of measures were introduced in [Bol]. The sub-

space of differentiability D(ju) of a measure ju in a LCS X is the linear space of 
all vectors h of Fomin differentiability equipped with the norm h •-* ||d^||. The 
space DC(JU) of all vectors of Skorohod differentiability is defined in the same way. 
As shown in [Bol], [Bo3] D(ju), Dc(ju) are Banach and compactly embedded into 
X. D(/u) is closed in Dc(ju) and isomorphic to a closed linear subspace of l}(/u) 
([Bo3]), while Dc(ju) is isomorphic to a dual space ([Kh2], [BS]). All F, 
1 ^ p ^ 2, are isomorphic to some subspaces of differentiability [Bo5]. In parti
cular, D(ju) need not be Hilbertized. However, Albeverio - Hoegh-Krohn subspace 
H(ju) — {h e D(ft): Qh(fi) € L?(ju)} with the norm from L2 is Hilbert. In a similar 
way, the space Hp(ju) = h e £>(//): £>/,(/*) e L%a)} equipped with the natural LP-
-norm is complete. 

Further information can be found in [BS], [HI], [Shi], [Sh4]. 

3.10. Proposition. Let JU be a measure on a LCS X and F be a barrelled space 
(for example, Frechet space) continuously embedded in X. If F £ F(/LI) then the 
map R: v •-* Qv(ju), F -* Ll(ju), is continuous. IfFQ H(ju), then the same is true 
forR:F- Lfy). 

Proof. By the closed graph theorem the natural inclusion F -+ D(ju) is con
tinuous, since D(ju) is Banach and continuously embedded in X. On the other 
hand the map v >•* QV(JU), D(ju) -» Ll(ju), is an isometry. These arguments are valid 
also in the second case. 

Under some additional assumptions this assertion was proved in [AHK] by 
more complicated arguments. 

3.11. Theorem. Let ju be a nonzero measure on a LCS X. Then there exists 
a Hilbert space H compactly embedded in X with the following properties: 
1) D(fi) c H, 2) for each n one can find a probability measure vn on X with a 
compact support and n times Frichet differentiable along H. If pi is separable then 
H is also separable. 

Proof. According to [Bo7, Theorem 1] there exists a probability measure v on 
X with a compact support and 4 times differentiable along directions from 

23 



D - D(/u). Note that D c H(v) c .D(v). This follows from Corollary 3.2 but in 
this particular case can be checked directly as noted in Remark 3.4. Denote H(v) 
by H and set vn — v * ... * v, where the convolution is taken n + 1 times. Then 
v„ have compact supports and are n times Frechet differentiate along H. Indeed, 
for all vu ..., vn e H the derivative dVl... dvvn — dVlv * ... * dVnv * v exists. Since 
| | v | | ^ ^ C||i>||H, we get the following estimate for the map T: a -• (vn)a: 

\\TW(a) - T«(ft)| ^ sup{||dVlv*...*dv„v* va - dVlv* ... * dVnv* v j , 

I K I U ^ l } * C"|d..,v| £ C»+1\\a-b\\H. 

This estimate imphes the w-fold Frechet differentiability of T. Note that if fi is 
separable, then the measure v constructed in [Bo7, Theorem 1] is separable too, 
which gives separability of H. 

This theorem gives an affirmative answer to the question posed by V. Bentkus 
some years ago and mentioned in [BS, Problem 8-e]. As shown in [Bo5], [BS] not 
always one can find a Gauss measure y with D(ju) c D(y). Also, D(/u) need not 
be isomorphic to a Hilbert space. We don't know whether vn can be chosen 
infinitely differentiable or analytic along H. 

Recall that a probability measure /u on a LCS X is called stable of the order 
a e (0,2] if for each n there exists an e X such that the distribution of the random 
vec to r^ ! + ... + Xn)/n

Va — ancoincides with/i providedZ,are independent 
with distribution ju. Gaussian measures are stable of the order 2. 

Combining Theorem 1 from [Bo3] and Uglanov's Corollary 3.2 we get the 
following result for stable measures. 

3.12. Theorem. Let fi be a measure on a LCS X, stable of some order a. Then 
the subspaces of continuity C(/u) and differentiability D(ju) coincide with the 
Hilbert space H(/u), ju is infinitely differentiable along H(/i) and, if a ^ 1, analytic 
along H(fi). If a ^ 1 or/uis not completely asymmetric in the sense of[Bo4], then 

3.13. Remark. Let JU be a stable measure. 1°. We don't know whether H(/J) is 
always separable. 2°. If Qa(ju) is in all U(fi)l 3°. Is it true that ju and jua are singular 
for all vectors a not belonging to C(ju)? 4°. For stable product-measures there is 
an estimate [BS]: 

| | / i f l - / i | | ^ 2 ( l - d ( a ) / | | d ^ | r / 4 ) . 

If an analogous estimate holds in a general case? Such estimate would imply the 
positive answer to the previous question. 

C. Mappings and equations connected with logarithmic derivatives and some 
applications. 

3.14. Remark. By the Pettis theorem the vector measure dii:38(X) -* D(ju)* 
defined by the formula dpi(A) (h) -• dhju(A) has a bounded semivariation (see 
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[Bo3]), but as observed in [Bo3, Proposition 5] this measure has unbounded total 
variation if D(ju) is infinite dimensional and admits an equivalent Hilbert norm. 
Recently M. Khafisov has proved that the same holds for all D(ju) with 
dim D(ju) = °o. If D(ju) is Hilbert this gives a vector measure in X, since we can 
identify D(ju) with its dual. Such measure usually is of bounded variation and this 
is exploited below. 

Now we shall discuss the notion of a vector logarithmic derivative of a measure 
fi on a LCS X. This notion turned to be very usefull in applications to quantum 
field theory, stochastic quantization and infinite dimensional diffusions (see 
[AHK], [AKR], [AR], [CZ], [K]). There exist several constructions of this object. 

I. In the first construction assume that ju is differentiable along directions from 
some Hilbert space E continuously embedded to X. We identify E and E*. Then 
the measure d// defined above takes values in E and consequently in X. If this 
^-valued measure possesses the Radon - Nikodym density A with respect to 
ju then A is called the logarithmic derivative of /A along E. According to [Bo3] such 
A exists if the embedding E -* X is absolutely summing (which is always the case 
for Hilbert X). 

II. In the second construction assume that H is a densely embedded Hilbert 
space in X. Identifying again H with H* we get the triple X* c //* = / / c X. 
Assume also that X* c D(ju). If there exists a Borel map fi: X -+ X with 

x.(k, fi(x))x = lk(ju) (x) a.s. for all k e X* c X, 

then we say that fi is the logarithmic //-derivative. 
Note that if E = H and both maps exist then they coincide. 
The following two problems arise in the connection with this construction. First, 

whether logarithmic derivatives completely determine measures (up to a multi
plication by a constant) and, second, how to find a measure with a given logarith
mic derivative. The latter problem posed in [ASF] admits two different formula
tions: a) knowing that fi is a logarithmic derivative of some /i to reconstruct ju; 
b) find conditions on fi (necessary and sufficient or sufficient) for existence of a 
measure for which fi serves as logarithmic derivative. The problem a) was partially 
solved in [AR], where it was proved that ju can be reconstructed as an invariant 
measure for the diffusion with the drift fi. The partial solution to b) was suggested 
in [K]. We study these problems in a separate paper. 

3.15. Remark. In [HI] and [Sh4] there was discussed a natural question: which 
random variables £ can be obtained as logarithmic derivatives of probability 
measures? Certainly, conditions 0 < E\%\ < °o and E£ = 0 are necessary. It was 
proved in [HI] and [SH4] that, conversely, for each random variable £ with 
0 < E\£\ < oo and Z?| = 0 there exists a probability differentiable measure // on 
the line such that the distribution of Q1(JU) on (Z?1, ju) equals to the distribution of '§. 
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3.16. Example. For each square integrable centered random variable £ on the 
classical Wiener space there exists an adapted square integrable process r\ such that 
£ = jl rjtdwt and thus £ equals to QV for the field v derined by v(co) (t) = 
= foUco)ds. 

Proof. This follows from Example 2.11 in view of the well-known fact that £ can 
be represented as a stochastic integral. 

3.17. Example. Let y be a centered Gaussian measure on a LCS X. Then for 
each £ € L2(y) with j£y = 0 there exists a vector field v: X -* H such that y is 
differentiable along v and Qv(y) = £ a.e. In addition, v can be chosen in 
W2>\X,H)with\\v\\2tl=U\\2. 

Proof. One can reduce this example to the previous one, but the direct checking 
is also possible. Indeed, for simple fields of the form v(x) = f(x) h with smooth 
cylindrical / and h e H one has: dvy = [dj + fg h] y. Hence 

\\QAl - [[{dnf)2 + f2Ql] Y + J dh(f2) QhY = ([(dj)2 - (dhQh)f) y = 

Í 
Extending this correspondence by linearity, we get an isometry from VfiA(X, H) to 
l}(y) and it suffices to check that the range is dense in the orthogonal complement 
to constants. Moreover, it is sufficient to consider only one-dimensional case, since 
a dense subspace is spanned by functions g(x) = gi(lh(x)) g2(x), where gx is centered 
and g2 is independent with lh. Direct calculation shows that for each cp e D(R) 
with \cpo = 0, o being standard gaussian, v: x ^ exp (t2) J* „<p{t) o(dt) be
longs to D(R) and satisfies xf — xv = cp. 

3.18. Remark. In recent years there has been a considerable progress in the 
study of infinite dimensional Dirichlet forms, in particular, the classical Dirichlet 
forms of the type H(f, f) = J(V/, V/) ju with (V/, V/) = ]T(<V)2- »turned out 
that closability of H is connected with continuity of ju along ht (see [AR], [AKR]), 
while differentiability of ju is important for essential selfadjointness of the corres
ponding operator (see [Ko]). 

3.19. Example. Theorem 5 in [K] asserts that the Dirichlet operator corres
ponding to a measure JU on Sf(Rn)' is the Schrodinger representation of some 
Araki hamiltonian provided ju possesses continuous and square integrable logarith
mic derivatives for vectors in S?(Rn). This assertion is a trivial reformulation of the 
fact that such condition implies Albeverio - Hoegh-Krohn differentiability and 
hence follows directly from the characterization of Albeverio - Hoegh-Krohn 
differentiability obtained in [Bo5]. In particular, an additional condition of con-
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tinuity imposed in [K] can be omitted. In a similar way some results in [AKR], 
[AR] can be obtained as corollaries of results in [Bo2], [Bo3], [Bo5] on relation
ships between various differential properties of measures. 
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