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1993 ACTA UNrVERSITATIS CAROUNAE-MATHEMATICA ET PHYSICA VOL. 34. NO. 2 

On Extensions of a-Fields of Sets 

E. GRZEGOREK 

Gdansk*) 

Received 14 April 1993 

We assume Zermelo-Fraenkel set theory with the axiom of choice. The letter X 
will denote arbitrary cardinal while co denotes the first infinite cardinal. If X is a 
set then \X\ denotes the cardinality of X, &(X) is the power set of X, 

[Z]* A = {Y£ X:\Y\ £ A}, 

[X]<X~{YŞ X 

[X]x = {YЯX 

|Y| < A} and 

1 - 1 - A } . 

If <§ £ &(X) then: @ is a partition of X if |J ^ - X, 0 * ^ and elements of ^ are 
pairwise disjoint; a set 5 is a selector of $ if 5 £ (J $ and |5 n Y| — 1 for every 
y e ^. A family ^ £ &(X) is proper if ^ ^ &(X). An ideal Z o n a set AT is a 
collection of subsets of X that is closed under subset formation and finite unions. 
A family 9~ £ #>(X) is called a filter on X if the family -X = {X \ F: F e gr} is a n 

ideal on X «X and F̂" are called then mutually dual. A filter &~ on X is called 
uniform if |.F| — 1.̂  for every F e ^T An ideal^ on Z is called uniform if the dual 
filter to J on X is uniform. A family sf £ [X]]X{ is called a pseudobasis for a filter 
^" on X if |J^| ^ |A] and for every F e gr there is some A^sf such that A £ F 
(see [1]). A filter is called cf-filter if it is closed under countable intersections. 
A cr-ideal is an ideal which is closed under countable unions. Let R be the real line. 

A version of the following theorem was proved in [1] in order to obtain a 
negative answer to a problem of Ulam (problem 34 in [4] and modified versions 
of it in [3] p. 15 and [5] p. 314). 

Theorem A, (Grzegorek and W§glorz [1] p. 286 and p. 289). There exists a 
proper o-fields&of subsets of R such that: 

(a) all Lebesgue measurable subsets of R are in sf. 
(b) for every partition <@ £ [R] *w of R there is a selector of @ in sf. 
(c) [R]<2° Qtf. 
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The above Theorem A was formulated in "Added in proof in [1]. In fact the 
a-field constructed in [1] has all required in Theorem A properties (see our 
theorem 1.1 in [6]). The aim of the present note is the following generalisation of 
Theorem A. 

Theorem B. (i) Let & be a uniform o-filter on R and let 3S be a o-field of 
subsets of R such that \3S\ ̂  2a. Then there exists a proper o-field sf on R such 
that: 

(a) the o-field generated by 31 and @" is contained in sf, 
(b) for every partition <@ £ [_R]*W of R there is a selector of @ in sf, 
(c) [ / ? ] < 2 " £ J ^ . 

(ii) lf2x £ 20>for allk < 2<° then in (i) instead of"\3S\ £ 2°>" we can assume 
only that "\SS\ < 22"". 

Remark 1. Assuming additionally that the o-filter ^ has a pseudobasis The
orem B can be easily obtained from [1] (compare our remarks after Theorem A). 
To see how Theorem A follows from Theorem B put 3S -• Borel a-field on R and 
&~ = the filter dual to the ideal of the sets of the Lebesgue measure zero. 

Proof of Theorem B. Let &~ and 3S satisfy the assumptions of Theorem 
B. Since $F is uniform there exists, by a result of W§glorz [6], a uniform o^filter 
$ on R such that &~ £ <#, [R]<2<* £ S, where J is the ideal dual to the filter <?, 
and for every partition $ £ [R]*" of R there is a selector of $ in $. Let J / be 
the a-field generated by 3S and £?. It is evident that sf satisfies (a), (b) and (c). 
It remains to prove that stf is proper. Suppose not. Then 33 A </ •- &(R), where 

SB AS ~{(B\X)u (X\B):Be 3S ,and X e S}. 

Consider the Boolean algebra ^(R)/*/ the set of all equivalence classes of subsets 
of R with the induced ordering from £ , where we identify two such subsets y and 
Z if their symmetric difference Y A Z is in«/. By a result of Taylor [2] we have 
\S>(R)/S\ > 2W because </ is uniform a-ideal. On the other hand 

\$>(R)IS\ -\& A JIJ\ £ \3S\ £ 2". 

Hence a contradiction. 
The above reasoning works also for Theorem B (ii) because Taylor [2] proved 

that 2X £ 2°> for all A < 2<0 implies \$>(R)/J\ - 22\ 
Observe that we can not assume in Theorem B that &* is only proper instead 

of that &~ is uniform. Indeed. Assume 2m — 2" (here <DX is the first uncountable 
cardinal). Let R - Xx u X2, Xx n X2 - 0 and \X2\ — (ox. L e t ^ be the o-ideal 
on R generated by &>(X^ and [.AT-,]*". Let 3S be the a-field on R generated by 
S>(X2) u {Xx} and let &~ be the filter dual to-A We have \3S\ - 2" and the a-field 
generated by 38 and &~ is equal to S*(R). 
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Remark 2. If there is a uniform o-ideal S on R such that \&(R)/S\ < 22<u 

then there is a o-field 3S on R such that \3S\ - \9>(R)/J\ < T and SS A .X -
- ^(/?). 

Indeed. Let A - \&(K)lf\. Let (Xt:t < A) be a selector from the family 
&(R)/S. By a result of Comfort-Hager and Monk-Sparks (compare [2] and 
references there) we have A" — A because &>(R)/S is an infinite a-complete 
Boolean algebra. Hence the cr-field 38 generated by the family (Xt: t < A) has 
cardinality A • a)x — A. It is evident that 3S & S =* &>(R). 
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