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Let -rY be a real normed linear space, X* and X* * its dual and bidual, respective
ly^,) the pairing between X and X*, Sx(0) and 5 (̂0) the unit sphere in X and 
X*, respectively. By R we denote the set of all real numbers, while x denotes the 
image of an element x e X under the canonical mapping in X* *. If £ is a subspace 
of X, denote by E1 its annihilator in X*. Let F and G be topological spaces, 2G 

the family of all subsets of G, T: F - 2G a mapping, D(T) - {u e F: T(u) ¥> 0} 
its domain, G(T) - {(u, v)z FX G: ve T(u) for some u* D(T)} its graph in 
the space F X G. We shall say that T: F -* 2G is upper semicontinuous at a0 e F, 
if for each open subset W of G such that T(u0) c W there exists an open 
neighborhood U of w0 such that T(u) c W for every w e [/. 

Suppose now that X is a normed linear space. By the symbols o(X, X*) and 
o(X*9 X), we mean the weak and the weak* topology on X and X*, respectively. 
Recall that T: X - 2X is said to be 

(i) monotone, if for every u,v^D(T) and every u* e T(u), v* e T(v) there 
is (v* — u*, v — w) ^ 0; 

(ii) maximal monotone, if T is monotone and for a given element 
(u0, « * f l ) a x X* such that<t>* - i& v - w0) ^ 0 for every (v, v*) e G(7), we 
have that (w0, w*) e G(T). 

Let M c AT be an open nonvoid convex subset of a normed linear space 
X, f: M -+ R a convex continuous function. The multivalued mapping 
A f 3 « - df(u) defined by df(u) - {w* e X*, (u*, v - u) * f(v) - f(u) for 
every v e M} is called the subdifferential mapping (or subdifferential) o f /on M. 
Note that w* e df(u0), where w0 € Af, if and only if the graph of the affine function 
h(v) — f(u 0) + (u*, v — u0) is a supporting hyperplane to the epigraph of / at 
the point (u0,f(u0)). 

*) Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18600 Praha 8, 
Czech Republic 

67 



Let us collect the main properties of the subdifferential mapping df (see [9], 
[13]): 

(a) For every u e M, the set df(u) is nonvoid convex and weak* compact; 
(b) If u0 e M, then df(u0) is a single point if and only i f / is G&teaux differen-

tiable at u0\ 
(c) / i s Fr6chet differentiable at u0 e M if and only if df(u0) is singlevalued and 

M 3 « - » df(u) is norm to norm upper semicontinuous at u0\ 
(d) / is Gateaux (Frechet) differentiable at u0 e M if and only if there exists 

a selection q> of M * u -> df(u) such that 9) is norm to weak* (norm to 
norm) continuous at u0\ 

(e) M 9 « - * <3/(«) is norm to weak* upper semicontinuous, maximal monoto
ne and locally bounded on M; 

(f) the so-called duality mapping J: X -+ 2X* defined by J(u) — 
- {w* e X*:(u*9 u) - ||u||2, || 1/*|| - || M||} is the example of the sub-
differential mapping df9 where f(u) = \\\u\\2. The support mapping 
Si(0) 9 w - u*u e {w* € S*(0): (w*, 11) = 1} is a selection of J\sm. If .AT is 
smooth, then the support mapping coincides with /|sl(o). 

Theorem 1 ([11]). Let X be a dual Banach space (i.e. X •• Z* /or some 
normed linear space Z), M a X* a convex open subset, UQ* M9 where u0 is 
a canonical image ofu0*Z in X*. Letf: M -+ Rbe a weak* lower semicontinu
ous convex functional having the Gdteaux derivative F(u0) at u0. Then (i) 
f(u0) e X9 i.e. f(u0) is a weak* continuous linear functional on X*9 (ii) if 
(u*n) c M, \tn -+ u0 in the norm of X* and xn € df(u*n) for some sequence 
(x„) c X9 then xn -+ f(u0) weakly in X. 

Recall that Asplund [1] proved the following assertion: Let AT be a Banach 
space, / : X — (— 00, + 00) a lower semicontinuous function such that / ^ + 00. 
If the dual function / * defined on X* is Fr6chet differentiable at some point 
u*eX*9 then(/*)'(w*)e .£ 

Theorem 2 (cf. [12]). Let X be a normed linear space, fa convex continuous 
function on X9 v09 \i?0 given elements ofX andX*, respectively. Assume that there 
exists a closed linear subspace E of Xsuch that{u £ E: g(u) £ c} is nonempty and 
relatively weakly compact in E for some c e R9 where g: E -+ R is defined by 
g(u) = f(u + v 0) — (w*09 u) for every u* E. Then: (i) there exists a point u0* E 
such thatdf(u0 + v0) n (w*0 + El) •£ 0; (ii) iff is Gdteaux differentiable at the 
point (u0 + v0), then the intersection in (i) consists of exactly one point. 

Corollary 1. Let X be a normed linear space, f: X -+ R a continuous convex 
function. Assume that there exists a reflexive subspace E of X such that f(u). 
HHII"1 — + 00 as ||«|| -+ + 00. Then: (i) ifv09 vf0 are arbitrary points of X and 
X*9 respectively, then there exists a point u0z E such that df(u0 + v0) n 
n (w* + E1) # 0; (ii) iff is Gdteaux differentiable at(u0+ v0), then the above 
intersection consists of exactly one point. 
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Corollary 1 extends the results of Beurling and Livingston [3], Browder [4] and 
Asplund [2]. 

Theorem 3. Let X be a Banach space, J and J* the duality mapping on X and 
X*, respectively. Then: (i) if X is nonreflexive and X* is smooth, then the graph 
G(J*)ofJ*is not closed in(X*,o(X*,X))X(X**,o(X**,X*)); (n)ifX*is 
smooth, then J* is weak* continuous on the range R(J) of J at\£0* R(J) if and 
only if J'1 is o(X*, X) — o(X, X*) continuous at it0. 

The next result was initiated by [7,8]. We denote again by / and J* the duality 
mapping on X and X*, respectively. 

Theorem 4. Let X be a dual Banach space such that the weak* and strong 
convergence of sequences coincide on S$(0) of X*, u0 e Si(0). Assume that the 
norm ofX* is Gateaux differentiable at the points of the setJ(u0). Then for every n 
(n — 1,2,...) there exist the points u*n e X* and v*n e J(u0) and a point i/0 e S*(0) 
such that \\vfn- v*n\\ — dist (u*n, J(u0)) ^ \, u*n - u* in the norm ofX*, (it0, u0) = 
- 1, J*(v*n) - u0 weakly* in X* andu0 = J*(u*0). 

Using the higher dual technique, Giles and Gregory and Sims [10] have proved 
the following result: Let AT be a Banach space which can be equivalently renormed 
so that there exists a constant k (0 < k < 1) such that for every x e St(0) and 
x* e J(x) and x* + x1 e J**(x), where x1 e X1 and J** is the duality map on 
X**, there is fl*1!! i k, then X is an Asplund space. In particular, if X can be 
equivalently renormed such that the weak* and weak topologies coincide on 
J(S1(0)), then AT is an Asplund space. It is observed that the proof of the above 
mentioned result shows that a Banach space X, whose dual X* satisfies the 
condition of the above assertion or its consequence, is reflexive. The other proof 
of a similar assertion depends on the Eberlein-Smulian and the Goldstine the
orems. 
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