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One Counterexample Concerning the Frechet Differentiability 
of Convex Functions on Closed Sets 

E. MATOUSKOVA 

Prague*) 

Received 14 April 1993 

It is well known, that if F is a convex continuous function on a convex set G, then the Fre*chet 
differentiability of F at some x € int G implies the norm-to-norm upper semicontinuity of d F at x. We 
consider the case of a convex Lipschitz function F defined on a closed convex subset K of a Banach 
space X, with the interior of K replaced by the set N(K) of nonsupport points. We construct an 
example in 4» which shows that in this case there can exist even a dense subset D of N(K) such that 
F is Frdchet differentiable in every point of D and dF: N(K) -* X* is norm-to-norm upper semicon-
tinuous at no point of D. 

1 Introduct ion 

We will consideг a real valued functíon/defined on a closed nonvex subset Kof 
a Banach space X. Differentiation properties of sucћ a function / are usually 
examined in the case when the interior of K is nonempty. If the interior of K is 
empty it is possible to substitute it by the set N(K) of so called nonsupport points 
ofK. 

Defínition 1.1 A point x є K is called a supportpoint ofK provided there exists 
a nonzero x* є X* such that 

(x*9 x) - sup {<**, y); y*K}. 

The set of all points in K which are not support points is denoîed Ьy N(K). 

The set N(K) has many properties similar to that of the interior of K. It is convex, 
and if N(K) Ф 0, the N(K) is dense in K (this is due to the fact, that if x є N(K) 
and y є K, then [дr, y) c N(K)). The separation theorem implies, that 
N(K) — intK if the latter is nonempty, Also the set N(K) is a Gò subset of K [2], 
hence is a Baire space. 

*) Department of Mathematical Analysis, Charles University, Sokolovská 83,186 00 Praha 8, Czech 
Republic 

97 



Let us compare some basic differentiability properties of convex functions on 
open sets with the ones on the set N(K). 

Definition 1.2 Let X be a Banach space, K be a closed convex subset ofX, and 
f a convex function defined on K. 

(i) The subdifferential df(x) of the convex function f at the point x e K is 
defined to be the set of all x* £ X* satisfying 

(x*, y-x)* f(y) - f(x) for all y e K. 

(ii) The function f is said to be Gateaux differentiable at x* N(K) if df(x) is 
single valued. 

(Hi) The function f is Frichet differentiable at x* N(K) if there exists a unique 
x* e X* such that for all e > 0 there exists d > 0 so that 

0£f(y)-f(x)-(x*,y-x)£ e\\y - x\\ 

for any y e N(K), \\x - y\\ < d. We denote f(x): = x*. 
These definitions coincide with the usual ones when the interior of K is nonem

pty. It is well known that for a convex continuous function /defined on an open 
convex set G the subdifferential df(x) is nonempty for any x e G. Moreover, the 
subdifferential mapping is norm-to-weak* upper semicontinuous. If we assume 
that / i s locally Lipschitz at any point of N(K), then we have the following: 

Theorem 1.3 Let X be a Banach space, K a closed convex subset of X, and fa 
convex function defined on K and locally Lipschitz at any point of N(K). Then 
(i) (Verona [4]) the subdifferential of f is nonempty at each point of N(K). 

(ii) (Rainwater [3]) Moreover the subdifferential mapping df: N(K) -* X* 
is locally bounded and norm-to-weak* upper semicontinuous. 

For a convex continuous function/defined on an open convex set G the Gateaux 
differentiability of/at a point x e G is equivalent to the existence of a selection 
for df which is norm-to-weak* continuous at the point x. Similarly, the Frechet 
differentiability of / at x is equivalent to the existence of a selection which is 
norm-to-norm continuous at x. Rainwater includes in [3] a proposition, which 
states, that such equivalences hold for a convex function which is locally Lipschitz 
at any point of N(K). He really uses and proves there that the existence of 
a continuous selection implies differentiability and says that the other implication 
is straightforward. For the Gateaux differentiability the equivalence really holds: 

Proposition 1.4 [3] Let X be a Banach space, K a closed convex subset of X. If 
f is convex on K and locally Lipschitz at any point of N(K), then it is Gateaux 
differentiable at a point x e N(K) iff there is a selection <Pfor the subdifferential 
mapping df: N(K) -+ X* which is norm-to-weak* continuous at x. 

However, in the case of Frechet differentiability we have only the following: 
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Proposition 1.5 [3] Let X be a Banach space, K a closed convex subset of X. If 
f is convex on K, locally Lipschitz at any point ofN(K), and there is a selection 
<Pfor the subdifferential mapping df: N(K) -* X* which is norm-to-norm con
tinuous at x e N(K), then f is Frichet differentiable at the point x. 

As we will see in the Section 2 the other implication does not hold. There can 
even exist a dense subset D of N(K) such that / is Frechet differentiable at any 
point of D, but any selection for df: N(K) -* X* is discontinuous at any point 
of D. However, due to the following theorem, in Asplund spaces the other 
implication holds on a dense Gd subset of N(K). 

Theorem 1.6 [3] Let X be an Asplund space, K a closed convex subset ofX such 
that N(K) is nonempty. If a function f is convex on K and locally Lipschitz at any 
point of N(K), then there exists a dense G& subset G of N(K) such that any 
selection for df on N(K) is norm-to-norm continuous at any point of G. 

2 Example 

In this section we will construct a closed convex subset K of 4> a convex 
Lipschitz function F on K, and a dense subset D of N(K) such that F is Fr6chet 
differentiable at any point of D, but any selection for df: N(K) -* X* is discon
tinuous at any point of D. 

Lemma 2.1 Let Xbea Banach space, K a closed convex subset ofX. If functions 
f and g are convex on K and locally Lipschitz at any point of N(K), then 

d(f+g)(x) = df(x) + dg(x) 

for any x e N(K). 

Proof. The proof of this lemma is almost identical with Verona's proof of 
Theorem 1.3 (i), so let us only sketch it. 

Define the cone Kx as the set of all y e X for which there exists some t > 0 so 
that x + ty € K. If x e N(K), then Kx is dense in X. Now for y e Kx let 

/VW-lim kf(x+ty)-f(x)) 
t~o+ t 

The function pf is convex, uniformly continuous, and sublinear on the dense cone 
Kx. There is a unique convex continuous extension of pf to all of X. Verona proves 
thatd/(x) - dpf(0). 

If we similarly define functions pg, pf+g, then by [1] 

dPf+g(0) = dPf(0) + dpg(0), 
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because pf, pg, pf+g are convex and continuous on an open set (all of X). Therefore 
*lsod(f+g)(x)-df(x) + dg(x). 

Remark 2.2 From Lemma 2.1 follows that if we have convex Lipschitz functions 
/, g on K and x € N(K) so that any selection for df and any selection for dg on 
N(K) are norm-to-norm continuous at x, then the same holds for d(f + g). 

Lemma 23 Let X be a Banach space, K a closed convex subset of X. Let 
functions f, g, h:K -* R be convex and locally Lipschitz at any point ofN(K) and 
Frichet differentiable at some x € N(K), c > 0. Let 

(i) f'(x) — 0 and there exists a sequence {xn} c N(K) converging to x such that 
\\y*\\ £ c whenever y* e df(xn). 

(ii) any selection for dg on N(K) is norm-to-norm continuous at x. 
(Hi) the function h is (c/4) — Lipschitz. 
Then the function F ** f+ g+ his Frichet differentiable at x, but no selection 
for dF on N(K) is norm-to-norm continuous at x. 

Proof. Clearly F(x) - g(x) + h'(x). By (ii) there exists «<, € Nso that for any 
n > n0 

M*) - y;i < c/4, 

whenever y*g e dg(xn). 
Now let any n > TIQ be given and y* e dF(xn). By Lemma 2.1 there exist 

y} € df(xn), fg e dg(xn), and y*h c dh(xn) so that 

y * ~ y} + yV+ yt 

Hence 

||F(*) - y*\\ £ -Jg'(x) - y*\\ - \\h'(x)\\ + \\y*f\\ - ||/A|| £ 
c c . c c 

S — + c— - — - , 
4 4 4 4 

due to (iii). Consequentiy, no selection for dF on N(K) is norm-to-norm continu
ous at x. 

In the following we will consider a specific set K•• — {JC — (a2, a3...) e /2; 
0 ^ aw £ 1/n}. The set £ is convex and compact. If we define KQ : — {x — (a„ 
«*•••) € '2; 0 < a„ < l//i}, then obviously KQ — N(-K). 

The following lemma shows that if any z € KQ is given, we can construct 
a Lipschitz convex function fz on K, which is Frichet differentiable at z, but there 
is no selection for df on N(K), which is norm-to-norm continous at z. 

Lemma 2.4 Let z* KQ. Then there exists a nonnegative convex 2-Lipschitz 
function fz: K -+ R, and a sequence{zk} c N(K) converging to z, so that\fz\ < 8, 

4'2(z) - 0 and l / l £ 1 for any / € dfz(zk). 

100 



Proof. Let z — (ah a*...) e K0 be given. Choose an increasing sequence {nk} 
of natural numbers such that for any odd k 

^(--«J> — 
4k\nk • / nk+ 

4*\/i* • / n*+1 

Denote by {en}ntml the orthonormal basis of 4 and define (see Fig. 1) 

* ; . - 1/4* *„,+ e„,+1 

F*(x):- to, x - z> - (1/4*) (II nk - a J - 1/2 (l/nk+1 - a„k+1) and 
_ max (Fk, 0) for k -> 1, 3, 5,.. . 

*(*):~" lO for* = 2, 4, 6,... 

Let us define/z
 :as- sup*eN<l>> Any of the functions ®k is convex, 2-Lipschitz and 

®k(x) •= 0. Therefore the function fz is convex and 2-Lipschitz, and |/z| < 8. 
Now let some odd k be fixed. We will establish some properties of the function 

O*. First if||x - z\\ < l/(2nk+1) then due to (1) 

U*) ^ ijr enk + enl \x - z - — < 0 . 

114* II II II nk+1 

Consequently 

<D* - 0 on B(z, l/(2nM)). (2) 
Clearly also 

<Pk(x) - 0 when x - z e span {*„„,, enm+l}, m ¥> *, m - 1, 3, 5,... (3) 

Now let us take an arbitrary x e K. If F*(x) < 0 then a>*(x)/||x - z\\ - 0. Now 
denote (&, &>...) - x - z. If F*(x) > 0 then 

i i 
p»* -»— - «»* • p«*+. -» — - «»»«• 

"* "t+i 
Consequently due to (1) 

«*n(£-^) + i ( ^ - - « - " ) - * • - * 
asfe-°-)-Hi"",-a"'")> 

йfc'0-*) 
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and we have that f}nk > \(l/nk — ank). Hence again due to (1) 

(x'k, x - z) = 2 s + ^ + i < 1(1/„k - ant) < V g J i Z i ! 
4k 2k k k 

Therefore 

Cousequently 

0 Š 
Фk(x) _ Fk(x) ^ (4Ц x - z) ^ 1 

| д г - z | ||дг-z|| | |л:-z|| * 

O ž Ф* ( Л ? ) Ž-forлreAľ . (4) 

The functions ®k and F*. equal on the halfspace H:— {y; F*(>>) > 0}, so for any 
ye//we have that <I>*(y) — ** and therefore (<I>*(y), enk+l) — 1. If we define 

И A = Z + 
>«* / \ " * + l / 

'Пк+1 > 

then ukz H r\ K, and the sequence {«*} converges to z. Choose any 
zk£ K0

 n H n B(uk> Vk). Then {zk} also converges to z. 
Now let us go back to the function fz and prove that fz(z) — 0. 
Let £ > 0 be given and an odd k is such that 1/k < e. Then for x e B(z, 

l/2nk+l) we have 

0 Ś 
/*(*) - /*<*) SU P m 6 A r &m(x) 

\\x - z\\ \x - z|| 

Due to (2) we have ®i(x) — ... = <E>t(x) = 0, hence using (4) we get 

n i + 1

Є » t + l 

Efc = 0 

Fig. 1 The situation in the subspace span {ent, e„t+i} (P denotes the projection on this subspace). 
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0_/^-/X-)__yJ___L<l< e , 
\\x - Z\\ m>k \\x - z\\ k 

Due to (3) we have fz(x) = V^*) ^ x ~ z e s P a n l e /•*> e«*+J f° r ^ = -> 3> 5,... 
Therefore for any v* e dfz(zk) we have 

<y*, O = (®'k(zk), ent+) = 1, 

hence ||y*|| 2s 1. 
Now let us show that the set of points where the Frechet differentiability is not 

equivalent to the existence of a continuous selection can be a dense subset of 
N(K). 

Example 2.5 There exists a compact convex subset K of 4> convex Lipschitz 
function F on K, and a dense subset D ofN(K) such that for anyx e D the function 
F is Frtchet differentiable at x, but no selection for dF on N(K) is norm-to-norm 
continuous at x. 

Proof. Let the sets K and K0 = N(K) be as above, and {yn} be a sequence of 
points dense in K. By induction, we will construct a dense subset D = {xl9 *_,...} 
of K0 and a sequence of 4-Lipschitz convex functions {/} on K so that | / | < 8 and 
the following conditions hold (i = 1, 2,...): 
(i) /;(*,) = o 
(ii) there exists a sequence {x%} c N(K) converging to xi9 such that \\y*\\ _; 1 

whenever y* <= d/,(*?). 
(iii) any selection for df: N(K) — X* is norm-to-norm continuous at any point 

Xj, j * i, j = 1, 2 , . . . 

In the first step, let xx be any point in K0 and / j := fXx, where fXl is the convex 
2-Lipschitz function from Lemma 2.4. 

The nth step: Until now finitely many points xl9..., *,,_! and 4-Lipschitz convex 
functions f l 9 . . . , fn_x have been constructed so that (i) and (ii) holds for i = 1,..., 
n — 1. Moreover, any selection for d/ : N(K) -* _X* is norm-to-norm continuous 
at any point xj9 i 5-= / , / , / = 1, 2,..., n — 1 (i.e. the statement (iii) holds for 
functions and points constructed until now). 

Let Gt (for i = 1,..., n — 1) be the dense G^ subset of N(K) provided for the 
function ft by the Theorem 1.6. Then the set Hn := flJTi1 G, is also dense and G ,̂ 
because N(K) is a Baire space. Now choose some point xn in the set B(yn9 

1/n) n / / n 

Denote rf:= min/_i,...>n_i ||JC,- — z„||. Because xn e //„ we have d > 0. Define 
a convex 4-Lipschitz function ^(y) := 4\\xn — Ĥ — d. 

Let fXn be the function from Lemma 2.4. Define 

fn := max {/„„, ^} -
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The function fn is 4-Lipschitz, and because fXn SOwe have 

/ „ - / , . on B(xn, d/4)nK. 

Therefore (i) and (ii) are satisfied for i — n. 
Because fXn is 2-Lipschitz, 

fn=rp on K- Blxn,-\, 

Due to this and the fact that xn e Hn, the statement (iii) holds for functions and 
points constructed until now. 

Clearly, the constructed sequence of points D = {xu ^,...} is dense in N(K) 
and the sequences D and {ft, /2,...} satisfy (i), (ii), and (iii). 

Now define 
00 1 

1-1 Г 

Any of the functions / is 4-Lipschitz, convex, and |/| < 8. Therefore F is 
Lipschitz and convex on K. We will show, that F has also the other required 
properties. 

Let n e IV be given. Denote 

1 
c :== — 

2" 

1 rt+3 1 

2" ;-i 2' 
CO J 

* = - S T,fi 
i-n+4 Z 

The functions /, g, A are Frechet differentiable at xn. This fact is trivial for /and 
g, and can be easily proved from definition for h. Due to the Remark 2.2 any 
selection for dg on N(K) is norm-to-norm continuous at xn. Because the functions 
/, g, and h obviously satisfy also the other properties required in Lemma 2.3 (with 
x = xn), the function F =* f + g + h is Frechet differentiable at xn, but no 
selection for N(K) is norm-to-norm continuous at xn. 
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