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Supergeneric Results and Gateaux Differentiability of Convex 
and Lipschitz Functions on Small Sets 
L. ZAjfCEK 

Praha*) 

Received 12. March 1997 

We recall some recent results on Gateaux differentiability of convex functions on 
small convex sets and show that some of them are consequences of supergeneric 
results on differentiability of convex functions defined on the whole space. We show 
that supergeneric theorems imply also some results on differentiability of convex 
functions (and on singlevaluedness of monotone operators and metric projections) on 
small sets which can be of the first category in itself. A result concerning (relative) 
differentiability of a locally Lipschitz convex function defined on a closed convex set 
C with nonempty interior at boundary points of C is proved. A simple observation 
concerning differentiability of Lipschitz functions on small sets is also presented. 
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1. Introduction 

My lecture on the 25th Winter School in Abstract Analysis was entitled "Are 
supergeneric results interesting?". I was seeking for interesting non-trivial conse
quences of supergeneric results in the Banach space theory, in the formulation of 

*) Department of Mathematical Analysis, Charles University, 186 00 Praha 8, Sokolovská 83, Czech 
Republic 

The research was supported by Research Grants GA ČR 20119711161 and GAUK 19011996 

19 



which the "supergeneric notions" (like cr-porosity) are not used. Now I realized 
that the applications concerning the Banach-Steinhaus theorem were trivial and the 
others concerning Frechet differentiability should be further developed. 

Therefore I consider here only questions concerning Gateaux differentiability of 
convex functions on real Banach spaces and closely related questions concerning 
singlevaluedness of monotone operators and metric projections. In these cases the 
supergeneric results (which are recalled in Section 3) say that exceptional sets are 
"c-cone supported" (which, in separable spaces, is equivalent with the statement 
that these exceptional sets can be covered by countably many "Lipschitz hyper-
surfaces"). 

The main aims, except the search for interesting concrete consequences of 
supergeneric results (cf. Section 7), are the following: 

(i) To comment (in Section 4) recent results (from [V], [R], [VV], [N], [BFK], 
[WC]) concerning Gateaux differentiability of convex functions (and single
valuedness of monotone operators) on small convex sets. In particular, we 
show that the just mentioned results in separable spaces can be easily deduced 
from the 1978 supergeneric result of [Z2]. Also some (but not all) these results 
in non-separable spaces can be easily obtained from recent results of [Z4] and 
[H]. 

(ii) To make a simple observation (in Section 5) that the works of Aronszajn [A] 
and Phelps [PI] easily imply results on Gateaux differentiability of Lipschitz 
functions on small convex subsets of a separable Banach space (Theorem 2). 
Thus we obtain a further (measure theoretical) proof of the result oin generic 
Gateaux differentiability of locally Lipschitz convex functions on small 
convex subsets of a separable space (cf. Remark 6, (b)). 

(iii) To consider also Gateaux differentiability of functions (and singlevaluedness 
of monotone operators and metric projections) on some convex sets which are 
of the first category in itself (in Sections 4 and 5). For example, we obtain 
that: 
a) If F is an arbitrary Lipschitz function on C[0,1], then there exists 

a monotone real analytic function / on [0, 1] such that F is Gateaux 
differentiable at / (cf. Proposition 2). 

b) If T is a monotone multivalued operator T: C[0,1] -> (C[0,1])*, then 
there exists a monotone real analytic functions g on [0, 1] such that T is 
not multivalued at g (cf. Proposition 4). 

Some results of this type are related to interesting Stegall's result [SI] on 
differentiability of the composition of a Gateaux differentiable with a convex 
function (cf. Remark 5, (c)). 

(iv) As an easy consequence of properties of 5-convex mapping between Banach 
spaces [VZ], we obtain results on Gateaux differentiability (w.r.t. C) of 
a locally Lipschitz convex function defined on a closed convex set C with 
nonempty interior at boundary points of C. 
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In the following Section 2 we recall definitions and facts concerning support 
points and prove lemmas which we need for our applications of supergeneric 
results. 

2. Support points of convex and arbitrary sets, related notions and lemmas 

Let X be a real Banach space. By a ball we mean an open ball in X. The ball 
with center c and radius r is denoted by B(c, r). If 0 =t= v e X and 0 < c < \\v\\, 
we define (the cone) 

A(v, c) = {xe X: x = Xv + w, X > 0, ||w|| < cX) = [jXB(v, c). 

Let C c I be a convex set and xe C. A geometrical form of the Hahn-Banach 
theorem (applied to C) easily implies that the following properties are equivalent, 
(i) There exists a cone A(v, c) such that C n(x + A(v, c)) = 0. 

(ii) There exists a functional / e X* such that f(x) = sup {f(t): t e C}. 
If these conditions hold, then x is said to be a support point of C; in the opposite 

case it is called a non-support point of C. In the literature interesting results on the 
sets S(C) and N(C) of all support and non-support points of C, respectively, can 
be found. The following facts are almost obvious. 

(Fl) S(C) nC = 5(C). 
(F2) N(C) nC = N(C). 
(F3) N(C) = int C, if int C =# 0. 
(F4) If x e N(C) and y e C, then [x, y) c N(C); in particular N(C) is a convex set. 
(F5) If N(C) 4= 0, then 7V(C) is dense in C. 
Basic deeper results read as follows. 
(F6) ([FK]) If X is separable and C c I is a closed convex nonempty set 

which is contained in no closed hyperplane, then N(C) 4= 0. 
(F7) ([P2]) If C c X is a closed convex set, then N(C) is a G5 set. 
One part of the well-known Biship-Phelps theorem (cf. [P3]) reads as follows. 
(F8) If C c I is a nonempty closed convex set, then 5(C) is dense in the 

boundary bdry C. 
Let now C be an arbitrary (possibly non-closed) convex subset of X. Then it is 

easy to see that the following statements hold. 
(F9) By (F2) and (F7) N(C) is a (relative) Gs subset of C. 
(F10) If N(C) 4= 0, then by (F5) and (F9) N(C) is a dense Gs (and therefore 

residual) subset of C. 
(Fll) The following properties are equivalent: 

(i) C is the second category in itself, 
(ii) C is of the second category in C. 

(iii) C is the Baire space in the relative topology. 
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(F12) If X is separable, C is of the second category in itself and is contained 
in no clased hyperplane, then N(C) is a (relative) dense G5 subset of C. 

Remark 1. 
(i) The original proof of (F6) is very short. A different (topological) proof of (F6) 

can be immediately obtained via Theorem 2.8. from [BFK]. On the other hand, 
using (F6) and (F7), we can obtain almost immediately (via (Fll)) the 
mentioned theorem from [BFK]. 

(ii) The fact (F6) does not hold in general non-separable spaces; if C is the positive 
cone in Z2(r), where T is uncountable, then N(C) = 0 (cf [R], Proposition 1, 
(h)). 

Let now M be an arbitrary subset of a Banach space X and xeM. Following 
[Z4], we say that M is cone-supported at x if there exists a cone A(v9 c) and r > 0 
such that M n(x + A(v, c)) n B(x, r) = 0. A subset of X is said to be cone 
supported if it is cone supported at all its points. A set is called cr-cone supported 
if it can be written as a union of countably many cone supported sets. Clearly, if 
A is convex, then x e S(A) iff A is cone supported at x. Therefore we can say that 
x e A is a support (or non-support) point of an arbitrary set A if A is (is not, 
respectively) cone supported at x. Thus we have defined N(A) and S(A) for an 
arbitrary set A cz X. 

Remark 2. The statements (Fl) and (F2) clearly hold also for an arbitrary C. 
In IR2 the notion of a cr-cone supported set was used by W. H. Young [Y] and 

H. Blumberg [B] under the names "ensemble ridee" and "sparse set", respectively; 
they used a different but equivalent definition. In separable Banach spaces cr-cone 
supported sets were used in [Zl] and [Z2]. In fact, if X is separable, then a more 
transparent definition of cr-cone supported sets can be used. 

Lemma 1. Let X be a separable Banach space. Then a set M cz X is a-cone 
supported iff it can be covered by countably many Lipschitz hypersurfaces. 

(It is e.g. an easy consequence of Lemma 1 from [Zl], cf. also [Z6].) Here we 
use the following definition. 

Definition 1. Let I b e a Banach space and let 0 4= v e X. We shall say that 
M cz X is a Lipschitz hypersurface associated with v if there exists a topological 
complement Z of sp{v}and a Lipschitz function / : Z -* IR such that 

M = {z-h f(z)v:zeZ}. 

If / is a difference of two Lipschitz convex functions on Z, we say that M is 
a d-convex hypersurface. 

Remark 3. Note that each cr-cone supported subset of a separable Banach space 
is a null set in the Aronszajn sense and thus also null for each non-degenerate 
Gaussian measure (cf. [Z6], [Zl]). 
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Later on, we will need the following elementary lemmas concerning support 
points and <7-cone supported sets. 

Lemma 2. Let X be a Banach space, let C cz X be an arbitrary set and let 
A cz X be a o-cone supported set. Then the following statements hold, 
(i) If N(C) is of the second category in C then A n C is not residual in C (i.e. 

C\A is of the second category in C). 
(ii) If N(C) is residual in C then A n C is of the first category in C. 

Proof. Let A = _J,?Li An9 where each An is cone supported. If either N(C) is of 
the second category in C and A n C is residual in C or 7V(C) is residual in C and 
A n C is of the second category in C, then there clearly exists an index n such 
that IV(C) n An is of the second category in C. Therefore there exists an open set 
G such that G n C =# 0 and IV(C) n An n G is dense in G n C. Choose a point 
x e N(C) n Ann G. Since x e S(An), we have x e S(N(C) n An n G) and conse
quently (by Remark 2) xe S(G n C) which clearly contradicts to x e N(C). 

Lemma 3. Let X, Y be Banach spaces; let an open G c X, an arbitrary 
M c 7 and an aeG be given. Let f: G -» Y be a continuous mapping which has 
a Gateaux derivative L at a such that L(X) = Y. Then f(a) e S(M) implies 
aeS{f-\M)). 

Proof. We can and will suppose that / is defined and continuous on whole X. 
Let b : = f(a) e S(M) cz M. Then we can clearly find a ball B(v9 r) a Y such that 
M n(b + tB(v9 r)) = 0 for each t e (0,1). Further we can easily find a ball 
B(u9 e) cz X such that L(B(u9 e)) cz B(v9 j). Thus we have 

t. f(a + tw)-f(a) T, x / r\ 
lirn-^ f J-^ = L(w)eB iv9-) 
*->0 t \ L) 

for each w e B(u9 e). Consequently for each such w we can find a natural number 
n such that 

f(a + tw) - f(a) _ / r\ u _ 1 
IA 1 ^ w ^ R /,, _ \ whenever 0 < t < -

(1) f(« + ťw)-f(q)eд^0 
n 

Since X is complete, we can find a natural n9 a ball B(z9 p) cz B(u9 e) and a dense 
subset D of B(z9 p) such that (1) holds for each w e D. Thus, for each 0 < t < \9 

we have 

f(a + tB(z9p)) = f(a + W)^f(a + tD)^b + tB (v9^j cz b + tB(v9r) cz Y\M. 

Consequently 
(J (a + tB(z9p))nf~1(M) = 0. 

0<r<i 

Thus obviously a e S(f~\M)). 
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Lemma 4. Let X, Y be Banach spaces, G <= Y be an open set and let 
g :G -> X be a continuous mapping. Let D cz G be a set which is not o-cone 
supported and, for each ae D,g has a Gateaux derivative La at a such that 
La(Y) = X. then g(D) is not o-cone supported. 

Proof. Suppose on the contrary that g(D) = \Jn=iMn and each Mn is cone 
supported. Then D = U"-i ( / " ' M n D\ I f ae f~\Mn) n D, then 
f(a) e Mn = S(Mn) and by Lemma 3 we have a e S(f~\Mn)) and consequently 
a e S(f~\Mn) n D). Thus each set f~\Mn) n D is cone supported which yields 
a contradiction. 

Notation. Let C be a subset of a Banach space X. We shall say that M cz C 
is u-dense (or c-dense) in C if M n G is uncountable (has cardinality at least 
continuum, respectively) whenever G cz X is open and C n G 4= 0. 

Lemma 5. Let X, Y be Banach spaces, G cz Y be an open set and let 
g:G -> X be a continuous mapping. Let D cz G be a nonempty set which is 
a Baire subspace of X and such N(D) is residual in D. Let, for each ae D,g has 
a Gateaux derivative La at a such that La(Y) = X and let S c- X be a a-cone 
supported set. Denote C : = g(D). Then C\S is u-dense in C.IfY is separable and 
D is an analytic set then C\S is even c-dense in C. 

Proof. Choose an open ball B cz X such that B n C 4- 0 and put D* = 
D n g~\B) = g~\B n c). Lemma 2 implies that D* is not a-cone supported and 
thus B n C is not cr-cone supported by Lemma 4. Thus (B n C)\S is not cr-cone 
supported and consequently it is uncountable. If Y (and therefore also X) is 
separable then we can suppose (by Lemma 1) that 5 is an Fa set. If D is analytic 
then (B r\ C)\S is analytic as well and we can use the Hausdorff-Aleksandrov 
theorem to infer that it is of cardinality continuum. 

3 . Supergeneric results 

A result which asserts that an exceptional set (e.g. the set of all non-differen
tiability points of a convex continuous function on a Banach space) is a first 
category set is called by some authors a generic result. Some generic results were 
improved: it was shown that some exceptional sets belong to a family O which is 
a proper subfamily of the family of all first category sets. In many of these 
"supergeneric results" O is the family of all cz-porous sets or a family defined in 
a similar way. There are many results of this type in the Real Analysis (cf. [Z5]). 

In this section, we will cite several supergeneric results in infinite-dimensional 
Banach space which say that exceptional sets are cr-cone supported. The first three 
theorems concern separable Banach spaces; thus we can and will use the 
characterization of cr-cone supported sets from Lemma 1. 
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Theorem A. Let X be a separable Banach space and let T:X -> X* be 
a monotone operator. Then the set of all points at which T is multivalued can be 
covered by countably many Lipschitz hyper surf aces. 

This theorem was proved in [Z2]. For slightly sharper results see [Vy]. 
Theorem A can be clearly applied to differentiability of continuous convex 

functions since the subdifferential df is a monotone operator. In fact, in this case 
a sharper (the best possible) result holds [Z3] (cf. also [Vy] for the case of proper 
convex functions). 

Theorem B. Let X be a separable Banach space and let f be a continuous 
convex function on X. Then the set of all Gateaux non-differentiability points of 
f can be covered by countably many Lipschitz b-convex hyper surf aces. 

To formulate results which concern the abstract approximation theory we need 
a notation. 

Definition 2. Let X be a Banach space and let F c X be a closed set. Let PF be 
the metric projection on F (the nearest point mapping), PF(x) = {ysF: \\x — y\\ = 
dist(F, x)}. Then we put 

A(F) = {xeX: card(PF(x)) ^ 2}. 

The set A(F) was investigated in a number of articles. Sometimes the name 
"ambiguous locus of PF" is used for A(F) (cf. [DM]). Note that in the case of 
a nonempty compact set F we have that the metric projection PF is singlevalued 
at all points x $ A(F). 

The following result was proved in [Zl] and [Z6]. 

Theorem C. Let X be a separable strictly convex (i.e. rotund) Banach space 
and let F be a closed subset of X. Then A(F) can be covered by countably many 
Lipschitz hypersurfaces. If X is even a separable Hilbert space, then A(F) can be 
covered by countably many Lipschitz b-convex hypersurfaces. 

Theorem A was generalized to some non-separable Banach spaces (namely to 
Asplund spaces and to spaces with a strictly convex dual space) in [Z4]. Recently 
a further generalization (Theorem D below) was published in [H]. Following C. 
Stegall we shall say that a Banach space Y is a (GSG)-space if there exist an 
Asplund space Z and a continuous linear mapping L:Z -> Y such that Y = L(Z). 
Note that each separable and each reflexive space is a (GSG)-space. 

Theorem D. Let X be a closed subspace of a (GSG)-space and let T: X -> X* 
be a monotone operator. Then the set of all points at which T is multivalued is 
a-cone supported. 

The following non-separable analogue of the first part of Theorem C was proved 
in [M]. 
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Theorem E. Let X be a strictly convex Banach space with a uniformly Fr£chet 
differentiate norm and let F be a closed of X. Then the set A(F) is o-cone 
supported. 

Finally I will mention 3 related problems which are, as far as I know, still open. 
The first one is the old well-known Stechkin's problem [Sn]. 

Problem 1. Let X be a strictly convex Banach space and F <= X be a closed 
set Is A{F) necessarily a first category set? 

The second problem was formulated in [Z2]. 

Problem 2. Can the exceptional set of Theorem A be covered by countably 
many Lipschitz b-convex hypersurfaces? 

Note that L. Vesely [Vy] proved the positive answer in the case X = IR2. 

Problem 3. Can Theorem D be generalized to the case when X belongs to 
StegalVs class (S) or even to the case of an arbitrary weak Asplund space X? 

Note that each subspace of a (GSG) space is an (S)-space (cf. [SI]) but the 
converse implication does not hold. However, as far as I know, each "concrete 
classical" (S)-space is a subspace of a (GSG)-space. 

4. Differentiability of convex functions on small convex sets 

The question of Gateaux differentiability of convex functions on small convex 
sets was investigated in a series of articles [V], [R], [VV], [N], [BFK], [WC]. 

Let C a X be a convex set and let / be a function on C. We say that / is 
Gateaux differentiable at a point aeC (w.r.t. C) if there exists LeX* such that, 
for every ceC, 

Dm / ( " + '<C - -» - JW - He - a). 
t->0+ t 

It is easy to see that if C is not contained in a closed hyperplane then the Gateaux 
derivative L, if it exists, is determined uniquely. Namely, in this case clearly 
sp(C — a) = X, where C — a:= {c — a:ce C}. 

We can ask whether each continuous convex function / on C is Gateaux 
differentiable at all points of a dense (u-dense, c-dense) subset of C or of a residual 
(i.e. "generic") subset of C, for different types of convex sets C. Of course, in the 
generic differentiability problem, only the case when C is of the second category 
in itself is interesting. 

In all articles cited above the question of generic differentiability was considered 
and it was supposed that / is locally Lipschitz on C. In fact, if / is only supposed 

26 



to be continuous and convex, then an example in [R] shows that the "generic 
Gateaux differentiability problem" can have negative answer even when C is 
a closed convex subset of I2 with N(C) 4= 0 (in this example even df(x) = 0 for 
each x e N(C)). The same example is a counterexample also for the "dense 
differentiability problem". 

In both "generic" and "dense" differentiability problems we can suppose that 
/ is Lipschitz on C (since both residual an dense sets are "locally determined"). 
In this case / is a restriction of a convex Lipschitz function defined on the whole 
X. It can be proved using an infimal convolution (cf. [BFK], [WC]), but we can 
also use a more elementary argument. In fact, the geometrical form of the 
Hahn-Banach theorem easily implies that df(x) 4= 0 for each xeC. Thus we can 
choose gx e df(x) for each xeC and obtain an extension as f(t): = 
SUP {f(x) + 9x(t — x) - x e C}. Thus, using also (Fll), we easily obtain the 
following (slightly non-formally formulated) fact. 

(F13) In both "generic" and "dense" differentiability problem for locally 
Lipschitz convex functions / defined on an arbitrary convex subset C of a Banach 
space X, we can suppose without any loss of generality that / is a Lipschitz and 
convex function defined on the whole X. In the "generic differentiability problem" 
we can also suppose that C is closed. 

In [V] and [R] it is supposed that C is a closed set, / is convex on C and locally 
Lipschitz on N(C) #= 0. Because of the fact (F4) above / is clearly Gateaux 
differentiable at a point a e N(C) w.r.t. C iff it is Gateaux differentiable w.r.t. 
N(C). Thus we see that also in this case the generic problem reduces equivalently 
to the case of a convex Lipschitz function on a closed convex set. Note also the 
following easy fact. 

(F14) Let X be a Banach space, C be a convex set, let / be a convex and 
Lipschitz function on C and let a e N(C) be given. Then the following statements 
are equivalent: 

(i) / is Gateaux differentiable at a w.r.t. C. 
(ii) The subdifferential df(a) is a singleton. 

(iii) A Lipschitz convex extension of / over X is Gateaux differentiable at a. 
(iv) Every Lipschitz convex extension of / over X is Gateaux differentiable at a. 

Thus we obtain that the positive answer to the "generic differentiability 
problem" for closed sets with N(C) 4- 0 is equivalent to a supergeneric result. 
Namely, the following fact clearly holds. 

(F15) Let X be a Banach space. Then the following assertions are equivalent, 
(i) If C is a closed convex set with N(C) =# 0 and if / is a (locally) Lipschitz 

convex function on C, then / is Gateaux differentiable (w.r.t. C) at all points 
of a residual subset of C. 

(ii) Let / be a continuous convex function on X and let S be the set of all 
non-differentiability points of / Then S n C is of the first category in C for 
each closed convex set C with N(C) 4= 0. 
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The following result was essentially proved in [V]. We will show that it is an 
easy consequence of Theorem A. 

Theorem F. Let X be a separable Banach space, let C cz X be convex set 
which is of the second category in itself and let f be a locally Lipschitz convex 
function on C. Then f is Gateaux differentiable (w.r.t. C) at all points of a residual 
subset of C. 

Proof. Considering / only on the closed affine hull on C and using (F6) and 
(F13), we can suppose that C is closed, N(C) 4= 0 and f is convex and Lipschitz 
on X. Let A be the set of all points x e l a t which / is not Gateaux differentiable. 
By Theorem A (applied to T : = df) or by Theorem B we have that A is <7-cone 
supported. By (F10) and Lemma 2 we obtain that C n A is of the first category 
in C and the assertion of the theorem follows. For an alternative "measure 
teoretical" proof see Remark 6, (b). 

Theorem F was generalized to (non-separable) (S)-spaces independently in 
[VV], [N] and [BFK]: 

Theorem G. Let X be a Banach space which belongs to Stegall's class (S), let 
C cz X be a convex set which is of the second category in itself and let f be 
a locally Lipschitz convex function on C. Then f is Gateaux differentiable (w.r.t. 
C) at all points of a residual subset of C. 

Note that Theorem G was proved in the special case when N(C) 4= 0 already in 
[R]. (In this case it is an immediate consequence of Theorem H below which deals 
with general monotone operators.) It seems that Theorem G cannot be simply 
deduced from this special case (cf. Remark 1, (ii)). In this special case and under 
the (slightly) more strict assumption that X is a subspace of a (GSG)-space, 
Theorem G is an easy consequence of the "supergeneric" Theorem D (cf. the text 
after Theorem H). The following natural problem (formulated in [R] in the case 
IV(C) 4= 0) seems to be open. 

Problem 4. Can Theorem G be generalized to the case when X is a weak 
Asplund space? 

Remark 4. 
(i) Each (S)-space is a weak Asplund space. It is an open problem whether there 

two types of spaces coincide. 
(ii) In [WC] a claim can be found that Problem 4 has the positive answer in the 

case N(C) 4= 0 (cf. also the review MR 94j:46046). But I do not understand 
the argument and think that Problem 4 is still open also in this special case. 

The following theorem is a corollary of Theorem 2.6. (see Remarks 2.7., (2), (4)) 
of [BFK]; cf. also [VV], Corollary of Theorem B. 

Theorem H. Let X be a Banach (S)-space an let C cz X be a convex set which 
is of the second category in itself and such that N(C) 4= 0. Let T : X -* X* be 
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a monotone operator such that D(T) n C is residual in C. Then T is single-valued 
at each point of a residual subset of C. 

Of course, in the (slightly less general) case when X is a subspace of 
a (GSG)-space, the assertion of Theorem H immediately follows from Theorem 
D and Lemma 2. Moreover, in this special case we can omit the assumption 
concerning D(T) and assert that T is not multivalued at each point of a residual 
subset of C. 

Using supergeneric results and lemmas on cx-cone supported sets we obtain 
easily the following theorem concerning the existence of "regular points" in 
(convex) sets which are typically of the first category in itself. 

Theorem 1. Let X9 Y be Banach spaces and let g:Y —> X be a continuous 
linear mapping such that g(Y) = X. Let D a Y be a (not necessarily convex) set 
which is a Baire subspace of Y such that N(D) is residual in D. Let C: = g(D). 
Then the following assertions hold. 

(i) If X is a subspace of a (GSG)-space and f: X -+ U is a continuous convex 
function, then f is Gateaux dijferentiable at all points of a u-dense subset 
ofC. 

(ii) If X is a subspace of (GSG)-space and T : X -> X* is a monotone operator, 
then the set of points of C at which T is not multivalued is u-dense in C. 

(Hi) Let X be a strictly convex Banach space which is moreover separable or 
which has a uniformly Frechet differentiable norm. Let F be a closed subset 
of X. Then the set C\A(F) is u-dense in C. If Y = X and g = id then 
C\A(F) is a residual subset of C = D. 

If Y is separable and D is analytic then we can write in (i) — (Hi) "c-dense" 
instead of "u-dense". 

Moreover, all assertions hold under a more general assumption concerning g. 
Namely, we can suppose that g:G a Y -> X satisfies the assumptions of Lemma 5. 

Proof. Of course, (i) is an immediate consequence of (ii) (we put T : = df). To 
prove (ii), it is sufficient to use Theorem D and Lemma 5. To prove (iii), we use 
Theorem C, Theorem E. Lemma 5 and Lemma 2. 

For some concrete consequences of Theorem 1 see Section 7. I know such 
interesting consequences only in the case when D and C are convex and g is linear. 
But also in this most interesting case the assertions of Theorem 1 are probably 
new. However, as we shall see in the next remark, in some special cases at 
least the "dense" versions of these assertions are easy consequences of known 
results. 

Remark 5. 
(a) If X = 7, g = id and D = C is convex then Theorem G and Theorem H show 

that the assertions (i), (ii) hold also under the more general assumption that 
X is an (S)-space. 
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(b) Using Theorem G and Lemma 7 below, it is easy to obtain that (i) holds also 
in the case, when g is linear (i.e. satisfies the basic assumption of the theorem), 
Y is an (S)-space and X is arbitrary. If moreover D = Y, it is sufficient to 
suppose that Y is a weak Asplund space. 

(c) At least a weaker version of the assertion (i) (with "dense" instread of "u-dense") 
holds also in the case when D = Y and X is an (S)-space. In fact, it follows 
from Lemma 7 below and following StegaU's result (Theorem 2, (i) of [SI]): 

Let G be an open subset of a Banach space Y. Let X be an (S)-space and let 
g : G —> X be continuous and Gateaux differentiable on a dense Gs subset oif G. 
Let / : X -> R be a continuous convex function. Then / O g is Gateaux differen
tiable on a dense Gs subset of G. 
(d) The preceding observations strongly suggest that (i) (and perhaps also (ii)) can 

be generalized to the case of an (S)-space X. 
(e) If Y and X are separable, X is strictly convex, D is closed convex and g is 

also locally Lipschitz, then we can obtain at least the "dense" version of (iii) 
by an alternative way. Namely, we can apply (as in, e.g., [Z6]) Proposition 
3 below to the (Lipschitz) distance function f(x): = dist(x, F). If g is moreover 
linear then (iii) is a consequence of Theorem 2 below. 

5. Differentiability of Lipschitz functions on small convex sets 

Let X be a separable Banach space. A set M c X is said to be Gaussian null 
if fi(M) = 0 whenever /x is a non-degenerate (i.e. such that fi(G) 4= 0 for each 
nonempty open set G c X) Gaussian measure on X. R. R. Phelps, using the result 
of [A], proved in [PI] that each (locally) Lipschitz function on X is Gateaux 
differentiable at all points except a Gaussian null set. In this section we present 
some easy consequences of this result and of the following lemma from [PI]. 

Lemma P. Let X be a separable Banach space. Let (wn) be a sequence in 
X such that wn -> 0 and sp{wn} = X. Then the set conv({wn} u { — wn}) is not 
Gaussian null. 

An alsmost immediate consequence of this lemma is the following fact. 

Lemma 6. Let X be a separable Banach space and let C be a closed convex 
subset of X which is contained in no closed hyperplane of X. Then N(C) is not 
Gaussian null. Moreover, if Y is a Banach space and L:X -> Y is a linear 
continuous mapping such that L(X) = Y, then L(N(C)) is not Gaussian null. 

Proof. Since a translate of a Gaussian null set is Gaussian null, we can suppose 
OeC. We can clearly find a sequence (vn) in C such that ||t?J| < 1 and 
sp{wn} = X. Now put wn = 3S, x = 2°=1w„ and 

E = x + com;({wn} u ( — wn}) = conv({x + wn} u {x — wn}). 
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Since clearly both x + wne C and x - w „ e C , w e h a v e E <= C. Lemma Pimplies 
that E is not Gaussian null and thus C is not Gaussian null as well. Since S(C) is 
Gaussian null by Remark 3, we can find a non-degenerate Gaussian measure \x on 
X such that n(N(C)) > 0. Then the image measure v = L([i) is clearly 
a non-degenerate Gaussian measure on Y and v(L(N(C))) > 0. 

Proposition 1. Let X be a separable Banach space, let C be a closed convex 
subset of X which is contained in no closed hyperplane of X and let f be 
a (locally) Lipschitz function on X. Then f is Gateaux differentiable at all points 
of a c-dense subset of N(C). 

Proof. Consider a closed ball B such that int B n C =# 0. Lemma 6 clearly 
implies that B n N(C) is not Gussian null. Since the (Borel) set N of all Gateaux 
non-differentiability points of / is Gaussian null we obtain that (B n N(C))\N is 
not Gaussian null. Since it is Borel, we conclude that it has cardinality continuum 
which completes the proof. 

Remark 6. 
(a) If we consider relative differentiability (w.r.t. C) of / then we can clearly 

suppose that C c I is a general nonempty closed convex set and conclude 
that each (locally) Lipschitz function / on C is Gateaux differentiable (w.r.t. 
C) at each point of a c-dense subset of C. 

(b) Using the fact that the set of all Gateaux differentiability points of a continuous 
convex function on a separable Banach space is a Gd set (cf. [P3]), we see that 
Proposition 1 easily implies Theorem F. 

(c) I do not know whether we can writte "G^ convex set C" instead of "closed 
convex set C" in Proposition 1. 

(d) I also do not know whether there exist "relative differentiability" versions 
of Proposition 1 which deal with non-separable X and/or Frechet differen
tiability. 

Quite similarly as Proposition 1 (using the second part of Lemma 6) we obtain 
its generalization that deals with convex sets which can be of the first category in 
itself. 

Theorem 2. Let X,Y be a separable Banach spaces and let D be a closed 
convex subset of Y which is contained in no closed hyperplane of Y. Let L:Y -* X 
be a linear continuous mapping such that L(Y) = X. Let f be a (locally) Lipschitz 
function on X. Then f is Gateaux differentiable at all points of a c-dense subset 
ofC:=L(N(D)). 

Of course, if we are interested in the "relative" (w.r.t. L(D)) differentiability of 
/ then we can clearly suppose that X is an arbitrary Banach space and omit the 
assuption L(Y) = X. 

We present here only one from many concrete consequences of Theorem 2. 
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Proposition 2. Let F be a locally Lipschitz function on C[0,1]. Then the set of 
all increasing real analytic functions g on [0,1] such that F is Gateaux 
differentiate at g has cardinality c. 

Proof. It is sufficient to apply Theorem 2 with X = C[0,1], Y = I2, D = 
{(a,) e I2: an > 0}, L((an)) = ^ = i 2~nanx

n-1 and / = F. 
At least the "dense version" of Theorem 2 can be proved under weaker 

assumptions using the following lemma. I suppose that it is well-known; because 
of the lack of a reference I present the easy proof. If / is a mapping from a Banach 
space X to a Banach space Y and x,ve X are given then we consider the 
directional derivative 

,,< x r / ( * + tv) - f(x) 
/ (x, v) = hm — - — . 

t->o t 

Lemma 7. Let X, Y, Z be Banach spaces; x, v eX. Let g:X -> Y and 
f:Y-+Z be mappings such that g'(x, v) and (f O g)' (x, v) exist and f is 
K-Lipschitz on a neighbourhood of g(x). Then f\g(x), g'(x, v)) exists and equals to 
(fOg)'(x,v). 

If moreover, g has at x a Gateaux derivative L and f O g is Gateaux 
differentiate at x, then f is Gateaux differentiable at g(x) w.r.t. L(X). 

Proof. Since g\x, v) exists, we have 
g(x + tv) = g(x) + tg\x, v) + Y\(t) with limt^0 , = 0. Thus we can compute: 

limf(9(x) + tg'(x,v))-f(g(x)) = ^fjgjx + tv) - r,(t)) - f(g(x)) = 

t->0 t t->0 t 

limf(9(x + tv)) - f(g(x)) + Umf(g(x + tv) - V(t)) - f(g(x + tv)) = 

t->0 t t-,0 t 

i r \,< \ ,• f{g{x + tv) - rj(t)) - f(g(x + tv)) 
(f O g) (x, v) + hm - ^ l^J1 - ^ ,J-. 

t->o t 

Since, for sufficiently small t 4= 0, 

f(g(ҳ + tv) - v{t)) - f(9(x + tv)) K\\ri(t)\\ 
~ t 

the last limit is 0, which gives our assertion. 
To prove the second part, consider wl5 vv2 e L(X). We can find vi9 v2e X such 

that W! = g'(x, V-), w2 = g\x, v2) and therefore wx + w2 = g\x, vx + v2). By the 
first part, 

f\g(*\ w,. + w2) = (g of) (x, vx + v2) = (g o / ) ' (x, vx) + (g of)' (x, v2) = 

f\g(x\wi) + fW\w2)-
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Thus the function f'(g(x),.) is linear on L(X). Since f is Lipschitz on a neighbour
hood of g(x), we can conclude (cf. e.g. [A]) that f'(g(x),.) is continuous (even 
Lipschitz) and linear on L(X). 

Proposition 3. Let X, Y be separable Banach spaces and let D be a closed 
convex subset of Y which is contained in no closed hyperplane of Y. Let G cz Y 
be an open set containing D and let g : G -» X be a Lipschitz mapping which has 
the Gateaux derivative La at each ae D such that La(Y) = X. Let f be a (locally) 
Lipschitz function on X. Then f is Gateaux differentiable at all points of a dense 
subset of C:= L(N(D)). 

Proof. It is sufficient to apply Proposition 1 to f O g and then use Lemma 7. 

6. Differentiability of convex functions at boundary points of convex bodies 

In the following, we shall need the following well-known lemma. Its easy proof 
is omited. 

Lemma 8. Let f be a continuous convex function on a Banach space X, let 
H cz X be a closed hyperplane, ae H and let S cz X be a half space determined 
by H. If f is Gateaux differentiable at a w.r.t. H then f is Gateaux differentiable 
at a w.r.t. S. 

For the definitions of weak Asplund spaces and GDS spaces see [P3]. 

Theorem 3. Let X be a weak Asplund space (or a GDS space), C cz X be 
a closed convex set with int C 4= 0 and let f be a locally Lipschitz convex function 
on C. Then f is Gateaux differentiable w.r.t. C at all points of a residual (dense, 
respectively) subset of the boundary bdry(C) = S(C). 

Proof. We can and will suppose that f is a Lipschitz convex function defined 
on X. Let b e bdry(C) be given. Clearly there exists an open neighbourhood V 
of b such that bdry(C) n V is "a piece" of a convex hypersurface. More 
precisely, there exists a vector 0 #= v e X, a topological complement Z of sp{v}9 

an open ball B cz Z and a continuous convex function g: B -> IR such that 
bd(C) r\V = {z+ g(z) v:ze B}. Using Lemmas 1.6., 1.7. and 1.5. of [VZ] we 
easily obtain that the mapping h(z) := z + g(z) v is a <5-convex mapping on B. 
By Theorem 4.2. of [VZ] we obtain that the function f O h is a locally ^-convex 
mapping, i.e. it can be locally represented in the form p — q, where p and q are 
continuous convex functions. Now note (cf. [P3], Theorem 4.24. and Proposition 
6.8) that Z is also weak Asplund (GDS space, respectively). Thus we obtain that 
both h and f O h are Gateaux differentiable at all points of a residual subset of 
B (a dense subset of B, respectively; in this case we can* use the fact that 
G + P + q is densely differentiable on the domain of p and q). By Lemma 7 
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we obtain that, for each point z from a residual subset of B (a dense subset of B, 
respectively), the function / is Gateaux differentiable w.r.t. the tangent hyperplane 
H to C at the point h(z)\ clearly H is the range of the Gateaux derivative h'(z). 
Now it is sufficient to use Lemma 8 and the obvious fact that h is a homeomor-
phism. 

Theorem 3 slightly suggests the following problem. 

Problem 5. For which Banach spaces X it is true that any Lipschitz convex 
function on any nonempty nowhere dense closed convex C cz X is Gateaux 
differentiable w.r.t. C at all points of a dense subset of S(C)? 

7. Concrete consequences of supergeneric results 

In Real Analysis there is a long-standing tradition of detailed investigation of 
exceptional sets. From this point of view supergeneric results in Real Analysis are 
interesting. In Banach space theory such tradition does not exist and thus the 
following question should be considered. 

Question. Are there some arguments which show that supergeneric results in 
Banach spaces are interesting? 

The aim of the present section is to support the following answer. 

Answer. In some cases supergeneric results in Banach spaces are interesting, 
since they have consequences which have the following attributes: 

(i) The consequences are simply formulated, 
(ii) The formulation of them, the classical notions are used only (in particular, no 

"supergeneric notion" is used), 
(iii) These consequences cannot be proved by an essentially simpler way without 

supergeneric notions. 
Several propositions which are consequences of supergeneric results (via 

Theorem 1) and have properties (i) and (ii) are formulated in this section. 
I conjecture that they satisfy also (iii) but, of course, I am not able to prove this 
claim. In any case, I know now no alternative proofs of Propositions 6 and 7. 
Propositions 4 and 5 can be proved also using measure theoretical arguments (via 
Lemma 6; see Remark 7, (iv) and Remark 8 below) which are not essentially 
simpler. 

Proposition 4. Let T: C[0, 1] -> (C[0, 1])* be a monotone operator. Then the 
set of all increasing real analytic functions f on [0, 1] such that T is not 
multivalued at f has cardinality c. 

Proof. It is sufficient to apply Theorem 1, (ii) with X = C[0, 1], Y = I2, 
D = {(n) el2:an>0} and g((an)) = ^ = i 2~nanx

n-1. 
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Remark 7. 
(i) Of course, the above proposition cannot be obtained directly as a consequence 

of a generic result since even Cx[0,1] is a first category subset of C[0,1]. 
From similar reasons the generic results are not sufficient also in the following 
propositions. 

(ii) It is easy to prove that there exists a continuous convex function on C[0,1] 
such that T:= df is multivalued at each polynomial / e C[0,1]. 

(iii) If T is a subdifferential of a continuous convex function on C[0,1] then the 
assertion of Proposition 4 can be proved also via Remark 5, (b). 

(iv) Proposition 4 is also a consequence of Lemma 6 and the fact that a monotone 
operator on a separable Banach space can be multivalued only on a Gaussian 
null set. This fact follows immediately from (supergeneric) Theorem A and 
Remark 3, but it can be also obtained (via [PI]) from a result on singleva-
luedness of monotone operators which is proved in [A]. 

Proposition 5. Let p > 1 and let F c Lp[0,1] be a closed nonempty set. Then 
the set of all increasing real analytic functions f on [0,1] which do not belong to 
A{F) has cardinality c. 

Proof. It is sufficient to apply Theorem 1, (iii) with X = Lp[0,1], Y = I2, 
D = {(«,) e I2: an > 0} and g{{an)) = £?- i 2~nanx

n-\ 

Remark 8. Proposition 5 can be proved also by measure theoretical arguments 
via Remark 5, (e). 

Proposition 6. Let Y be an uncountable set, p > 1 and let T: lp{Y) -> (/p(r))* 
be a monotone operator. Then the set of all x e lx{T) at which T is not multivaled 
is u-dense in /p(r). 

Proof. It is sufficient to apply Theorem 1, (ii) with X = /p(r), Y = D = l\T) 
and g = id. 

Remark 9. 
(a) The space ll{F) is not weak Asplund space (cf. [DGZ], p. 7). Therefore it is 

not an (S)-space. 
(b) If T is a subdifferential of a continuous convex function on /p(r) then the 

assertion of Proposition 6 can be deduced also from Stegall's theorem cited in 
Remark 5, (c). 

Proposition 7. Let T be an uncountable set, p > 1 and let F be a closed subset 
oflp{T). Then the set of all x e l\F) which do not belong to A{F) is u-dense in lp{T). 

Proof. It is sufficient to apply Theorem 1, (iii) with X = /p(r), Y = D = l\F) 
and g = id. 

Remark 10. Since g = id in the proofs of Propositions 6 and 7, we can use 
directly Lemma 3 and Theorems D and E and easily obtain that we can write 
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"residual in l^T)" (or "c-dense in l'(T)") instead of "u-dense in ip(r)" in the 
assertions of these propositions. 

The above propositions were obtained by applications of supergeneric results to 
some convex (non-c-cone supported) sets which arise quite naturally. Of course, 
we can deduce from supergeneric results the existence of some "regular points" 
also in some "very small" non-convex sets. For example, using the theory of 
(5-convex mappings [VZ], it is not difficult to prove that Theorem B implies the 
following result. 

Proposition 8. Let X be a separable Banach space. Then there exists a C1 

hypersurface M cz X such that each continuous convex function on X is Gateaux 
differentiable at each point of a residual subset of M. 

Note that the proof of Theorem 5.4 from [Vy] easily implies the following 
analoguous fact. 

Proposition 9. Let X be a separable Banach space. Then there exists a Lip-
schitz hypersurface F c X such that each monotone operator T: X -> X* is not 
multivalued at each point of a dense subset of F. 

Unfortunately, I cannot claim that sets like the hypersurfaces M and F from 
Propositions 8 and 9 appear in natural questions. Thus Propositions 8 and 9 do not 
support the positive answer to the above Question too much. 

Acknolledgment. I thank to Petr Holicky for helpful discussions. 
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