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A theorem of Kaniewski states that given a partition of a coanalytic set in a Polish space there is, 
under some assumptions, a coanalytic selector for this partition. We prove a similar theorem in the 
non-separable case. As a corollary we obtain a simpler proof of the metric case of a uniformization 
theorem of Rogers and Willmott and, using a theorem on measurable extensions of mappings, we also 
obtain a theorem on the uniformization of mappings, that improves a classical theorem of Kondo. 

1. Introduction 

The uniformization is an important topic of descriptive set theory. We concern 
ourselves about the co-Souslin uniformization of co-Souslin sets, although other 
problems (the Borel uniformization of Borel sets) are also reasonable. The most 
important result on the uniformization in Polish spaces is a theorem of Kondo 
saying that a coanalytic set in the product of two Polish spaces can be uniformized 
by a coanalytic set (see [Ku, §39 V]). 

The following theorem of Kaniewski generalizes the previous one (see [Ka]): 
Let C be a coanalytic subset of a Polish space Z. Let a partition Q of C be given 

by an equivalence relation ~. Assume that &(~) = (C x C) n A for some analytic 
A cz Z x Z. Then there is a coanalytic set S in Z which is a selector for Q. 

In the case of non-separable metric spaces, the main known result is due to 
Rogers and Willmott. Theorem 18 of [RW2] includes even more general topolo
gical spaces: 

Let X be a space in which open sets are Souslin. Let Y be a Hausdorff space 
that is a continuous one-to-one image of some closed subset of NN. Let C be 
a co-Souslin subset of X x Y. Then C can be uniformized by a co-Souslin set. 

We will do some observations on the uniformization in non-separable metric 
spaces. In Section 3 we prove that the theorem of Kaniewski holds, under certain 
additional assumption, also in non-separable compete metric spaces. 
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In Section 4 we give a simpler proof of the theorem of Rogers and Willmott for 
metric spaces using our generalization of [Ka]. 

Another theorem, due essentially to Kondo (see [Ku, §39 V]), says: 
Let f be a continuous function defined on a coanalytic subset C of a Polish 

space. Then there exists a coanalytic set S such that f(S) = /(C) and the partial 
function f\s is injective. 

In Section 5 we give a non-separable analogue of it. For this purpose we need 
a theorem on extension of extended Borel-measurable mapping to an extended 
Borel set. Similar theorems on Borel mappings are in [Ha2], for the case of 
separable spaces see [Ku, §35]. 

2. Definitions 

A set S in a topological space is called Souslin if it is the result of the Souslin 
operation performed on a system of closed sets, i.e. S = (JieNN P)nSii ....„, where 
Sii... in is a closed set defined for each n e N and (h... in) e Nn. 

A set whose complement is a Souslin set is called co-Souslin. 
In Polish (i.e. separable completely metrizable) spaces the Souslin sets coincide 

with the analytic sets. Those are defined as continuous images of NN (see [Ku §39 
II]), and also the empty set is analytic. The complements of analytic sets are called 
coanalytic sets. 

If A a co-Souslin set in the product of topological spaces X and Y, a co-Souslin 
set B c i , for which nx(A) = nx(B) and such that for all x e nx(A) the set 
({x}x Y) n B is a singleton, is called a uniformization of A. (Here nx denotes the 
projection of X x Y to X.) 

If / is a mapping defined on a co-Souslin subset A of a space Y into a space 
X, a uniformization of / is its restriction to a co-Souslin set B c A such that 
f(A) = f(B) and /|B is injective. 

The uniformization of a set C <= X x Y is, in fact, the same as the uniformiza
tion of the projection nx : C -> X. 

By a completely metrizable space we mean a space which admits a complete 
metric compatible with its topology: 

3. Uniformization of equivalence relations 

The following definitions are taken from [Ka]: 
A partition Q of a set C is a disjoint system of non-empty sets closed in C whose 

union is C. 
A partition Q of C can be given by an equivalence relation ~ between elements of C: 

x ~ y <^> x and y lie in the same element of Q. 
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A set S cz C is called a selector for the partition Q of the set C, if S n R is 
a singleton whenever ReQ. 

Looking for a selector is a problem more general than uniformization. In fact, 
a uniformization is a selector for the partition of C cz X x Y into the sections 
({x}x Y)nC. 

3.1. Theorem 
Let C be a co-Souslin subset of a completely metrizable space Z. Let a partition 

Q of C be given by an equivalence relation ~. Let the graph of the relation 
satisfies &(~) = (C x C) n A with some Souslin A cz Z x Z. Let the projection 
pfrom Z x Z to Z, defined by p(x, y)'= y, maps all Souslin subsets of A to Souslin 
sets. Then there is a co-Souslin set S in Z which is a selector for Q. 

This theorem is a generalization of the theorem of [Ka] to non-separable spaces; 
only the assumption on projections of Souslin sets of A is added. In the separable 
case every continuous mapping preserves Souslin sets, so this assumption is 
automatically fulfilled. 

The proof also follows that of Kaniewski. It begins with the following lemma. 

3.2. Lemma 
Let C be a co-Souslin subset of a completely metrizable space Z. Then there 

exists a relation < in Z such that 
(i) its graph &(<) is Souslin in Z x Z, 

(ii) -< restricted to C is a linear ordering of C (i.e. it is transitive and satisfies 
the trichotomy law), 

(iii) if x < y and yeC, then xeC, 
(iv) in each non-empty set F cz C, closed in C, there is the first element, i.e. 

an ae F such that a < x for each x e F, x 4= a. 

Lemma 2 of [Ka] states the existence of a relation -< with the same properties 
as here under the assumption that Z is Polish. But its proof works also in the 
non-separable case, so we omit it. 

Proof of the theorem. Let -< be as in Lemma 3.2. Let S be the set of the first 
elements (with respect to -<) of the equivalence classes of ~ . According to (iv) 
of the lemma, S is a selector for Q. It suffices to prove that 5 is a co-Souslin set. 
The following characterization holds: 

yeC\S o yeCA3xeZ(x~yAx<y). 

Since x ~ y means that x, y e C and (x, y) e A, we can write, using (iii), 

yeC\S o yeC A 3x e Z ((x, y)eA A (X, y) e %(<)). 

In other words, C\S = C n p(A n <&(<% hence S = C\p(An <$(<)). 
By (i), A n %(<) is Souslin in A, and by the assumption on p, p(A n &(<)) is 

Souslin, hence S is a co-Souslin set. • 
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4. Uniformization of sets 

4.1. Theorem (Theorem 18 of [RW2] in the case of metric spaces) 
Let M be a metrizable space and P a Polish space. Let C be a co-Souslin set 

in M x P. Then there exists a co-Souslin set S cz M x P which uniformizes C, i.e. 
KM(S) = nM(C) and for each m e nM(S) the set ({m}x P) n S is a singleton. 

Proof. 1. For M a complete metric space: 
Let Z = M x P. A relation - o n C let be defined as follows: if x = (xM, xP) e C, 

y = (yM? yp) e C, then x ~ y <=> xM = yM. Set A = {(x,y) e Z x Z; xM = yM}. It 
is clear that <&(~) = (C x C) n A and A is closed in ZxZ. The map h: 
A-> P xMxP, defined by h((yM, xP), (yM, yP)) = (xP, yM, yP), is a homeomor-
phism. We denote by p the projection of ZxZ to Z, p(x,y) = y. Then 
P\A = q O /z, where q is the projection of PxMxP to M xP defined by 
<?(xp> yM> yp) = (yM> yp). Such a q maps Souslin sets to Souslin sets (see [RW1]), 
hence p maps all Souslin subsets of A to Souslin subsets of Z. Now, Z, C, ~ and 
A satisfy the requirements of Theorem 3.1 and therefore there exists a co-Souslin 
set S cz Z which is a selector for the partition given by ~ . Hence S contains 
exactly one point from each equivalence class ({x} x P) n C, so it uniformizes C. 

2. For M metrizable, let N be the completion of any of its metrization. We can 
find a uniformization in TV x P and restrict it back to M x P. • 

It is an open question whether one can find a uniformization in more general 
cases. The answer is negative in the case of the product P x M of two metric 
spaces, P being separable and M non-separable. (Here we mean the uniformization 
with respect to the projection to P.) Otherwise the existence of a uniformization 
would imply the existence of a reduction for every (uncountable) system of 
coanalytic sets in P: 

Let {Ua}asA be a system of coanalytic sets in a separable space P. Consider the 
product P x M with M containing a discrete subspace {ma}aeA. Then [ja€A(Ua x 
{m^}) would be a co-Souslin set in P x M and its uniformization would give us 
a disjoint family of co-Souslin sets {K}ae/i with Va cz Ua and \JaGAVa = \JaeAUa. 

But this is impossible because of the following example by G. Hjorth: 

4.2. Example. Consider a coanalytic non-Borel set CinU and denote by C0 the 
set C x R . Let {fa}1<a<c be an enumeration of U, and let Ca = IR x {va}. (Thus 
Ca n Co is non-Borel.) Let {Da; 1 < a < c} be the system of all the coanalytic sets 
in U2. 

We define a system {-Ba}0<a<c of sets in R2 as follows: let B0 = C0 and for a > 1 let 

Ca if Ca n C0 n Da is non-Borel 
By -=- ^ , 

0 otherwise. 
Suppose that for each a there exists a coanalytic set B* cz Ba such that y a G / 4 5* = 
(JaeA#a md {^*}o<a<c are disjoint. 
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Thus for the set B* there exists a > 1 such that B* = Da. Also B* cz Ba, and 
Ba equals either to Ca or to 0. 

If Ba = 0, using JaeAB* = JaeABa we infer that (CanB*)uB* = 
(Ca n B0) u Ba, thus B* => Ca n B0 = Ca n C0. Since B* = Da, we have CanCQn 
Da = Can C0, which is not Borel, as was mentioned above, and so Ba = Ca 4= 0, 
a contradiction. 

If Ba = Ca, using B* n B* = 0 we obtain B* = Ca \B*. Using B$ cz C0 we 
obtain B* = Ca\(B* n Can C0) = Ca\(Da n Can C0). But this is analytic 
non-Borel, hence B* cannot be coanalytic. 

5. Uniformization of mappings 

5.1. Definitions. A family {Da}aeA of subsets of a topological space X is said 
to be discrete if each x e X has a neighborhood Ux such that Ux meets at most 
one of the sets {Da}aeA. 

Countable unions of discrete families are called a-discrete families. 
A family {Sa}aeA is called a-discretely decomposable (o-dd for short) if for every 

a we can write Sa = JnSa so that the family {Sa
r}asA is discrete for each n. 

A mapping f: A cz X -> Y which maps discrete (in the induced topology of A) 
families of subsets of A to cr-dd families in Y is called a-dd-preserving. (Notice 
that if X is metrizable and A is its subspace, then a family {Bx} of subsets of A is 
a-dd in A iff it is a-dd in X ([Hal, §1.3.]). So it makes no difference whether we 
consider families that are discrete in A or in X the definition of rx-dd-preserving 
mapping.) 

A mapping f: A cz X -* Y such that f_1(^) is a-dd whenever Sf is discrete is 
called a-discrete. (It is easy to see that continuous mappings are cr-discrete.) 

A mapping f: A cz X —.• Y which is both c-dd-preserving and rj-discrete is 
called bi-a-discrete here. 

The members of the smallest cr-algebra containing the open sets and closed with 
respect to unions of discrete subfamilies are called the extended Borel sets. 

Extended Borel sets in a completely metrizable space coincide with the sets that 
are both Souslin and co-Souslin (see [FH1, Corollary 1.4.]). 

A mapping f is called extended Borel-measurable if f_1(U) is extended Borel 
whenever U is open. 

Every extended Borel-measurable c-dd-preserving map f: A cz X -> Y, where 
X, y are completely metrizable and A is extended Borel, maps Souslin sets to 
Souslin sets ([Ha3, Theorem 7.3.]). Also preimages of Souslin or co-Souslin sets 
by extended Borel-measurable maps are Souslin or co-Souslin, respectively. 

The problems of uniformization of sets and of continuous mappings are 
equivalent, as we mentioned in Section 2. But in non-separable spaces we can 
uniformize some sets only. Thus we will uniformize some mappings only — those 
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bi-cr-discrete. (In separable metric spaces any map is bi-cr-discrete, since every 
discrete family is countable there.) We will not uniformize continuous mappings 
only, but also extended Borel-measurable ones. 

We need the following theorems on extensions of mappings. 

5.2. Theorem 
Let C be an arbitrary subset of a metrizable space X and f a continuous 

a-dd-preserving map of C into a completely metrizable space Y. Then f can be 
extended to a continuous a-dd-preserving F defined on a Gs set B => C. 

Proof. Consider a fixed metric on X. Let A be a Gs set, C cz A cz C, such that 
we can extend / onto A to a continuous map / (see [Ku §35 I]). 

Let I b e a basis for the topology of A, $ = [Jn$n with 88n discrete (in A) for 
all n (see [Ku §21 XVI]). We can suppose that for each n all the elements of 
$n have the diameter at most 1. For each n,keN set $k = {Be$\ diam B < {} 
and J * = {Be J n ; diam B < {}. 

Let @, 38n, 0&k, @k
n be the families of sets of J , J n , $k, $k, respectively, 

intersected with C. Now for every n, k the families $n and St\ are discrete in C and 
33, 8ftk are bases for the topology of C. 

Let {B^x}xeAkn be an enumeration of $n, thus {l%,x}xeAk,n 1s an enumeration of 
0S*. The mapping / maps each 88k

n to a a-dd family in Y. In other words, for 
leAKn we have f(Bk^) = [jmENTk

lm, where {T^X^XEA^ 1s discrete for each 
m, n, k. Set Bk

nXm = f-\Tn\Krn) n B\x. 
For fixed m, n, k, the family ^k

m = {Etn^,m}xeAk,n is discrete in C. Its image by 
/ , the family &*m = {T^^XEA^ is discrete in Y. We replace each set Tn\m with 
an open set U\Km => Tn\m in such a way that the family <8f*m = {U5Um; 
Tn

kx,m e 2rk
m} remains discrete. (This is possible since every metric space is 

collection wise normal.) Define for each Bk
 x,m

 e ^ , m a set 

C\Km = [j{Be^k; B n Bk
nXm =f= 0, f(B) cz Uk,x,m} 

It is an open subset of A. Put Dk
n>Km = Bk

nXr\ Ck
nXm. This Dk

ylm is also open in 
A and the family Q>\m = {D\Xm; Bk

nXm e ifn\m) is discrete in A, because {B„<x}x<BAkn 

is discrete. Set 

G* = UU-»U-
n, m 

Each Gfc is open in A; A = A n Q^g NGfc is of type Gs and C a A c C. Now we 
extend / to F = / | ^ . 

For each m,n,k,X set E j ^ = D\Kmr\A and let <f = { ^ ^ J i e ^ . m . a ^ . 
This (f is cr-discrete in A and it is a basis of the topology of A. Indeed, for fixed 
k, for each point x of A there are some nx, Xx, mx such that x e Dnx,Ax,mx- This set 
is open in A, thus Ek

x^x^mx is open in A, and the diameter of Dk
x^xmx is at most f 

(because of the way we defined Dk
Aim). Hence Ek

xiAx>mx, k = 1, 2, . . . form a basis 
of neighborhoods for x. 
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F maps $ to a cr-discrete family. Indeed, f(EnXm) c f(Ck
n,Km) a Uk

nXm and 
^ > m is discrete. Thus F maps $ to a cr-dd family. According to Corollary 3.9 of 
[Ha3], F maps every discrete family to cr-dd. ~~ 

5.3. Theorem 
Let X be a metrizable space, Y a completely metrizable space, A a subset of 

X and f\A-*Yan extended Borel-measurable o-discrete mapping. Then f can 
be extended to an extended Borel-measurable F defined on an extended Borel set 
A*. If X is completely metrizable, then F will be o-discrete. 

Remark. This is a non-separable analogue of Theorem 1 of [Ku §35 VI]. In 
[Ha2] there is Theorem 9 saying that a cr-discrete Borel mapping of nonlimit class 
a defined on a subset of a paracompact space X into a complete metric space Y can 
be extended to a Borel mapping of the same class defined on a Borel set of 
multiplicative class a + 1. 

Proof. Consider a fixed complete metric p on Y. Let {BKX; X e A), k = 1... be 
discrete families of open sets of the diameter at most \ that form a a-discrete 
covering of Y. For each fc e N, let us do the following: Put CKX = f~\BkX) for 
each X e A. Since f is cr-discrete and extended Borel-measurable, each CKX is 
extended Borel in A and {CKX; X e A) is cr-dd and disjoint in A. We need to find 
sets {GKX; X e A) that are extended Borel, disjoint and cr-dd in X, and such that 
GKX n A = CKX for each X. 

We can find extended Borel sets {DKX; X e A) in X such that DKX n A = CKX 

for each X. Since {CKX;XeA) is o-dd, we can write CKX = \JmCKXtm with 
{CM,™; X e A) discrete in X for each m. Let EKX>m -~> CKXtfn be open in X and such 
that {EKKm; X e A) is discrete. Put EKX = \JmEKXfm and FKX = EKX n Dkx. The sets 
FKX, X e A, are extended Borel and o-dd in X and FKX n A = CKX for each X. Put 
GKX = Fkx \U{-~c,a; a 4= X). Now the family {GM e A) has all the properties we 
required. 

Finally, set H\>x = G u and Hl
KX = GKX\[jj<k[jaeAHla for fc > 1. Now 

^^XeAtkeN) is disjoint. Take yKXeBl
KX and put f = yl

KX on Hl
KX. So 

p(/(4/!(*)) < i on A Set Ax = [j{Hl
KX; Xe A, ke N). It is clear that f is 

extended Borel-measurable on Ax. 
Proceeding inductively, using cr-discrete coverings {WKX; Xe A, fc e N) of Y by 

open sets of diameter at most 2~n, we obtain cr-dd families {HlyX; fc e N, X e A) of 
disjoint extended Borel sets. It can be so arranged that {H1^; keN, XeA) will 
be a refinement of {fljj^ keN, XeA). Set An = (J{Hfc ;̂ ker^. XeA) and 
f„ = >£A on Hn

KX, where ̂  e Bn
KX. 

Thus {4i} is a decreasing sequence of extended Borel sets, An =5 A, and each 
fn is an extended Borel-measurable mapping on An such that p(fn(

xh fn+i(x)) -̂  
2"n + 1 on An+1. To see this, consider a point x e An+l. So x e Hj^i ^ -^L^ f° r 

some fc1?k2,Xu X2. There is some zeAn Hk+Xl. For this z, p(f(z)> fn+i(zj) --- 2~n~ 
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and p(f(z),fn(z)) < 2~ ".Since fn(z) = fn(x) and fn+1(z) = fn+l(x), the inequallity 
follows. 

Put A* = f]nAn and F = lim fn on A*. With the obvious modifications, it 
follows from [Ku, §31 VIII] that the limit of a sequence of extended Borel-measur-
able mappings is extended Borel-measurable. Also F\A = f. 

If X is completely metrizable, let {Ux}XeA be a discrete family of open sets in 
Y. Since the union of each its subfamily is open, the union of each subfamily of 
{F~\UX)}XEA is extended Borel. The family {F~\Ux)}XeA is disjoint and therefore, 
using Theorem 2 of [Hal], it is o-dd. Hence F is a-discrete. • 

5.4. Theorem 
Let C be an arbitrary subset of a metrizable space X and f an extended Borel-

measurable bi-o-discrete map of C into a completely metrizable space Y. Then 
f can be extended to an extended Borel-measurable F defined on an extended 
Borel set B ZD C SO that F will be o-dd-preserving. If X is completely metrizable, 
then F will be bi-o-discrete. 

Remark. In [Ha2] there is Theorem 10 on extension of bi-cr-discrete Borel 
isomorphisms between complete metric spaces. 

Proof. Let X be the completion of some metrization of X. According to 
Theorem 5.3., we find an extended Borel set E ==> C in X and an extended 
Borel-measurable cr-discrete extension / of / defined on E. The graph of / is 
extended Borel i n l x 7 (see Lemma 6.4. of [Ha3]). 

Since / is cx-dd-preserving, the projection 7ry: (x, f(x)) i—> f(x) is also 
cr-dd-preserving (see e.g. [FH2, Lemma 2.5.]). Consider ^ ( / ) , the graph of / , as 
a metric space. We find a G$ set G in &(f) with ^(f) <= G such that 7ry will be 
cr-dd-preserving on G (Theorem 5.2.). Hence G is extended Borel in the complete 
space 1 x 7 . 

The projection n% restricted to G is one-to-one and continuous. It is also o-dd-
preserving. Indeed, n%\G = f~l O 7iy|G, where / is cr-discrete and 7ry|G is 
cr-dd-preserving. Thus B = n%(G) is extended Borel in X (Theorem 7.3. of [Ha3]), 
and B = B n X is extended Borel in X. 

Denote f\B by F. Then F is extended Borel-measurable on B. It is also 
cr-dd-preserving. Indeed, if {Bx}XeA is a discrete family in B, then {(Bx x Y) n 
y(F)}keA 1s discrete in B x Y, the set f(Bx) coincides with the Y-projection of 
(Bx x Y) n ^(F) and this projection is cr-dd-preserving on ^(F). 

Similarly to the proof of Theorem 5.3. we observe that, if X is a completely 
metrizable space, then F is cz-discrete, hence bi-cr-discrete. ~~ 

5.5. Theorem 
Let E be a co-Souslin subset of a completely metrizable space X and f an 

extended Borel-measurable bi-o-discrete map ofE into a metrizable space Y. Then 
there is a co-Souslin set U c= E such that f(U) = f(E) and f\v is injection. 
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Remark. This is an analogue of a theorem of Kondo ([Ku §39 V, Remark 5]). 

Proof. Let Y be the completion of any metrization of Y. According to Theorem 
5.4., we can extend / to an extended Borel-measurable F: B -» T, where B is an 
extended Borel set and F is bi-a-discrete. Let Z = X x f. According to Lemma 
6.4. of [Ha3], the graph 9(F) is extended Borel in Z. Thus the set C = 9(f) = 
9(F) n(E x Y) is co-Souslin in Z. A relation ~ on C let be defined as follows: 
if a = (ax, aY) eC, b = (bx, bY) e C, then a ~ b o aY = bY o f(ax) = f(bx). 
Let A = {(a,b) e 9(F) x 9(F); aY = bY). It is clear that 9(~) = (C x C) n A and 
A is an extended Borel set in Z x Z. 

Now we will show that the projection p of Z x Z onto the second coordinate 
maps Souslin subsets of A to Souslin sets. Similarly to the proof of Theorem 4.1., 
p\A is composed from the projection q of A to f x l x f defined by 
q(ax, bY, bx, bY) = (bY, bx, bY), and from the homeomorphism between the set 
{(bY, bx, bY); bY ef,bxe X} and X x Y defined by h(bY, bx, bY) = (bx, bY). 

So it suffices to investigate q. The map F is a-dd-preserving and so is 
nY: 9(F) -> Y ([FH2, Lemma 2.5.]). Since q(ax, bY, bx, bY) = (nY(ax, bY), bx, bY), 
it follows that q is a-dd-preserving. Since it is also continuous, it maps Souslin 
sets to Souslin sets ([Ha3, Theorem 7.3.]). 

Thus the requirements of Theorem 3.1. are satisfied for Z,C, ~, and A. So there 
is a co-Souslin selector S for C and ~. 

Similarly to the proof of Theorem 5.4., the projection nx of 9(F) is 
(7-dd-preserving. So it is an extended Borel isomorphism ([Ha3, Theorem 7.4.]). 
Thus it maps co-Souslin sets to co-Souslin sets, hence U = nx(S) is a co-Souslin 
set such that f\v uniformizes / • 

5.6. Remark. We do not know whether it is possible to replace the requirement 
" / is extended Borel-measurable and bi-c-discrete" in Theorem 5.5 by " / maps 
Souslin subsets of E to Souslin subsets of /(£)". 

Acknowledgement. I would like to thank to P. Holicky for the encouragement 
and advises he was giving me throughout the writing of this note. 

References 

[FH1] FROLIK, Z, HOLICKY, P., Applications of Luzinian separation principles (non-separable case), 
Fundamenta Mathematicae 117 (1983), 165-185 . 

[FH2] —, Analytic and Luzin spaces (non separable case), Topology Appl. 19 (1985), 129 — 156. 
[Hal] HANSELL, R. W., Borel measurable mapp ngs for non-separable metric spaces, Trans. Arner. 

Math. Soc. 161 (1971), 145-169 . 
[Ha2] - , On Borel mappings and Baire functions, Trans. Amer. Math. Soc. 194 (1974), 195 -211 . 
[Ha3] —, On characterizing non-separable analytic and extended Borel sets as types of continuous 

images, Proc. London Math. Soc. 28 (1974), 683 -699 . 

73 



[Ka] KANIEWSKI, J., A generalization of Kondo's uniformization theorem, Bull, de l'Academie 
Polonaise des Sciences 24 (1976), 393-398. 

[Ku] KURATOWSKi, K., Topology, Vol. I, Academic Press, New York, 1966. 
[RW1] ROGERS, C. A., WILLMOTT, R. C , On the projection of Souslin sets, Mathematika 13 (1966), 

147-150. 
[RW2] —, On the uniformization of sets in topological spaces, Acta mathematica 120 (1968), 1 —52. 

74 


		webmaster@dml.cz
	2012-10-06T03:29:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




