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On the Isomorphic Classification of Weighted Spaces 
of Holomorphic Functions 

W. LUSKY 

Paderbom 

Received 11. March 2000 

We show that there are only two isomorphism classes for weighted spaces of holo
morphic functions on the unit disk with moderately decreasing weights. In particular 
a space of holomorphic functions with a weighted sup-norm here is either isomorphic to 
loo or to Hoo depending on special properties of the weight which can be easily checked. 

1 Introduction 

We deal with Banach spaces of holomorphic functions on 

D = {zeC:\z\ < 1}. 

For 0 < r and 1 < p < oo put 
, 2K \ 1/p 

Mp(f,r) = (^^n\f(reie)\d9 

and M0 0(/ r) = supN=r|/(z)|. 
We study holomorphic functions / on D where Mp(f r) grows in a controlled 

way as r -» 1 according to a given weight measure pi. So, let / ibe a positive 
bounded Borel measure on [0, 1] and put, for 1 < p < oo, 

\f\\P,q = {jlMl{f,r)á^r)Y if \<q < 00 

and ||/||P;oo = sup0<r<1(Mp(f, r) fi([r, 1])). Define 
BM = {f-D^C:f holomorphic, | | / | | M < 00} 
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and 
BM = {f e Bp,a{n): lim Mp(f r) n([r, 1]) = 0}. 

r->l 

The assumption of boundedness of /u ensures that these spaces contain all 
polynomials. The Bpq(ju) are Banach spaces under the given norms \\'\\p,q (see 
[13]). We want to assume that JJL satisfies 

(1.1) limL!([r,l]) = 0 . 
r-*i 

(If /^({l}) > 0 then we would obtain, for example, that BPtP(fi) is isomorphic to Hp.) 
Moreover we want to assume that 

0 < /i([r, 1]) for each r < 1 . (1.2) 

((1.2) is not really a restriction. If supp ju cz [0, a] for some a < 1 then we could 
replace, [0, 1] by [0, a] and use substitution to reduce everything to the case 
a = 1.) 

So from now on we assume (1.1) and (1.2). Note that we obtain, for a holo-
morphic function f : D -> C, 

/ e BPtJji) if and only if Mp(f r) = 0 ( ^ M as r -* 1 

while 

/ e BPt0(ii) if and only if Mp(f r) = o ( ^ ^ J a s r - > 1 . 

Boo,O(A*) an<3 ^oo,oo(^) ^ a v e been studied by Shields and Williams ([19], [20]) and 
by many other authors. 

Similarly, the elements in Bpq(/u) for 1 < q < oo are characterized by average 
growth conditions for Mp(f r). 

Example. Let dji(r) = 2nr dr. Then 

HfLp = (JJlf(x + /y)|'dxdyJ 

and Bpp(ii) is the classical Bergman space. 
The aim of this paper is to finish the isomorphic classification of Bpq(iu) for 

moderately decreasing ju which was started in [12] and [13]. 

1.1. Definition. Let pi be a bounded Borel measure on [0, 1] satisfying (1.1) and 
(1.2). We consider the following conditions 

ju([l - 2~\ 11) 
w s!%([i - 2—1 , i ] ) < °° and 

„(n — 2~"~k ll) 
(**) inf lim sup L „ ')

 J / < 1 

For further characterizations of the conditions (*) and (**) see [4]. 
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Examples. dfix(r) = (1 - r)a dr for some a > - 1 and d/n2(r) = rp dr for some 
P > - 1 satisfy (*) and (**). (This includes the Bergman spaces.) On the other hand, 

00 1 

113 = &WTT)Sl->-k 

and 
7 / x dr 

d^(r) = h M y l ,h fi f o r S O m e y > l 

(1 - r) logy (e/(l - r)) 
fulfill (*) but not (**). 

In [13] it was shown that 
Bpq(fi) is isomorphic to (£„ 0 lp\q^ for any q if 1 < p < GO provided that 

ju satisfies (*). 
(For Banach spaces Xn we put 

vV-Z 

II* 1 < 00Ì Z ® xn) = {(xn)' *n є X„ for all w, í £ | | x j 

lf 1 < q 

Y^® Xn\ = {(xn): xn e Xn for all n, sup ||xи|| < oo} and 
n ' fool n ' ( 0 0 ) 

I © X n ) = {(x,) e ( X © * „ ) : lim || x J = 0}) 
7(0) \n /(oo) n ^°° 

Now we clarify the remaining cases. Let An = span{l,z, z2,..., zn) be endowed 
with the norm Mp(f 1). Then we have 

1.2. Theorem. Lel ft satisfy (*). Assume that p e {1, oo}. 
If fi satisfies (**) then Bp^q(/i) is isomorphic to (£n © lp\q) for arbitrary q. 
If ju does not satisfy (**) then Bpq({i) is isomorphic to Q]„ © Ap\q) for 

arbitrary q. 

The first part of the theorem was already proved in [13], Corollary 2.7. We 
prove the remaining part in section 3. 

1.3. Corollary. Let ji satisfy (*). If JU also satisfies (**) then B^ J/j) is 
isomorphic to l^. If ju does not satisfy (**) then B^JJJ) is isomorphic to H^. 

Proof. If /i satisfies (**) then B^Jjjt) is isomorphic to (£ n © /^)(oo) which is l^. 
Otherwise B^Jfi) is isomorphic to Q]„ © A^oo) which itself is isomorphic to 
^ ( [ 2 2 ] , III E 18). ' Q 

Problem. Does Theorem 1.2. remain true if fJt does not satisfy (*)? 

In [13] also the corresponding spaces bpq(jn) of harmonic functions were 
investigated. It turned out that, in contrast to BPA(IA), bpq({i) is always isomorphic 
to (£„ © lp\q) if V satisfies (*). 
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This is no longer true if we drop the assumption (*): In [14] an example was 
constructed where both spaces, B^ ^(p) and b^Jp) are not isomorphic to l^. 
On the other hand, if p(\r, 1)] = exp(—1/(1 — r)), then p does not satisfy (*). 
But here B^Jp) and b^Jp) are isomorphic to /^ (see [15]). So, also in the case 
where (*) does not hold, there are at least two different isomorphism classes of 
Boo,oo(p). 

In the following, if not noted otherwise, p is always a fixed element of [1, oo] 
and q is a fixed element of {0}u [1, oo]. 

2 The spaces (X n 0^%) 

For/(re^) = ^ > o ^ e ^ p u t 

(2.1) K / ) ( r e * ) = £«* — o y ' e * ' 
k=o n 

It is well-known that an is contractive with respect to the norms Mp(f r) (for 
fixed r), see for example [10]. 

2.1. Lemma. Let nx and n2 be positive integers. Ifm< min^, n2) then there is 
an isometry i'.A™-* (Ani © An

p
2\q) and a projection P : (Ani © An

p
2\q) -» i(A™) with 

IIPH < 2 and 

(2.2) P(z\ 0) = 0 = P(0, zk) if k> m. 

Proof. Put (17/) (z) = zmf(z). Define 

\k=o / k=o -"-

which is easily checked to be an isometry. (Recall, we consider the norms Mp(% 1).) 
Then take P : (A;1 © An

p
2\q) -+ i(A™) with 

P(f, O) = (°mf + Uamg, Uamf + amg). 
Hence 

WH-F^ "kr- and 
y ' I 0 else 

v ; 1 0 else 

This shows in particular that P is a projection. We have ||P|| < 2. • 

2.2. Lemma. Let (nk) be a sequence of positive integers such that sup^ nk = GO. 
Then 

54 



S©V) and ({T,®A%)®{1®A%)®''' 
^ n J{q) \ n n J {q) 

are isomorphic to (^„ © An){q). 

Proof. Put X = (£ n © An){q) and Y = (X © X © ...) (g ). Clearly, by counting 
all positive integers infinitely many times we see that Y is of the form Q]fe © Ank){q) 

for suitable nk. Using Lemma 2 .1 . we see that (^k © An
p

k){q) is isomorphic to 
a complemented subspace of X. Moreover, by Lemma 2 .1 . for suitable pairs of 
components, (Ap\ An

p
k'), we obtain that X is isomorphic to a complemented 

subspace of Q]fc © An
p
k){qy Since this is true in particular for Q ^ © An

p
k){q) = Y, 

Pelczynski's decomposition method yields that Y is isomorphic to X and then, that 
QTfc © An

p
k){q) in general is isomorphic to X. • 

3 Some convolution operators 

For f(z) = Xks>oafcz
k put 

(3-1) (Rnf)(z)=iakz*+ * £ ^ ^ V 
fc = 0 /c = 2 " + l -"-

Then we have (see (2.1)) Rn = 2o>+ i - o>. Hence Mp(Rnf r) < 3Mp(f r) for 
any p and any r > 0. 

Moreover define 

(3.2) (JV/")(*)= Z ^ / w ) 

j>o 

Pm is a projection and we have Mp(Pmf, r) < Mp(f r) for all p and r > 0. This 
follows from the fact that 

( ^ f ) ( - ) = ^ 2 | o
1 f ( e x p ( ^ i ) z 

since, for any integer k, 

1 2m~l (2nkj \ f l if /ce2mZ 

2m ,=0 V 2W / [0 else 

3.1. Lemma. Let nx < n2 and n3 < n4 be positive integers and put X = 
span{z2n^\ z2"1+2,..., z2n2+1~1} Y = span{*n3+\ z2"3+2,..., z2n4+1~1}. Fix some 
radii r > 0 and s > 0 and some constants c > 0 and d > 0. Consider the norms 
Mp(f r)con X and Mp(g9 s) d on Y. Let m = min^"2-"1"1 , 2n4"n3"1). 

Then there is an isometry i: A™ -» (X © Y)^ and a projection Q : (X © Y)^ -* 
i(,4m) vWlh || Q || < 2 suc/z f/uzf 
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(3-3) ((Rn2-Rni)f(Rn4-Rn3)g) = (fg) 

whenever (/, g) e i(Aҷ). 

Proof. Recall that, for f(z) = YJk>Q0ckz
k we obtain 

2"2 2 " 2 + Ь _ 9"i 

((қ.-Ä.JЖz)-- I «*V--- + 
k = 2ni + l z k = 2»»n-i + i 

Z «*** + Z a* 
/c = 2"2 + l 

2«2 + i 2 " 2 + 1 — fc 

(3.4) 

in view of (3.1). Hence 

(Pni+l(Rn2 - Rni)f)(z) = ((Rn2 - Rni)Pni+J)(z) 
2"2 —"i — i 

- I aj2„1 + 1 z^ 1 + 1 + 
j=i 

2"2-»i_ 1 

2.w 0/2»i + -
; = 2"2-»l- l + 1 Z"^ 

X is isometric to Z = span{z2"1 + 1, z2"1+2,..., z2"^1-1} endowed with Mp(-, 1) as 
norm. Let T: X -> Z be the canonical isometry. Hence Pni + iX is isometric to 

2*1 + 1 _ fl П1 + l 
• 2 „ 1 + 1 

TPni + íX = span{z7 :2"i + 1 . 1,..., 2"2""1 - l ł c Z . 

Now, for feAln2~ni-1 put (S/) (z) = /(z2"1 + 1). Then S is an isometry from 
A?2-"1'1 onto TPni + lX. This shows that P„1 + iX is isometric to A?2-11-1. 

Similarly, Pn3+1Y is isometric to Af n3~l. Hence ((Pni + lX) © (Pn3+lY)\q) is 
isometric to (A.2"2 B 1" 1 0 A2;4'n2-\q). Let m = min(2n2-ni-1, 2"4-"3"1) and apply 
Lemma 2.1. to find an isometric copy i(A$) of A™ in 

(3.5) span{z>'2"1+1 :j = 1,..., 2"2""1 - 1} © span{z^3 + 1 :j = 1,..., 2"4'"3 - 1} 

which is complemented in ((Pni + iX) © (Pn3+lY)\q) by a projection Q with \\Q\\ < 2 
satisfying (2.2). Define 

Q(f,g) = Q(Pn1 + if,Pn3+ig) for all (fg)e(X®Y\q). 

(3.4) and the choice of m yield (#„, — Pni) f — f whenever there is g with 
(/, g) e i(A™). Similarly we have (Rn4 - Rn3) g = g. Q 

In [13], Theorem 2.5., the following proposition was proved. 

3.2. Proposition. Assume that \i satisfies (*). Put mi = 1 and let mk+\ be the 
smallest integer larger than mk with 

Џ 1 
1 

7,1 > З/i 1 -
1 

2ml<+1 , i 

Then there are constants a > 0 and b > 0 such that, for every f e Bpq(n), 
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(3.6) a УLMl{{Rmk-Rmk_)f,l)џ J_ 
— 2m!<' 2 m / c + 1 

H-2 

< 

. fc 

_J_ __ 
2 m ! c ' 2 Ш f c + 1 

H-2 

if 1 < q < co and 

(3.7) flsupíMД^-Ä^J/Л^/if 
/c \ 

b sup (Mp((2îиt - 2?m ; t_ 1)/,l) ju 

1 2™*' * 
< l l / l l M < 

1 
1 2 m * ' l 

if q = 0 or q = oo. 
//(**) /s riol satisfied and p = 1 or p = oo lfteri we /We sup/, (mfc — mk_{) = oo. 

It is easily seen that the polynomials are dense in Bpq(fi) ifg = 0 o r l < q < o o 
(see [13], Proposition 2.1.). In particular, for these _, this implies that 

f=Y{Rn-Rn-_)f if f£Bp,q(fi). 
n 

(3.1) shows that BP,0(IJ) 1s isomorphic to a subspace of (___„ © Fn)(0) for some finite 
dimensional spaces En. We derive easily that, with the natural embedding, 
Bp^)** = BPtO0(ii). This is even true if \i does not satisfy (*), see [13], 
Corollary 2.3.) 

We retain the notation of Proposition 3.2. In the following put 

1 

otk = 
ymu? 2,Пk+i 

1 - — , 1 
2mk 

if 1 < q < oo 

if q = 0 or _ = oo 

We have 

Џ i - i - i-- 1 -
2>"k' 2 m * = + i 

M i--L,i 
2""< 

- At 1 -
1 

and, by construction, 

1 2mk'l 
< Ъџ 1 ^ - 7 , 1 

From this in combination with condition (*) we derive 

k \cck 

0 < inf | — ì < sup ( — I < 00 
,a/c+l 

(see [13], Lemma 5.1.) 
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Now we have 

3.3. Lemma. Let [i satisfy (*). Then Bpq(fi) is isomorphic to a complemented 
subspace of{^n © An

p\q). 

Proof. This is essentially the proof of [13], Lemma 4.3. We prove the case 
q #- 0, oo. The proof for the case q = 0 is identical, while the proof for q = oo 
follows from the biduality. 

We have (in view of (3.1)), for any holomorphic / : D -> C, 

(Rmk- R^Jfespmilz,...^2^1}. 

Let Xk = span{l,z,..., z2mk+1} be endowed with Mp(f l) ak
/q as norm. Then, of 

course, Xk is isometric to A2
p

mk+1. Define T: Bpq(p) -• QTfc © Xk\q) by Tf = 
((Rmk — Rmkl)f). By (3.6), T is an isomorphism. Moreover, define S: (£Jk®Xk\q} -» 

S W = Z(^«fc+i - Rmk^-i)gk 
k 

whenever gk e Xk. We obtain STf = f for every fe Bpq(fi) which follows from 
the fact that 

(Rmk+1 - -Rm^'-lM^m* ~ Rmk_) f = (Rmk ~ Rmk_l) f 

and / = __k(Rmk — Rmk_^)f- Moreover, we have, with the constant b of (3.6), 

l-W™ £ b(_M%Rmj - RmjJ_:(Rmk+1 - *„*_._,) 0b l)a? * 
\ j k 

< cv (_ _ Ml{(Rmj - Rmj_^(Rmk+l - R^-Jg* 1)«;)
 q 

\j k=j-2 / 

< c2 (VMl(gk, 1) ak) 

= C2||(flft)|| 

for some universal constants cx > 0 and c2 > 0. Here we used the facts that 
(Rm. - Rm.J (Rmk+1 - Rm^-i) = 0ifk<j-2ork>j + 2 (see (3.1)), that 
the Rm are uniformly bounded and that 

0 < inf ( — | < sup ( — ) < oo . 
* \<*k+i) k \Uk+iJ 

Hence TS is a bounded projection from {£k © Xk\q^ onto TBpq(p). __ 

Finally we obtain 

3.4. Lemma. Let JJL satisfy (*) and assume that p = 1 or p = oo. If (**) does 
not hold then BPA(p) contains a complemented subspace which is isomorphic to 

(£. ® A%y 
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Proof. It suffices to assume g = 0 o r l < g < o o . The case q = oo then 
follows in view of BPi0(jj)** = BpaD(fi). 

If m^i + 1 < mk — 1 we have 

- Rmk_l + i if j = k 
0 else 

(3.9) (Rmj - RmjJ (Rmk_, - Rm^1 + 1) = {R" 

Put, for these k, 

Xk = ( /U-i - Rmk-i+l)B„M = span{2
2--1+1+1,...) ~-"*-i}. 

By (3.6), (3.7) and (3.9) the norm ||-||M on Xk is equivalent to Mp(; 1) a{/q if 
1 < q < oo and to Mp(; 1) ak if q = 0. Since supfe(mfc — mfc_i) = oo we have 
supfc dim Xk = oo. The space X = closed span(UfcXfc) c £p ,,(/*) is isomorphic to 

For fe Bpq(fi) and some subsequence (rĉ ) of the indices put 

Tf = TiRmnk~i - Rmnk_1 + l)f 
k 

Then, in view of the fact that the polynomials are dense in Bpq(jj), according to 
(3.6) and (3.7), T is well-defined and bounded. 

Using Lemma 3.1. we find indices 1 < nx < n2 _< ... such that (£w 0 Ap\q) is 
isometric to a subspace Y of X = closed span((JfcXnJ and there is a bounded 
projection Q : X -> Y with 

(3-10) ( - ^ - i - K * « _ 1 + i ) / * = / * 

whenever f 6 X„t and YjJk e y 
Define, for fe BM(fi), 

Qf=QUR^-i-Rm„k_1+l)f. 
k 

Then, by (3.6) and (3.7), Q is bounded. Using (3.9), (3.10) we see that Q is 
a projection onto Y. 

The Lemmas 3.3 and 3.4. together with Pelczynski's decomposition method 
prove that Bp>q(jj) is isomorphic to Q]„ 0 An

p\q^ if p = 1 or p = oo and // 
satisfies (*). 
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