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Received 11. March 2003 

We give several partial solutions to Fremlin's question DU about the existence of large 
homogeneous sets for 2-dense open families of finite sets of ordinals by introducing and 
considering some generalisations of the notion of 2-density. In particular we prove that 
every j-functionally dense open family has an infinite homogeneous set and that under 
MA + —i CH every j-dense open family satisfying an additional covering property is 
2-functionally dense and has a homogeneous set of size Xj. Moreover, we prove that 
assuming MA + —i CH satisfying this covering property on a set of size Xb and that 
under the same assumptions functional density on a set of size Xt is another necessary 
and sufficient condition for such a homogeneous set to exist. 

We also study the continuous version of 2-density and give some negative homoge
neity results. 

0 Introduction 

Several years ago D. H. Fremlin formulated a question motivated by measure 
theory but quite combinatorial in nature, that has to do with the existence of large 
homogeneous sets for certain families of finite sets. The question, denoted DU on 
his list of problems, see [4], is formulated as follows. 

Definition 0.1. Let A be any infinite set and let e e (0, 1). 
(1) A family 3) :== [^4]<x° is said to be a-dense on A if for every B e [^4]<K° there 

is DeQ) such that D c B and \D\ > e\B\. 
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(2) A family 3 .= |yl]<Ko is said to be open if it is closed under taking subsets. 
(3) If3^ [A]^0 we say that A* ^ A is homogeneous for 3 if [A*]<i<0 c 3. 

Problem 0.2 (DU). (i) If 3 is an e-dense open family on coi, is there necessarily 
an infinite subset ofcoi which is homogeneous for 3? 

(ii) Assume MA(tfi) + "~i CII and that 3 is s-dense open on coi. Is there necessarily 
a homogeneous set for 3 of size Xi? 

It is well known that there is a ^-dense open family on co without an infinite 
homogeneous set. An example is provided by the Schreier family, consisting of all 
finite subsets F of co\{0}that satisfy min(F) > |F|. It is also well known that 
under CH there is a ^-dense open family on cox without a homogeneous set of size 
Nx. It was shown by Fremlin in [4] that in fact the answer to Problem DU will 
remain the same if one replaces s throughout by 1/2. We shall hence concentrate 
on |-dense open families. 

Question DU is still open but some partial solutions and relevant considerations 
appear in [1] and [4]. In this note we offer a further partial solution and some 
generalisations. We deal with two generalisations of e-density which both give the 
original notion as a special case. The first one is the notion of functional density, 
and it is described in §1. As shown there the existence of infinite homogeneous 
sets for this kind of dense families can be proved outright in ZFC, and moreover 
the notion of measure precalibres gives rise to larger homogeneous sets. Hence this 
gives a partial affirmative answer to DU(i) under the additional assumption of 
functional density. In §2 we use functional density to give a partial answer to 
DU(ii), in the affirmative under an additional assumption formulated not as 
a density condition but as a covering property. This property says that in some 
weak sense the family is close to being closed under finite unions (in the latter 
case of course the homogeneous set is easily seen to exist). Our approach allows 
us to state a characterisation under M^Xj) of those ^-dense open families on 
<x>i that admit a homogeneous set of size Kl5 phrased in terms of the covering 
property used in the main proof, and another one phrased in terms of functional 
density. 

Section 3 is of quite a different flavour. In it we notice that e-density may be 
understood as a specialisation to the counting measure of a general mea
sure-theoretic density notion. We show some examples of families that are dense 
in this more general sense and do not admit homogeneous sets. 

1 Functionally dense families 

Definition 1.1. Let A be any infinite set. A family 3 ^ [^4]<x° is said to be 
2-functionally dense or |-FD on A if for every 5e[^4]< x° and every function 
g : B -> co there is D e 3 such that D ^ B and £aeZ) g(a) > \ £ a e B g(a). 
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Observation 1.2. Any family that is \FD on A is \-dense on A, as can be seen 
by considering the constant 1 function. The converse is not true, since the Schreier 
family described in the Introduction is known to be \-dense on co\{0}, but the 
function g assigning 2 to 1 and 1 to 2, 3, 4 shows that the family is not 
\-functionally dense on co\ {0}. 

The following theorem giving a positive homogeneity result shows that the notion 
of functional density corresponds to the usual Kelley's intersection number ([2]) in 
the sense that epsilon density corresponds to the weak Kelly intersection number (see 
[4] and [5] for the latter notion and its connection with epsilon density). Although 
we shall assume familiarity with the well known notions of Kelley's intersection 
number and Kelley's theorem, the notion of a measure precalibre might be less 
familiar so we remind the reader of its definition. An infinite cardinal K is called 
measure precalibre iff for every family of K sets in the measure algebra of 2K whose 
measure is uniformly bounded away from 0, there is a centred subfamily of size K. 
One can consult [3] for further equivalent definitions and also to note that every 
cardinal that is a precalibre of measure algebras is a measure precalibre. 

Theorem 1.3. Suppose that 3 ^ [ K ] < N O is \-FD on K and open. Then there is 
an infinite set X ^ K which is 3-homogeneous. If K is a measure precalibre then 
there is a 3-homogeneous set of size K. 

Proof. By identifying sets in 3 with their characteristic functions and K2 with 2K 

we may treat 3 as a subset of 2K. Let Aa:= [De3:aed} for a < K. By a straigh-
forward argument we check that the family (Aa)a<K has Kelley's intersection 
number at least \. The proof of Kelley's theorem [2] gives a finitely additive 
measure \i on 2K with \i(Aa) > \ for every a. Since K0 is a measure precalibre there 
is an infinite set X ^ K for which (^4a)aex has the finite intersection property. This 
exactly means that [ X ] < x ° ^ 3. 

The last statement of the theorem follows similarly. ^ 3 

It turns out that for any K and a ^-dense family 3 := [fc]<x° one may define 
a 2-FD family ^(3) on K that is highly connected to the original family. 

Lemma 1.4. Suppose that 3 ^ [ J C ] ^ 0 is \-dense on K and that h:K -> KX CO 

is a bijection. Let D be the family of all images under h of the elements of 3. Then 

%(3): = {ce [ K ] < X O : (3d e D) c = n(d)} 

is \-¥D on K, where n: K X CO —• K is the standard projection on the first coordinate. 

Proof. Note that the definition of |-FD on K does not change if we consider only 
functions g: B -> co\ {0} for all B e [ K ] < X ° , and also note that D is *-dense on 
K x co. So let B e [/c]<Xo and g : B -> c0\{0}be given. Consider the set 

A= UWx{l,2?...^(a)}. 
oteB 
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Since D is |-dense on K X CD, we may find d e D such that d ^ A and \d\ > \\A\. 
Then, putting c = n(d), we get c _= B, and 

X a ( a ) > | d | > ^ | = ^ I a ( a ) . * , 4 
a e c --' '-* OCGB 

It is not clear if one can use large homogeneous sets for (€{^) to construct 
homogeneous sets for 2, but at least when K2 is a precalibre of measure algebras 
(in particular when MA(Ki) holds) the discussion above leads to a reformulation 
of the DU problem that appears to be simpler than the original. 

Theorem 1.5. Assume that Kt is a precalibre of measure algebras and that 
every family D that is \-dense open in cOi x CO, and satisfies {71(d): d e D) = [cOi]<x° 
admits a homogeneous set of size X. Then every \-dense open family on cox admits 
a homogeneous set of size X. 

Proof. Let Of be a ^-dense family on cot and let h be any bijection between coi 
and cOi x co. We construct c€{^) as in Lemma 1.4, so a ^-FD family on a^. By 
Theorem 1.3 and the assumption that Kt is a precalibre of measure algebras we 
then have a set Z e [c0i]Kl such that Z is homogeneous for ^(Qj). Using a bijection 
between Z and cOi we can assume that Z = cox. Then D as in the proof of Lemma 
1.4 satisfies the assumptions of this theorem and any set that is homogeneous for 
it gives a homogeneous set for Q) of the same cardinality as the original. ^ L 5 

In the next section swe show that under MA(Ki) every ^-dense open family on 
coi satisfying a certain covering property is actually |-FD, and hence admits an 
uncountable homogeneous subset. 

2 A covering property 

When trying to construct homogeneous sets for dense open families the major 
difficulty is that except in trivial cases the family is not closed under finite unions. 
This means that one cannot assume too much in the way of a covering property of 
such a family. One may wonder if some weak covering property would suffice and 
in this section we consider a nontrivial such property. The property considered here 
is such that any ^-dense open family on cox satisfying it can be by a ccc forcing 
made into an ^-FD open family on cox. This is interesting if one studies the 
behaviour of ^-dense open families on cOi under MA^^). 

Definiton 2.1. For a A-system F = </£ : a < co{) of finite sets of ordinals with 
root r we say that F is clean iff 
(1) max (r) < min (Fa \r)for all a, 
(2) max (Fa) < min (Fp\r)for a < ft < coh 

(3) |Fa| is a constant. 
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Definition 2.2. Suppose that 3) is a \-dense open family of finite subsets of (ox. 
We say that 3 satisfies the cv(4,2)-condition iff for every two clean k-sy stems Fl 

(I < 2) of elements of 3y there is a e [1, a^) and H0, Hxe3 such that 

(F0°uFa°)u(F0
1uFa

1)^H0uH1. 

Theorem 2.3. Assume that MA(^X) holds. Then for every \-dense open family 
3 of finite subsets of (Ox that satisfies the cv(4,2)-conditiony there is A* e [c0i]Xl 

such that [A*]**0 -= 3. 

Proof. Let 3 be as in the assumptions. We define a forcing notion P by letting 
its universe be the set {F0 u ^ : F0, F! e 3} and ordering it by p < q (q is stronger) 
iff p .= q. 

Claim 2.4. For each /? < co{ the set 

Sp = {peP:m^x(p) > $} 
is dense in P. 

Proof of the Claim. Let p e P be given, and let /? < cox. We commence by 
finding F0, Fxe3 such that p = F0 u Fx. Let n{ = \F\ for / < 2. For each / < 2 
we construct by induction on a < wx a sequence Fa = <ijj: a < co{} of elements 
of 3 such that 
(1) F£ is given, 
(2) If a < a', then max (FJ) < min (FJ), 
(3) If a > 0 then max (Fj) > j8, 
(4) |FJ| = *,. 
Such sequences can be easily defined by using the ^-density and openness of 3. 
Using the property cv(4,2), there is a > 1 and if0? Hxe3 such that p u Fa° u Fa* .= 
H0u H{. Letting q = H0\jH1we obtain a condition in ^ that extends p. ^*24 

Claim 2.5. P is ccc. 

Proof of the Claim. Suppose we are given {pa: a < a^} from P and let us choose 
for each a a pair (F0

a, F*) of elements of 3 such that pa = F0
a u F*. By applying the 

A-system lemma twice, we way assume that F, = <Fj: a < C0i> forms a clean 
A-system, for / < 2. By the cv(4,2) condition there is a < cox and i/0> Hxe3 such 
that (Fo° u Fa°) u (Fo1 u Fa) c if 0 u ifi, so p0 and pa are compatible in P. ^2.5 

By MAfa) we can find a filter G in P that intersects all fy. Let A=[JG. 

Claim 2.6. A e [<L>i]Kl and it satisfies that for every FE[^4]<K°, there are 
Fo, Fxe3 such that F = F0 u Fx. 

Proof of the Claim. If p e G n < ,̂ then max (p) > /?, so by the genericity of 
G we obtain that sup (A) = colm 
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<X 0 

<K0 

Suppose that F e [-4]<K°, hence there are q0,..., qn e G with F _= \Ji<nqi. As 
G is a filter, conditions q0,..., qn have a common upper bound in G, so without 
loss of generality n = 0. Let q0 = H0\J Hx for some H0, Hi e 3, and let 
F, = H, n P. *2.6 

Now notice that ® is |-FD on 4̂, since if F e [^4]<x° and g : F -> co, choosing 
Fo, Fi e ® so that F = F0 u Fu we obtain 

Ig(*)< Zg(a)+ Ig(a), 
a€E aeEo aeE i 

so for at least one / e 2 we have £aeEzg(a) > ^XaeEg(a). Hence by Theorem 1.3 
and the fact that MA(^) implies that tfl is a precalibre of measure algebras, we 
obtain that there is A* e [-4]Xl which is ^-homogeneous. ^2.3 

It might be interesting to note that the full force of the covering condition used in 
Theorem 2.3 was not needed for the chain condition, but it was for the density argument. 
We may now use Theorem 2.3 and its proof to obtain a characterisation under MA(tf{) 
of those ^-dense open families on cox that have a homogeneous set of size Xx. 

Corollaray 2.7. Assume MA(i$i). Then a \-dense open family Q) on ($x has 
a homogeneous set of size ^ iff for some set X e [coj^1 the family 3) n [X 
satisfies the cv(4,2) condition iff for some set Ye [c0i]Xl the family 3) n [Y 
is \-FD on Y. 

Proof. Let us first prove the equivalence between the first two statements. In 
the forward direction, let X be the homogeneous set for 3 that has size K^ In the 
backward direction, using the same forcing as in the proof of Theorem 2.3 with 
3 n [K]<x° in place of 3 we may notice that the only relevant instances of the 
covering property are those applicable to 3 n [X]<x°, and hence the forcing 
argument will produce a Y e [X]Kl which is homogeneous for the family 3 re
stricted to X and hence for 3. 

The second statement implies the third by the forcing argument in the proof of 
Theorem 2.3, and then the third implies the first by Theorem 1.3 and the fact that 
MA(Ki) is assumed, hence Kt is a measure precalibre. ^ 2 7 

3 A continuous version of the problem 

One way to understand problem DU is to view it in the context of the counting 
measure, as we shall explain below. This approach suggests a generalisation to 
a more general measure-theoretic context and we attempt such a thing here. For 
the rest of the section we work in the context of a given (X, Z, v) which is an 
infinite but semi-finite measure space. Hence we assume that v(X) = oo but for 
every E e 2 we have 

v(£) = sup {v(A):A e X, v(A) < oo}. 
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Definition 3.1. We say that Sf c= £ is \-dense open in _E if it satisfies the 
following 
(i) if C c D e Q) and C e l then C e Q); 

(ii) ifE e 2. and v(E) < oo then there is De$) such that D ^ E and v(D) ;> 2V(-̂ )-

In this context we ask the following 

Problem 3.2 (generalised DU). Does every e-dense family ® _= S contain 
a = -increasing sequence (Dn) with lim v(Dn) = GO? 

Taking X = K, L = SP{K) and v the counting measure on K we obtain the original 
problem DU (about infinite homogeneous subsets) from the generalised DU. Since 
in this context we can only discuss homogeneous sets of size K0 the possible interest 
of the generalised DU lies in purely ZFC results. It turns out counterexamples are 
easier to produce in this setting. It is to be expected that the idea of Schreier family 
on co which given a counterexample to the original DU setting (see the Intro
duction) may be adopted to another example, and that is what we shall do here. 

Example 3.3. Let X to be the Lebesgue measure on X = [0, oo) and let <2) be 
a family of those Borel sets D, such that either D = 0 or X(D) < inf (D). Clearly 
Q) is open. For any Borel set E ^ X of finite measure there is a point x0 such that 
>HLA X O ]

 n E) > \X(E). Writing D = [x0, oo] n E we have D e Q), so 3) is \-dense. 
Of course, there is no ^-increasing sequence (J)n: n < co} with X(Dn) -> oo. 

The above example of course gives a measure of a countable Maharam type. 
The following example has Maharam type c. 

Example 3.4. Let X = U x {0,1}C and let v be the product of the Lebesgue 
measure X and the usual product measure fx, where JJL is defined on the product 
o-algebra of{p, 1}C. We let £ be the domain ofv; then S is of size c and every £ e l 
is determined by IR and countably many coordinates in {0,1}C. Let {E^: £ < c} be 
an enumeration of all sets in 2 of finite measure, and for each £ < c let 1% be 
a countable subset of c such that E% is determined by R and the coordinates in 1%. 

By induction on £ < t we may define a function 6 : c —• c such that 

e{t)t\jltu {8(a): a <£} 

for every £ < c. Considering elements of X as sequences with 1 + c entries and 
calling the first entry -I, we may define for £ < c sets Q = {xe X : x(£) = 0}.lt 
follows from the definition of ji and v that v(f]k^{ Q j = 0 whenever <4 • k < co} 
is a sequence of distinct elements of c. (*) 

Now let D% = E% n C^ for every t; < c, and define Q) to be a family of those 
D e II which are contained in some D%. It follows that @) is \-dense open, since 

v(Di) = v(E,nCm) = ^v(E,). 
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Note that the last conclusion uses the fact that d(t;) $ 1^. Now we claim that there 
is no increasing sequence <4, :n < a>} in 2 with lim v(An) = oo. 

So suppose otherwise. Take n{ such that v(Ani) > 1. Since Ani e 3) then Any <= D^ 
for some ^ . But v(D^) < OO so there is n2 < nx such that v(An^ > v(D^). Now 
An2 ^ D«*2for some ^ where £2 =# £i-

In this way we can define nx < n2 < ..., and distinct t;k < c such that Ank <= 
D{k .= C0^ky Hence Ani ^ P, where P = f]k Ce^ky But since 9 is 1-1 it follows by 
(*) above that v(P) = 0, which is a contradiction. 

The measure from Example 3.4 is of type c and cr-finite. One might however 
modify the construction to get a non-a-finite example (replacing X on the first axis 
by any non-c-finite measure on some c-algebra of size 2C and letting \i be the 
product measure on {0,1}2C). The examples above leave open the generalised DU 
question for those v that are of countable type on every set of finite measure but 
not (7-finite. 
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