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A Discontinuous Function with a Connected Closed Graph 

JIRI JELINEK1 

Praha 

Received 11. March 2003 

An example of a discontinuous function on U2 that has a closed connected graph is given. 

On the 31st Winter School in Abstract Analysis in Lhota nad Rohanovem, Czech 
Republic, the question has been asked if any real function / on 1R2 that has a closed 
and connected graph is continuous. We will prove, constructing a counterexample, 
that this is not the case. First we show some properties of functions with a closed 
graph. The following is evident. 

Proposition 1. A real function f on a topological space 2T has a closed graph 
if and only if for every t e 2Tthe cluster values offat t are f(t) or + oo. Hence 
if f > 0 has a closed graph then the set of discontinuity points coincides with the 
set of points where f has a cluster value oo. 

Proposition 2. If a real function f on a T2 Baire space 2T (e.g. on a Euclidean 
space) has a closed graph then the set of continuity points off is open dense in ST. 

Proof. See [2]. • 

Proposition 3. If a function f: U -» U has a closed connected graph then it is 
continuous. 

Proof. If, for a point aeR, lim |/(x)| = oo, the graph of / could be decomposed 
x\a 

into two separated parts: graph / | ] — oo, a] and graph / | ]a, oo[; so it would not 
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be connected. Consequently by Proposition 1 f has a cluster value f(a) at the point 
a from right and analogously from left. So f is peripherally continuous at a. This 
notion, introduced in [3], means: for each pair of open neighbourhoods U and V of a 
and f(a) respectively, there exists an open set G _= U containing a such that f maps 
the boundary of G into V. By [1], Theorem 4, a peripherally continuous function 
f: U -> [R with a closed (not necessarily connected) graph is continuous. • 

The following example of a function f on R2 with a connected closed graph 
shows that such a function need not be continuous. 

The Example. Choose a decreasing sequence {a(n)^°=1 and positive numbers 
r(n) < 1/2 such that 

(1) 1 > a(n) \ 0 (n -• oo) 

and that the intervals [a(n) — r(n), a(n) + r(rc)] <= ]0, l [ are pairwise disjoint. 
Then, for any kx e N, choose a decreasing sequence {a(fcl5 n)}n=\ and positive 

numbers r(kh n) < 1/4 such that 

a(kx) + r(fc-) > a(fcb n) \ a(fci) (n -> oo) 

and the interval 

[a(fcl5 n) - r(kh m), a(kh n) + r(kh n)] c ]a(fc1), a(k^ + r(fcx)[ 

are pairwise disjoint. 
Inductively, having already a(kh ...,kN) and r(fcb ...,kN) (N, kh...,kNe N), choose 

a decreasing sequence {a(kh..., kN, n)}™=l and positive numbers r(kh ..., kN,n) < 
2 _ ( N + 1 ) s u c h t h a t 

(2) a(kh ..., kN) + r(fcb ..., fcN) > a(kh ..., kN, n) \ a(kh ..., kN) (n -> oo) 

and the intervals 

(3) [a(kh ..., kN, n) - r(kh ..., kN, n), a(kh ..., kN, n) + r(kh ..., kN, n)] 

cz ]a(fc1?..., fcN), a(kh ..., kN) + r(kh ..., kN)[ 

are pairwise disjoint. 
Define 

(4) j*:= {a(kh ..., kN); N, kh ..., kN e M}. 

Furthermore, for a = a(fc1?..., fcN) G srf and r = r(kh ..., kN) define subsets of IR2 

(5) ®(kh...,kN): = 

( > - r, a[ x ]r, 2"^ + r[) u ({a} x ]2" N , 2~N + r[) u (]a, a + r[ x ]0, 2 " " + r[) 

and 

(6) Г{k1,...,kN):=W(ki,..;ks) = 
(]a - r, a] x >, 2-N + r[) u (]a, a + r[ x ]0, 2~N + r[). 

74 



As the assignment (kl9..., kN) i—> a(ku ..., kN) (IV, kl9...9 kNeN) is injective, we 
can denote ra := r(kl9..., kN)9 % := tft(kl9..., kN) and i/

a':=ir(ku...9kN) for 
a = a(fcl5..., kN)e stf. The following claims are evident. 

Claim 1. For IV, M e N, IV < M, {k1?..., kM} cz N it is 

r(kl9...9kM)<r(kl9...9kN)<2~N. 

Claim 2. If a9be$49a<b, then either the intervals [a — ra9a-\- ra]9 [b — rb9b + rb] 
are disjoint or [b — rb9b + rb] cz ]a9 a + rfl[. Fhe latter case holds iff 
a = a(kl9..., kN)9 b = a(kl9..., kM)for some IV, M e M, IV < M, {kl5..., kM} cz N. 

Consequently, under the same conditions either the sets Wa and Wb are disjoint 
orWbn]09 1[2 cz <%a. 

Definition of the function f. Let us define 

(7) f(0,y)--=-y for ye]<U] . 

On the remaining part of the boundary of the set [0, l ] 2 let 

(8) f(x,y):=l. 

For 

(9) a = a(kl9..., kN) est and ye ]0,2~N] let f(a, y) := -. 

For a point 

(10) (x,y)e]0,l[2\{jr(n) let f(x,y) := dist"1 ((x,y), d(]0,1[2)). 
n = l 

Similarly, for IV, kl9..., kN e N let us define f on the set 

00 

(11) <%(kh...,kN)\{Jr(kh...,kN,n) 

by 
(12) f(x, j;): = dist"1 ((x, y), d(®(kh..., kN))). 

Thus the function / is defined on [0, l ] 2 (see below). Finally, let us extend f to 
the whole plane putting 

f 1 ^. fir v. - I / ( _ X ' y ) ' (X' ^ ) G ["!' °] x P . ! ] > 
( ' • , ^ y ' - t l ( x , y ) ^ [ - l , l ] x [ 0 , l ] . 

Claim 3. The points (a(n)9 y) with y e ]0, r(n)] belong to both domains used in 
(9) and (10) and the functional values by both definitions coincide. Thus the 
function f is defined by (9) and (10) (at least) on the set 
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^:=]0,1[2\U*W-
n=\ 

Similarly, for IV, ku ..., kN, n e N and a = a(kh ...,kN,n)estf, the points (a, y) 
with y e ]0, ra~\ belong to both domains used in (9) and (11) and the functional 
values f(a, y) by both definitions coincide. Thus the function f is defined by (9) 
and (12) (at least) on the set 

00 

ir (*„ . . . , kN):= %{kx,..., kN)\ [)<%{kh..., kN,n). 
n=\ 

Proof. It suffices to prove the second part, the first one being similar. By Claim 2, 

[a - ra,a + ra~\ cz ]a(ku..., kN), a(kx,..., kN) + r(ku..., kN)[ 

and by Claim 1, 2~N + r(ku..., fcN) > 2ra, so (a, 0) is the point of dtfl(kx,..., kN) 
(defined by (5)) closest to (a, y). Hence (12) and (9) give the same value f(a, y). ~~ 

Remark. The sets iV and H^(kx,..., kN) (IV, ku..., kN e N) are pairwise disjoint, 
connected and the function / restricted to any of these sets is evidently continuous. 
Hence any restriction of / to iV or to iV{kx,..., kN) has a connected graph. 

Claim 4. 

r u y ^ = ]o,i[2, 
aes/ 

so by Claim 3 the function f is well defined on ]0, l[2, hence by (7), (8) and (13) 
on the whole plane. 

Proof by contradiction. Suppose (x, y) e ]0, 1[2\(1T u U ^ ^ ^ E As ^ e P°^nt 

(x, y) e ]0,1[2 does not belong to if (defined in Claim 3), it must belong to ^(fci) 
for some kx e N. Inductively, by the same argument we get a sequence {fc„}£°=1 .= ^ 
such that (x, y) e tf/(ku ..., kN) for every IV e N. However by (5) and Claim 1 this 
cannot hold if 2 • 2~N < y. 

Claim 5. The graph of f is connected. 

Proof. By the Remark the graph of /1 ^(fc1?..., kN) is connected. The closure of 
this graph, being again a connected set, contains by (2), (5) and (9) the points 

(a(kx,..., kN), y, \/y) = lim (a(fc1?..., kN, n), y, 1/y) (y e ]0, 2"<N+1)]) 

belonging to the graph of f\W(ku ..., kN_i). Thus the graph of 

f\(iT(ku...,kN)Kjir(kl,...,kN_l)) 

is connected. By induction, the graph of / restricted to the set 

iT(kh ..., kN) u iT(kx,..., kN_x) u ... u ^V(fci) u if u 8([0, l]2) 

is connected (the last step by (1), (7) and (8)). This graph contains the graph of 
/1 iV u 3([0, l]2) not depending on the choice of kh ..., fcN, so by Claim 4 the graph 
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of /1 [0, l ] 2 is connected and evidently the graph of / defined on the whole plane 
by (13) is connected, too. • 

Thus we have constructed a discontinuous function / with a connected closed graph. 
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