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We prove the existence of very irregular solutions of the functional equation of the order 
N, in particular of the equations 

N 

?(*)= I d*M/. (*)) + *(*) 
n - 1 

with given functions gp ..., gN, h: X -* Y and given commuting bijections f, ..., fN: 
X -*X. 

1. Introduction 

Given sets X, Yand a family 01 of subsets of X x Y, we say that cp: X -> Y has 
a big graph with respect to 01 if its graph GrcD meets every set of the family 01. 

Following [5] and [7] (where iterative functional equations of the first and the 
second order was studied) we consider the equation of higher orders; i.e. the 
equation of the form 

(1) F(x, cp(x), <p(fi(x)), ..., <p(fN(x))) = 0. 
We are interested in finding conditions under which equation (1) has a solution 

with big graph with respect to a family 01 of subset of X x Y satisfying the 
following two conditions: 

(2) card 0t < card X 
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and 

(3) card n (R) = card X for every RєØl. 

Observe that conditions (2) and (3) are satisfied by the family 

(4) {Rєâã(X x Y):n (R) is uncountable}, 

where X and Y are Polish spaces, X is uncountable, &(X x Y) is the o - algebra 
of all Borel subsets of X x Y and n: X x Y--> X is the projection. 

Family (4) (in the case where X = Y= R) appears in the paper by F. B. Jones 
[13]. F. B. Jones proved that there exist additive functions having a big graph with 
respect to family (4) (see [15, Ch. 12, §4] and [4]). A special case of the family 
ã fulfilling (2) and (3), namely 

{B x {y}: B єâS(R), card B = c, y є U} 

occurs in the paper by P. Kahlig and J. Smítal [14]. They proved an analogous 
result to that given by F. B. Jones in the case of the Dhombres functional equation. 
Up to now several types of functional equations have been investigated in this 
direction (see [6] and references therein). 

2. Main result 

Let No denote the set of all nonnegative integers. 
Let X be a nonempty set, let IV be a positive integer and le t / , ..., fN: X -> X 

be commuting bijections; i.e. one-to-one and onto functions such that fmofn = 
= f ofm for any m, ne {1,..., IV}.For every xeX denote by Cfu...fN(x) the orbit 
of the point x generated by functions/, ...,/N; i.e. the equivalence class, containing 
x, of the relation ~ on X defined by 

x ~ yoy = fmi o ... ofN
N(x) for some mi, ..., mNeZ. 

Clearly, 

Ch,...jN(x) = {fr o ... oftfN(x): mi,..., mN e Z}. 

From now on let 

^ = {Ql,..jN(x):xeX} 

and let 

^* = {Qu..,fN(x) e V :fm o ... o / ^ ( x ) = x => mx = ... = mN = 0 
for any mi, ..., mN e Z}. 

Our general hypothesis read as follows. 
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(Ho) The set X is uncountable, Z is a set with a distinguished element 0, Y is 
a set, IV is a positive integer and f, ..., fN: X -> X are pairwise commuting 
bijections. 

(Hi) The function F : X x YN + 1 -> Z is such that the equation 

F(x, y0, ..., yN) = 0 

is solvable under each variable y0, ..., yN, i.e. 

(5) Л Л Л \/ F(x,y0,...,yN) = 0. 
xeX nє{0,...,N} УІЄYJФП ynєY 

(H2) The functions f, ..., fv are such that 

card (<ířW*) < card X. 

(H3) Equation (1) has a solution on the set (J(<A<ÍÍ*). 
We are now in a position to formulate our main result. 

Theorem. Assume (H0) - (H3). Let M be afamily ofsubset ofXx Ysatisfying 
(2) and (3). Then there exists a solution ę: X -> Yof(l) which has a big graph 
with respect to the family Øt. 

In the proof of the Theorem we need the following lemma. 

Lemma. Assume (H0) and (Hi), and let xєX. If Cfъ...jN(x) є ^ * thenfor every 
y є Ythere exists a solution ę: Cfu...jN(x) -» Y of (ì) such that (p(x) = y. 

Proof. Ғix a y є Y and put ę (x) = y. Now we have to extend ę on the whole 
orbit Cfu...fN(x) in such a manner that 

(6) 
F(fГ o ... oßN(x), <p(fp o... oß»(x)), 
ę(ff' + l O ... oß»(x)), ..., ę(fГ O ... Oß»+l(x)) = 0 

for any (ph ..., pN)eZN. 
We first define cp arbitrarily on the set 

fp o ... ofSN(x):(Pu ..., PN)e j j ZN~k x {0}x (-\f-l\{{0,..., 0)} 
/c=i 

Next using solvability condition (5) with n = TV, for any (pi, ..., pN)e 
e ZN _ 1 x W we choose an element 

(7) cp(fpo... of$»(x))eY 

in such a way that (6) is satisfied. 
Then, in turn for / = 1,..., N — 1, using condition (5) with n = N — /, for any 

(pi, ..., PN) e J_N~l~l x H x (— N)1 we choose an element (7) in such a way that 
(6) is satisfied. 



Finally, using (5) with n = 0, for any (pu ..., pN) e ( — N)N we choose an element 
(7) in such a way that (6) is satisfied. 0 

Proof of the Theorem. The family %> of all the orbits is a partition of X and 
a function cp: X -> Y is a solution of (1) if and only if for every x e X the function 
<p\cflt..m,fN{x) is a solution of (1). This allows us to define a solution cp of (1) by 
defining it on each orbit. 

Using (H3) we fix a solution <p0 of (1) on the set (J(^W*). Now we only need 
to define a solution cp of (1) on any orbit from ^* . 

Let y be the smallest ordinal such that its cardinal |y| equals that of 01 and let 
(Roc: a < y) be a one-to-one transfinite sequence of all the elements of ^2. Using 
the transfinite induction we will define a sequence ((xa,ya): a < y) of elements of 
X x Y such that for every a < y we have 

(8) (xa,}!a) e /?a 

and 

(9) xa G TT (.Ra)\(J {C G ̂ * : xp G C for some fi < a}. 

Fix a < 7 and suppose that we have already defined suitable (xp, yp) for (5 < a. 
It follows from (H0, (Hi), (H2) and (2) that 

card (J { C G ^ * : xp e C for some j8 < a} < Ko * |a| = max {^, |a|} < card X 

which jointly with (3) ensures that the set occurring in (9) is nonempty and we can 
choose a point xa from it. In particular, xa G % (i?a) and so there exists a ya such 
that (8) holds. 

Fix now an orbit C G #*. If the set 

(10) C n { ^ : « < ? } 

is nonempty, then, according to (9), it consists of exactly one point xa and we put 

(x, y) = (x«,jla). 

If the set (10) is empty, then we choose (x, y) e C x Y arbitrarily. In both these 
cases C = CfujN(x). Applying now Lemma 1 we get a solution cpc'. C - • Y of 
(1) such that 

cpc(x) = y. 

Putting 

(p = IJ (pc u (p0 
Ce<#* 

we obtain a solution of (1) satisfying cp(xfX) = y* for every a < y, which jointly 
with (8) shows that cp has a big graph witth respect to the family ffl 0 



3. Corollaries 

Let us mention two consequences of the Theorem. Both concern special cases 
of equation (11) and was studied by many authors. 

Given a field IK with 0 as the neutral element of addition we denote by IK* the 
set K\{0}. 

Let V be an uncountable linear space over a field IK and let gu ..., gN: X -> IK* 
and h: X -> V be arbitrary functions. Define a function F: X x VN+l -> V by 

F(x, y0, ..., yN) = -yo + gi(x)yi + ... + gN(g)yN + h(x). 

Then (HO holds and (1) takes the form (see [16, Ch. 6] and [3]) 
N 

(11) <p(x) = X 3n(x)q>(fn(x)) + h(x). 
n-\ 

Corollary 1. Assume that V is an uncountable linear space over a field IK and 
a1? ..., ccNe IK* fulfill 

N 

Y\oC^n = 1 => m1 = ... = mN = 0 for any m1? ..., mNeZ. 
n 1 

Let 2̂ be a family of subsets of V x V such hat (2) and (3) hold. Then for every 
function gu ..., gN: V-> IK* and h: V-> Vsuch that £JL- g«(0) # 1 or M0) = 6 
there exists a solution cp: V-> V of equation 

N 

(12) <p (x) = X gN (*) <P Kx ) + h (x) 
n-\ 

which has a big graph with respect to the family 01. 

Proof. Define functions f, ..., fN: V-> V by 

(13) fn(x) = ctnx. 

Then f, ..., fN are pairwise commuting bijections and Cfl fN(x) e %?* if and only 
if x ?- 0. Hence (H0) and (H2) hold. Since |J(<A^*) = {0}',we conclude that (H3) 
holds if and only if h(6) = 0 or ££.- ff„(0) # 1. 0 

Equation (12) was studied, among others, in [1], [8], [9] and [12]. 

Corollary 2. Assume that X is an uncountable set, V is a linear space over 
a field IK, ifr. X -• V is a bijection and al5 ..., aN e V\{0}fulfill 

N 

J] ftvzn = 9 => m{ = ... = mN = 0 for any ml5 ..., mN e Z. 
n 1 

Let M be a family of subsets of X x V such that (2) and (3) hold. Then for every 
functions gl9 ..., gN: X -> IK* and h: X -> V there exists a solution <p: X -> V of 
equation 



N 

(14) cp(x)= X gn(x)(p(ily-l(^(x) + an)) + h(x) 
n 1 

which has a big graph with respect to the family 01. 

Proof. Define functions f, ..., fN: X -> X by 

/„(x) = ^ " ^ (*) + «»)• 
Then fi,...,fv are pairwise commuting bijections and ^ * = ^ . Hence (H0) and (H2) 

hold. Since ( J ( ^ * * ) = & w e s e e t h a t (H3> h o l d s - D 

Equation (14) was studied, for example in [2], [10], [11] and [17]. 

4. Properties of functions having a big graph 

For the convenience of the reader we repeat from [5] topological and mea­
sure-theoretical properties of functions with big graph with respect to family (4). 

Proposition 1. Assume X is aTx- space and has no isolated point. Ifcp: X -> Y 
has a big graph with respect to family (4), then the set (X x l)\Gr cp contains no 
subset of X x Y of second category having the property of Baire. 

Proposition 2. Assume X is a Tx - space and X is a measure on 0)(X x Y) 
vanishing on all the vertical lines {x} x Y, xe X. If cp: X ^ Y has a big graph 
with respect to family (4), then the set (X x Y)\Gr<p contains no Borel subset of 
X x Y of positive measure X. 

Proposition 3. Assumme that X and Y are connected spaces and every 
nonempty open subset of X is uncountable. If cp: X -> Y has a big graph with 
respect to family (4), then Gvcp is dense and connected in X x Y. 

5. Remarks 

It is evident that assumption (H3) is needed. We will show that any of the 
assumptions (H^ and (H2) cannot be omitted, too. 

1. Let ph ..., pN be pairwise different prime numbers and consider solutions cp: 
U -> IR of the following functional equation 

I>Mi = °-
n=\ 

It is easy to see that the zero function is the only solution of the above equation. 
Hence there is no solution with big graph. Here (HO does not hold but both (H2) 
and (H3) are satisfied. 

10 



2. Let pl9 ..., pN e C*, let p e C, let an = cos jffi + i sin 77^ for every n e {1, 
..., AT} and let f , . . . , fN: C* -> C* be functions defined by (13). Consider solutions 
cp: C* -» C of the following functional equation 

(15) <p(z) = I w M + p-

Observe that for every z e C* we have CfNt_tfN(z) = {z, a tz, ..., ccNz). Thus the 
problem of finding a solution cp: C* -» C of (15) reduces to the problem of finding 
a solution cp: Cfu_tfN(z) -> C of (15) for given z e C* of the following matrix 
equation 

1 

PN 

-PI 
1 

-Pг 

-Pi 

-Pi 

-PN 

~PN 

~PN-I 

-PI 

1 

cp(z) 
<p(a>\z) 

_(p(ocNz)_ 

Now take Pn's in such a manner that the determinant of the above matrix of p'ns is 
nonzero then equation (15) has exactly one solution and this solution takes at most 
N + 1 values. Hence there is no solution with big graph. Here (H2) does not hold 
but both (H^ and (H3) are satisfied. 
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