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Embedding Topological Semigroups 
into the Hyperspaces over Topological Groups 

TARAS BANAKH AND OLENA HRYNIV 

Kielce, Lviv 

Received 15. March 2007 

We study algebraic and topological properties of subsemigroups of the hyperspaces 
exp(G) of non-empty compact subsets of a topological group G endowed with the 
Vietoris topology and the natural semigroup operation. On this base we prove that 
a compact Clifford topological semigroup S is topologically isomorphic to a subse-
migroup of exp (G) for a suitable topological group G if and only if S is a topological 
inverse semigroup with zero-dimensional idempotent semilattice. 

1. Introduction 

According to [Ber] (and [Trn]) each (commutative) semigroup S embeds into 
the global semigroup Г(G) over a suitable (Abelian) group G. The global 
semigroup Г (G) over G is the set of all non-empty subsets of G endowed with the 
semigroup operation (A,B)Һ-+AB = {ab:aєA, bєB}. If G is a topological 
group, then the global semigroup Г (G) contains a subsemigroup exp (G) consisting 
of all non-empty compact subsets of G and carrying a natural topology turning it 
into a topological semigroup. This is the Vietoris topology generated by the 
sub-base consisting of the sets 

U+ = {Kє exp(S) : К c [ / } and U~ = {Kє exp(S): K n U Ф 0} 

where U runs over open subsets of S. Endowed with the Vietoris topology the 
semigroup exp(G) will be referred to as the hypersemigroup over G (because its 
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underlying topological space is the hyperspace exp (G) of G, see [TZ]). Since each 
topological group G is Tychonov, so is the hypersemigroup exp(G). The group 
G can be identified with the subgroup {K e exp (G): \K\ = 1} of exp (G) consisting 
of singletons. 

The main object of our study in this paper is the class Ж of topological 
semigroups S that embed into the hypersmigroups exp (G) over topological groups 
G. We shall say that a topological semigroup Si embeds into another topological 
semigroup S2 if there is a semigroup homomorphism h: Si -» S2 that is a topolo-
gical embedding. In is clear that the class Ж contains all topological groups. On 
the other hand, the compact topological semigroup ([0, l],min) does not belong to 
Ж, see [BL]. In this paper we establish some inheritance properties of the class 
Ж and on this base detect compact Clifford semigroups belonging to Ж: those are 
precisely compact Clifford inverse semigroups with zero-dimensional idempotent 
semilattice. 

Let us recall that a semigroup S is 
• Clijford is each element x e S lies in a subgroup of S; 
• inverse if each element x e S is uniquely invertible in the sense that there is 

a unique element x" 1 є S called the inverse of x such that xx lx = x and 

• algebraically regular if each element x є S is regular in the sense that 
xyx = x for some y є S; 

• a semillattice if xx = x and xy = yx for all x, y e S. 
It is known [CP, 1.17], [Pet, П.1.2] that a semigroup S is inverse if and onlу if 

S is algebraicallу regular and the set E = {xe S: xx = x) of idempotents is 
a commutative subsemigroup of S. The subsemigroup E will be called the 
idempotent semilattice of S. An inverse semigroup S is Clifford if and onlу if 
xx l = x~xx for all x e S. In this case S = [JЄЄEHЄ where He = {xe S : xx l = 
= e = x~lx) are the maximal subgroups of S corresponding to the idempotents 
e of S. 

The above classes of semigroups relate as follows: 

group inverse 
\ S \ 

Clifford inverse algebraicallу regular 
/ \ S 

semilattice Clifford 

These classes form varieties of semigroups, which means that theу are closed 
under taking subdirect products and homomorphic images. As we shall see later, 
the class Ж is not closed under homomorphism images and thus does not form 
a varietу but is invariant with respect to manу operations over topological 
semigroups. 

Bу a topołogical semigroup we understand a topological space S endowed 
with a continuous semigroup operation. A topological semigroup S is called 



a topological inverse semigroup ifS is an inverse semigroup and the inversion map 
(•) l : S -> S, (-) _ 1 : x i—> x " 1 is continuous. 

Now we define three operations over topological semigroups that do not lead 
out the class Ж. 

We say that a topological semigroup S is a subdirect product of a family 
{ІSX : a є A) of a topological semigroups if S embeds into the Tychonov product 
YІ*ЄA Sa endowed the coordinatewise semigroup operation. 

Another operation is the semidirect product S X7 G of a topological semigroup 
S and a topological group G acting on S by authomorphism. More precisely, let 
Aut (S) denote the group of topological auto-isomorphisms of the semigroup S and 
o: G -> Aut (S) be a group homomorphism defined on a topological group G and 
such that the induced map 

o : G x S -> S, õ : (g, s) i—> o (g) (s) 

is continuous. By S>? G we denote the topological semigroup whose underlying 
topological space is the Tychonov product S x G and the semigroup operation is 
given by the formula (5, g) * (s', g') = (sg (s'), gg'). The semidirect product 
S Xd Aut (S) of a semigroup S with its automorphism group is called the holomorph 
of S and is denoted by Hol (S). 

One can easily check that for an algebraically regular (inverse) topological 
semigroup S the semidirect product S X7 G with any topological group G acting on 
S is an algrabraically regular (inverse) topological semigroup. The situation is 
different for Clifford topological semigroups: the semidirect product S X7 G is 
Clifford inverse if and only if S is Clifford inverse and the group G acts trivially 
on the idempotents of S, see Proposition 3. 

The third operation that does not lead out the class Ж is attaching zero to 
a compact semigroup from Ж. Given a topological semigroup S let S° = S u {0} 
denote the extension of S by an isolated point 0 ф S such that 80 = 08 = 0 for all 

5ЄS°. 

Theorem 1. The class Ж is closed under the following three operations: 
(1) subdirect products; 
(2) semidirect products with Abelian topological groups; 
(3) attaching zero to compact semigroups from Ж. 

Proof 1. The first item follows from the fact that for any family {Яa)aєл of 
topological groups the map 

E : П exp (Яa) -> exp ІЦнX E : (K^SA Ь - П ^ « 
cceA \txєA J OLЄA 

is an embedding of topological semigroups. 
2. The second item is less trivial an will be proved in Section 2. 
3. If S є Ж is a compact semigroup, then there is an embedding / : S -> exp (Я) 



of S into the hypersemigroup exp (II) of some compact topolgical group II, see 
Proposition 1 below. Take any compact topological group G containing II so that 
H ^ G a n d define the map f° : 5° -> exp (G) letting f° | S = f and f° (0) = G. It 
can be shown that f° is a topological embedding and thus S° e &?. ~~ 

Problem 1. Is the class ffl closed under taking semidirect products with 
arbitrary (not necessarily Abelian) topological groups? 

In light of Theorem 1 it is natural to consider the smallest class 3^0 of 
topological semigroups, closed under subdirect products, semidirect products 
with Abelian topological groups and attaching zero to compact semigroups 
from 3^. Since the class of topological inverse semigroups is closed under those 
three operations, we conclude that Jtifo is a subclass of the class of topological 
inverse semigroups. Consequently, J^o is strictly smaller that the class Jif (because 
for a topological group G the semigroup exp(G) is inverse if and only if 
\G\ < 2. 

Nonetheless we can ask the following 

Question 1. Does each (compact) topological inverse semigroup S e 2tf belong 
to the class J^o? 

In this respect let us note the following property of compact semigroups from 
the class 2tf. 

Proposition 1. A compact topological semigroup S belongs to the class 2tf if 
and only if S embeds into the hypersemigroup exp (G) over a compact topological 
group G. 

Proof. Given a compact topological semigroup S e 3tf find an embedding 
h:S -> exp(G) of 5 into the hypersemigroup exp(G) over a topological group G. 
It follows from [TZ, 2.1.2] that the union H = {JSesh(s) cz G is compact. Moreo­
ver, H is a subsemigroup of G. Indeed, given arbitrary points y,y' e H find points 
x,x' eS with yeh(x) and y' eh(x'). Then yy' eh(x)h(xf) = h(xx') cz H. Being 
a compact cancellative semigroup, If is a topological group by [CHK1, Th.1.10]. 
Since h(S) cz exp (II) cz exp(G), we see that S embeds into the hypersemigroup 
exp (II) over the compact topological group II. • 

We shall affirmatively answer the "compact" part of Question 1 under an 
additional assumption that S e J f is Clifford. For this we first establish some 
specific algebraic and topological properties of algebraically regular semigroups 
Setf. 

Let us call two elements x, y of an inverse semigroup S conjugated if x = zyz~l 

and y = z~lxz for some element zeS. For an element e e E of a semilattice E let 
fe = \JeE:ef = e) denote the principal filter of e. We say that two elements 
e,feE are incomparable if their product ef differs from e and f (this is equivalent 
t oe<£T/and f£Te) . 



A topological space X is called 
• totally disconnected if for any distinct points x,yeX there is a clo-

sed-and-open subset U a X containing x but not y; 
• zero-dimensional if the family of closed-and-open sets forms a base of the 

topology of X. 
It is known that a compact Hausdorff space is zero-dimensional if and only if it is 
totally disconnected. 

Theorem 2. If a topological semigroup S e J f is algebraically regular, then 
(1) 5 is a topological inverse semigroup; 
(2) the idempotent semilattice E of S has totally disconnected principal filters 

| e , e e E; 
(3) an element xe S is an idempotent if and only if x2x~x is an idempotent; 
(4) any distinct conjugated idempotents of S are incomparable. 
This theorem will be proved in Section 3. 

Remark 1. Theorem 2 allows us to construct many examples of algebraically 
regular topological semigroups non-embeddable into the hypersemigroups over 
topological groups. The first two items of this proposition imply the result 
of [BL] that non-trivial rectangular semigroups and connected topological semilat-
tices do not belong to the class ffl. The last two items imply that the class J f 
does not contain neither Brandt nor bicyclic semigroup. A bicyclic semigroup 
is a semigroup generated by two elements p, q connected by the relation 
qp = 1. 

By a Brandt semigroup we understand a semigroup of the form 

B(H,K) = (K x H x K)V {0} 

where H is a group, K is a non-empty set, and the product (a, h, /?) * (a', h\ /?') of 
two non-zero elements of B (if, K) is equal to (a, hh\ /}') if /? = a' and 0 otherwise. 
Brandt and bicyclic semigroups play an important role in the structure theory of 
inverse semigroups, see [Pet]. 

The following theorem answers affirmatively the "compact" part of Question 1. 

Theorem 3. For a compact topological Clifford semigroup S the following 
conditions are equivalent: 

(1) 5 belongs to the class J^; 
(2) 5 belongs to the class J f o; 
(3) 5 is a topological inverse semigroup with zero-dimensional idempotent 

semilattice E; 
(4) S embeds into the product Y[^E He; 
(5) S embeds into the hypersemigroup exp (G) of the compact topological group 

G = \\esE He, where for each idempotent e e E He is a non-trivial compact 
topological group containing the maximal group He. 



Proof. It suffices to prove the implications: (4) => (5) => (2) => (1) => (3) => (4) 
among which (5) => (2) => (1) are trivial. 

(4) => (5). Assume that S embeds into the product ]~JeєE H°e. For еach idеmpotеnt 
e e E fix a non-trivial compact topological group He containing He and dеfinе an 
еmbеdding fe:He -» еxp (Йe) lеtting fe (h) = {h} if h e He and fe (0) = He. 

Thе product of еmbеddings fЄ9 eeE, yiеlds еmbеddings 

S -> ЦH0

e -+ П е x P ( ^ ) "• е x p / f Ш 
eЄE eЄE leЄE f 

thе lattеr homomorphism dеfinеd by 

П еxp (He) э (Ke)eeE ь-> f ] кe~ еxp (П Ht 
eЄE eЄE leЄE 

(1) => (3) Assumе that Se Ж. Thеn S is a compact topological invеrsе sеmi-
group according to Thеorеm 2(1). Thе sеmigroup E of idеmpotеnts of S is compact 
and thus contains thе smallеst idеmpotеnt e e E (in thе sеnsе that ee' = e for all 
e' e E). By Thеorеm 2, thе principal filtеr \e = E is totally disconnеctеd and bеing 
compact, is zеro-dimеnsional. 

(3) => (4) Assumе that S is a compact topological invеrsе Clifford sеmigroup 
with zеro-dimеnsional idеmpotеnt sеmilatticе E. Lеt к:S -> £, ÏÏ:XИ xx~l = 
= x~lx bе thе rеtraction of S onto E. Thе sеt E carriеs a natural paгtial ordеr 
<: e < ë iff ee' = e. Lеt E0 = {ee E :\e is opеn} stands for thе sеt of locally 
minimal еlеmеnts of E. 

For еvеry e e E \ E0 lеt he: S -> H°e bе thе trivial homomorphism mapping S into 
thе zеro of He. 

Nеxt, for еvеry e e E0 considеr thе homomorphism he:S -> H°e dеfinеd by 

h(s\= í ^ if sєтrҶîé,); 
e^ ' \ 0, othеrwisе 

Taking thе diagonal product of thе homomorphisms he, ee E, wе obtain a ho-
momorphism 

h = (йe)eєE: S -> ПH°e, h:s^(he(s))eeE. 
eЄE 

Wе claim that h is injеctivе and thus an еmbеdding of thе compact sеmigroup 
5 into \eeEHl 

Lеt x,y e S bе two distinct points. If к(x) ф к(y) thеn еithеr к(x)ф\к(y) or 
к(y) ф \к(x). Wе losе no gеnеrality assuming thе first casе. Considеr thе sеt 
U = {ueE: к(x) ф \u} and notе that it is opеn and U = \U whеrе \U = 
= {ve E :3ue E with u < v}. Also к(y) e U. By Proposition 1 of [Hr] thеrе is 
a continuous sеmilatticе homomorphism h : E -> {0,1} such that к(y) e h~Ҷl) ^ 



cz \U. The preimage h l (1), being a compact subsemilattice of £, has the smallest 
element e, that belongs to E0 because h Ҷl) = \e. 

Now the defínition of the homomorphism he and the non-inclusion к(x)ф\e 
imply that he(x) = 0 while he(y) є He. Hence he(x) ф he(y) and h(x) ф h(y). 

Finally consider the case к (x) = к (y). Observe that the set U = [e є E: xy ф ye\ 
contains the idempotent к(x) = к(y) and coincides with \U. Again applying 
Proposition 1 of [Hr] we can find a continuous semilattice homomoфhism 
h: E -• {0,1} such that к(x) = к(y)eh Ҷl) cz \U. The preimage h Ҷl), being 
a compact subsemilattice of £, has the smallest element e. Since h Ҷl) = \e is 
open m £, e є E0. It follows from eeU that he (x) = ex ф ey = he (y) and hence 
h(x)фh(y). D 

Theorem 3 will be applied to characterize Clifford compact topological semi-
groups embeddable into the hypersemigroups of topological groups G belonging 
to certain varieties of compact topological groups. A class <å of topological groups 
is called a variety if it is closed under taking arbitrary Tychonov products, taking 
closed subgroups, and quotient groups by closed normal subgroups. 

Theorem 4. Let <S be a non-trivial variety of compact topological groups. 
A Clifford compact topological semigroup S embeds into the hypersemigroup 
exp (G) of a topological group G єУ if and only if S is a topological inverse 
semigroup whose idempotent semilattice E is zero-dimensional and all maximal 
groups He, eeE, belonд to the class У. 

This theorem will be proved in Section 4 after establishing the nature of group 
elements in the hypersemigroups. 

The classes Ж and Ж0 are closed under subdirect products but are very far from 
being closed under homomoфhic images. We shall show that the class of 
continuous homomorphic images of compact Clifford semigroups S є Ж0 coinci-
des with the class of all compact Clifford inverse semigroups with Lawson 
idempotent semilattices. We recall that a topological semilattice E is called Lawson 
if open subsemilattices form a base of the topology of E. By the fundamental 
Lawson Theorem [CHK2, Th. 2.13] a compact topological semilattice is Lawson 
if and only if the continuous homomorphisms to the min-interval [0,1] separate 
points of S. It is known [CHK2, Th. 2.6] that each zero-dimensional compact 
topological semilattice is Lawson. 

Proposition 2. A topological semigroup S is a continuous homomorphic image 
of a compact Chfford semigroup S0 e Ж0 if and only if S is a compact Clifford 
topological inverse semigroup with Lawson idempotent semilattice. 

Proof To prove the "only if' part, assume that a topological semigroup 5 is the 
image of a compact Clifford semigroup 50 є Ж0 under a continuous homomor-
phism h : S0 -> 5. By Theorem 3(3), 5 0 is a topological inverse Clifford semigroup 
with zero-dimensional idempotent semilattice E0. Then 5 is an inverse Clifford 



semigroup, being the homomoфhism image of S0, see [Pet, L.П.1.10]. Moreover, 
being compact topological semigroup, S is a topological inverse semigroup, see 
[KW], [Kr] or [BG]. It follows that the semigroup E of idempotents of S is the 
homomoфhic image of the semilattice E0. Being zero-dimensional and compact, 
the semilattice £0 is Lawson [CHK2, Th.2.6]. Then E is Lawson as the compact 
homomoфhic image of a Lawson semilattice [CHK2, Th.2.4], 

To prove the "if' part, assume that S is a compact topological inverse Clifford 
semigroup 5 with Lawson semilattice E of idempotents. By Corollary 1 of [Hr], 
5 embeds into a product f|aєЛ Я a of the cones over compact topological groups 
Я a. By definition, for a compact topological group G the semigroup 

Я = Я x [0,1]/Я x {0} 

that is the quotient semigroup of the product Я x [0,1] of Я with the min-interval 
[0,1] by the ideal Я x {0}of Я x [0,1]. 

Observe that the unit interval [0,1] is the image of the standard Cantor set 
C cz [0,1] under a continuous monotone map h : C -> [0,1] well-known under the 
name "Сantor ladder". The map h can be thought as a continuous semilattice 
homomoфhism h: C -> [0,1], where both C and [0,1] are endowed with the 
operation of minimum. Then Я is the image of the semigroup Я x C, which is 
a compact topological inverse Сlifford semigroup with zero-dimensional idem-
potent semilattice C. 

Thus for each index a є A with can construct a continuous surjective homo-
moфhism й a : Sa -> Я a of a compact topological inverse Сlifford semigroup 
Sa with zero-dimensional idempotent semilattice onto the semigroup Я a. Taking 
the product of those homomoфhisms we obtain a continuous surjective homo-
moфhism 

h-.Цs. -> Г R . 
otєA OLЄA 

It is clear that ПaЄv4Sa is a compact topological inverse Сlifford semigroup with 
zero-dimensional idempotent semilattice. By Theorem 3(2), this semigroup 
belongs to the class Ж0 and so does its subsemigroup S0 = h~l(S). It remains to 
observe that 5 is the continuous homomoфhism image of the semigroup 
S0 є Ж0. D 

This proposition yields many examples of compact Сlifford semigroups S ф Ж 
that are continuous homomoфhic images of compact Сlifford semigroups S0 є 
є Ж0 a Ж. We have also a non-Сlifford example. 

Example 1. The holomorph Hol(E3) = E3\Aut(E3) of the 3-element semi-
lattice E3 = {e,fef} belongs to the class Ж0 but contains the 2-element ideal 
I = {ef} x Aut (E3) such that quotient semigroup Hol (E3)/I is isomorphic to the 
5-element Brandt semigroup B(ZҺ2) and thus does not belong to the class Ж. 

10 



The remaining part of the paper is devoted to the proofs of the results announced 
in the Introduction. 

2. Semidirect products of topological semigroups 

In this section we shall prove that the class ^f is closed under semidirect 
products with Abelian topological groups. 

Let G be a topological group. By a topological G-semigroup we understand 
a topological semigroup S endowed with a homomorphism o -> G -> Aut(S) of 
G to the group of topological automorphisms of S such that the induced action 
o : G x S -> S, s : (g, s) i—> o (g) (s), is continuous. It will be convenient to denote 
the element o (g) (s) by the symbol gs. 

The semidirect product S>? G of a topological G-semigroup S with G is the 
topological semigroup whose underlying topological space is S x G and the 
semigroup operation is defined by (s, g) * (s', g') = (s • gs', gg'). If the action o of 
the group G on S is clear from the context, then we shall omit the symbol o and 
will write S\G instead of SX7 G. 

The following proposition describes some algebraic properties of semidirect 
products. 

Proposition 3. Let S\G be the semidirect product of a topological G-semig­
roup S and a topological group G. 

(1) S\G is a (topological) inverse semigroup if and only if S is a (topological) 
inverse semigroup; 

(2) S\G is a topological group if and only if S is a topological group; 
(3) S\G is an inverse Clifford semigroup if and only ifS is an inverse Clifford 

semigroup and ge = e for any g e G and any idempotent e of S. 

Proof. First observe that S can be identified with the subsemigroup S x {e} of 
S\G where e is the unique idempotent of G. 

1. Assume that S is an inverse semigroup. To show that SXG is a inverse 
semigroup we should check that the idempotents of SXG commute and each 
element (s,g)e S\G has an inverse. For this observe that (g~ls l,g l) is an 
inverse element to (s, g). Indeed, 

(s,g) * (g ls \g l) * (s,g) = (ss \e)(s,g) = (ss~ls,g) = (s,g). 

By analogy we can check that 

(g~xs \g-l)(s,g)(g~1s \g l) = (g ls \g~1). 

Observe that an element (s, g) is an idempotent of the semigroup S X G is and 
only if s and g are idempotents. This observation easily implies that the idem­
potents of the semigroup S\G commute (because the idempotents of S commute). 

11 



If S is a topological inverse semigroup, then the map (•) {: S -> S, (•) ^ s и s l 

is continuous. The continuity of this map can be used to show that the map 

Q - ^ S X G -> SXG, 0 ~ 1 : M i-> {g-ls-\g-1) 

is continuous too. 
Next, assume that S X G is an inverse semigroup. Given any element s consider 

the element x = (s,e)є S\G and find its inverse x" 1 = (sf, g) in SXG. It follows 
from (s,e)(s\g)(s,e) = xx~гx = x = (s,e) that g = e and then ss's = s and 
s'ss' = s, which means that s' is the inverse element to s in the semigroup S. Since 
the idempotents of SXG commute and lie in the subsemigroup S x {e}, the 
idempotents of S commute too, which yields that S is an inverse semigroup. 

If SXG is a topological inverse semigroup, then S is a topological inverse 
semigroup, being a subsemigroup of S X G. 

2. The second item follows from the first one and the fact that a topological 
semigroup is a topological group if and only if it is a topological inverse semigroup 
with a unique idempotent. 

3. Assume that the semigroup S is inverse and Clifford, and G acts trivially on 
the idempotents of S. By the first item, SXG is an inverse semigroup. So it 
remains to prove that xx _ 1 = x _ 1x for all x = (s,g)є SXG. Observe that 
x _ 1 = (g-^-^g- 1) and thus 

x _ 1 x = (g-^s-^g-^fag) = (g-^g-^e) = (g-Ҷs-^e) = 
= (s-Чe) = (ss~\e) = (s.g^g-^s-^g-1) = xx"1. 

Here we used that G acts trivially on the idempotents of S and hence 
g-^^-^s) = s~ls. We also used that fact that g"1: s ь^ g_1s is an automorphism 
of the semigroup S and thus gf_1(s_1s) = (g-^s - 1)^"^). Now assume that the 
semigroups SXG is Clifford and inverse. The S is Clifford, being a subsemi-
group of S X G. It remains to show that G acts trivially on the idempotents of 5. 
Take any idempotent s є S, any g є G, and consider the element x = (s, g) and its 
inverse x _ 1 = (g-^s-1,^-1). Since SXG is Clifford, xx"1 = x_ 1x, which implies 
that 

x _ 1 x = (g-ls-l

9g-l)(s9g) = (g-^g-^e) = (g-^-^e) = 

= (g_1s, e) = xx"1 = (ss-^^e) = (s,e) 

and thus gs = s. П 

If S is a topological G-semigroup, then exp (S) has a structure of a topological 
G-semigroup with respect to the induced action 

G x exp(S) -> exp(S), (g,K) i—• gK = {gs:sєK}. 

Thus is it legal to consider the semidirect product exp (S) X G. 
The proof of the following proposition is easy and is left to the reader. 

12 



Lemma 1. The map 

£:exp(s)XG -> exp(SXG), E:(K,g) i-> K x [g] 

is a topological embedding of the topological semigroups. 

For a topological semigroup S consider the Tychonov power SG as a topological 
G-semigroup with the following action of G: 

(gД8a)aєG) h " > (8øa)aєG-

A homomoфhism h: S -> S' between two G-semigroups is called G-equivariant if 
h (gs) = gh (s) for every g є G and 8 є S. The proof of the following lemma also is 
left to the reader. 

Lemma 2. For any topological semigroup H the map 

E : exp (Я)G - exp (ЯG), E : (Ka)XĚG ^ Г] к« 
aєG 

is a G-equivariant embedding of the corresponding G-semigroups. 

The following immediate lemma helps to transform semigroup embedding into 
G-equivariant embedding. 

Lemma 3. Let G be an Abelian topological group. If f:S -> Я is an embed-
ding ofa topological G-semigroup H into a topological semigroup Я, ten the map 

F:S - ЯG F : m ( / ( 4 G 

is a G-equivariant embedding of the G-semigroup S into the G-semigroup HG. 

Finally we are able to prove the second item of Theorem 1. 

Theorem 5. Let G be an Abelian topological group. Ifa topological G-semigroup 
S embeds into the hypersemigroup exp (Я) of a topoloдical group Я, then the 
semidirect product S\G embeds into the hypersemigroup exp(ЯGXG) of the 
topological group HG X G. 

Proof Let f: S -> exp (Я) be an embedding. By Lemmas 3 and 2, the map 

F:S -* exp(ЯG), F:s Һ-> Цf(ots) 
aєG 

is a G-equivariant embedding. The G-equivariantness of F guarantees that the map 

E:S\G -> exp(ЯG)XG, E:(s,д) Һ-> (F(s),g) 

is an embedding of the corresponding topological semigroups. Finally, applying 
Lemma 1 we see that the semigroup SXG admits an embedding into the 
hypersemigroup exp (ЯG X G) of the topological group HG\G. • 

13 



3. Idempotents and invertible elements of the hypersemigroups 

In this section given a topological group G we characterize idempotent and 
related special elements of the hypersemigroup exp (G). We recall that an element 
x of a semigroup S is called 

• an idempotent if xx = x; 
• regular if there is an element y e S such that xyx = x; 
• (uniquely) invertible if there is a (unique) element x'1 e S such that 

xx~lx = x and x _ 1 x x _ 1 = x"1; 
• a group element if x lies in some subgroup of S. 
It is possible to prove our results in a more general setting of cancellative 

topological semigroups. We recall that a semigroup S is cancellative if for any 
x,y,z e S the equality xz = yz implies x = y and the equality zx = zy implies 
x = y. It is easy to check that the invertible elements of a cancellative semigroup 
form a subgroup. 

Proposition 4. Let X be a cancellative topological semigroup. A non-empty 
compact subset K cz X is 

(1) an idempotent of the semigroup exp(K) if and only if K is a compact 
subgroup of X; 

(2) a regular element of the semigroup exp(K) if and only if K uniquely 
invertible in exp (X) if and only if K = Hx for some compact subgroup 
H cz X and some invertible element x e X; 

(3) a group element in exp(X) if and only if K = Hx = xH for some compact 
subgroup H cz X and some invertible element x e X. 

Proof. 1. If a compact subset K cz X is an idempotent of the semigroup 
exp (X) that is KK = K, then K is a compact cancellative semigroup. It is known 
[CHK1, Th. 1.10] that a compact cancellative semigroup is a group. If K is 
subgroup of X then KK = K. 

2. Assume that K e exp (X) is a regular element of the semigroup exp (X) which 
means that KAK = K for some non-empty compact subset A cz X. Fix any 
element x e K and ae A. The set KA, being an idempotent of the semigroup 
exp (X), coincides with some compact subgroup H of X. We claim that K = Hx 
and the element x is invertible in X. Observe that Hx cz HK = KAK = K and 
thus Hxa cz KA = H, which implies that xa = H is invertible. Consequently, 
xa(xa)~l = e = (xa)~lxa which means that x and a are invertible. It follows from 
Ka<~ KA = H that 

K cz Ha~l = Ha~lx~lx = H(xa)~lx cz HHx = Hx cz K 

and thus K = Hx. 
To show that K is uniquely invertible, assume additionally that AKA = A. In 

this case A = AKA => aKa = aHxa = aH = x~xxaH = x~lH. On the other 
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hand, the equality KAK = K implies xAx <= Hx and A <= x XH. Therefore 
A = x lH is a unique inverse element to K. 

3. If K = Hx = xH for some compact subgroup Я c l and some invertible 
element xєX, then for the element K l = x~lH = Hx~l we get K lK = 
= KK l = Я, which implies that K is a group element of exp (X). Conversely, 
if K is a group element, then KK~l = K~lK = Я for some compact subgroup 
Я <= X and K = Яx for some invertible element xeX (because K is regular). 
Since H = K lK = x~lHHx = x~lHx, we get xH = Hx. • 

Theorem 2 is particular case of the following more general 

Theorem 6. Let X be a cancellative topological semigroup and G be the 
subgroup of invertible elements of X. Let S be an algebraically regular subsemi-
group of exp (X) and E be the set of idempotents of S. 

(1) The semigroup S is inverse and S <= exp(G). 
(2) If G is a topological group, then S is a topological inverse semigroup. 
(3) An element xe S is an idempotent if x2x~l is an idempotent. 
(4) Any distinct conjugate idempotents of S are incomparaЫe. 
(5) The set E is a closed commutative subsemigroup of S andfor every eeE 

the upper cone \e = {f e E : ef = e] is totally disconnected. 

Proof 1. Let 5 be a regular subsemigroup of exp(X). It follows from 
Proposition 4 that each element Kє S, being regular, is equal to Hx for some 
compact subgroup Я <= G and some invertible element xeX. Then 
K = Hx <= G and hence K e exp (G) <= exp (X). By Proposition 4, K is uniquely 
invertible in exp (X) and hence in S, which means that S is an inverse semigroup. 
Moreover, the inverse K~l to K in S can be found by the natural formula: 
K l = {x l:xeK}. 

2. If the subgroup G of invertible elements of X is a topological group, then the 
inversion 

- 1 (•)"1:exp(G) -• exp(G), ( ) _ 1 : K »-> K 

is continuous with respect to the Vietoris topology on exp (G) and consequently, 
the inversion map of S is continuous as well, which yields that S is a topological 
inverse semigroup. 

3. Let K e S be an element such that K2K~l is an idempotent in S and hence 
is a compact subgroup of X. By Proposition 4, K = Hx for some compact 
subgroup H of X and some invertible element xeX. Then K2K~l = 
= HxHxx lH = HxH. The set K2K~\ being a subgroup of X, contains the 
neutral element 1 of X. Then 1 e K2K~l = HxH and hence xe H9 which implies 
that K = Hx = H is an idempotent in exp (X) and S. 

4. Let £, F be two distinct conjugate idempotents of the semigroup S. Find an 
element KeS such that E = KFK'1 and F = K~lEK. By Proposition 4, find 
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a compact subgroup H of X and an invertible element xeX such that K = Hx. 
We claim that E = xFx~l. Indeed, the inclusion 

x lHx = x lHHx = K lK cz K~lEK = F 

implies 

E = KFK l = HxFx {H = xx~lHxFx lHxx l cz xFFFx 1 = xFx l. 

On the other hand, 

H = Hxx lH cz HxFx lH = KFK l = E 

implies 

F = K~lEK = x~lHEHx cz x~lEEEx = x~lEx 

and hence xFx~l cz E. 
5. Since 5 is an inverse semigroup, the set E of idempotents of S is a commu­

tative subsemigroup of S, see [Pet, II. 1.2]. To show that E is closed in S, pick any 
element K e S\E. By Proposition 4, K = Hx for a compact subgroup H cz X and 
an invertible element xeX. Since K is not an idempotent, Hx is not a subgroup, 
which means that the neutral element 1 of H does not belong to Hx. Let 
U = X\{x} and observe that U+ = {Ceexp(K ) : 1 <£ C} is a neighborhood of 
K in exp (X) that contains no subgroup of X and hence does not intersect the set E. 

Now given an idempotent H e i we shall prove that the upper cone 
]H = {Ee £: HE = H} of H is totally disconnected. By Proposition 4, H is 
a compact subgroup of X. It follows that | H cz exp (H). The total disconnected­
ness of \H will be proven as soon as given two distinct elements E0, Ex e | / f we 
find a closed-and-open subset °ll cz fif such that E0e% but Ex $ °U. We loose no 
generality assuming that X = H and hence $ = ]H cz exp (H). 

We first consider the special case when H is a Lie group. Without loss of 
generality E0 cz Ex and hence E0^[Ey = {EeS \E cz E{}. So, it remains to 
prove that the lower cone | £ j is closed-and open in $. The closedness of [Ex 

follows from the continuity of the semigroup operation and the equality 
[E{ = {Ee $ : EEX = Ex}. To prove that IEX is open in $, take any K e [Ex. The 
set K e exp (if), being an idempotent of the semigroup $ is a closed subgroup 
of H. 

By Corollary II.5.6 of [Bre] the subgroup K of the compact Lie group H has an 
open neighborhood 0 (K) cz H such that for each compact subgroup C cz 0 (K) 
satisfies the inclusion xCx~l cz K for a suitable point xeH. We shall derive from 
this that C = K provided C ZD K. Indeed, C z> K and xCx l cz K imply 
xKx~l cz xCx~l cz K. Being a homeomorphic copy of the group K, the subgroup 
xKx l cz K must coincide with K (it has the same dimension and the same 
number of connected components). Consequently, xCx l = K and hence C, being 
homeomorphic to its subgroup K, coincides with K too. 
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The continuity of the semigroup operation of $ yields a neighborhood 
Ox (K) cz S of K such that EK cz 0 (K) for each E e Ox (K). We claim that 
Oi(K) cz [Ei. Take any element EeO{(K) and observe that the product EK, 
being an idempotent in the semigroup S, is a compact subgroup of H containing 
the subgroup K. Now the choice of the neighborhood 0(K) guarantees that 
E cz EK cz K cz Ei and hence E cz [Ex. This proves that Oi(K) cz [Eu witness­
ing that | £ i is open in S. 

Now we are able to finish the proof assuming that H is an arbitrary compact 
topological group. Given distinct elements E0, EyeS cz exp (H) we should find an 
closed-and-open subset °U cz $ containing E0 but not E{. The topological group If, 
being compact, is the limit of an inverse spectrum consisting of compact Lie group. 
Consequently, we can find a continuous homomorphism h: H -> L onto a compact 
Lie group L such that h (E0) and h (E{) are distinct subgroups of L. It follows that 
h(S) = {h(E): E e $} is an idempotent semigroup of the hypersemigroup exp(L). 
Now the particular case considered above yields a closed-and-open subset 
"T cz h(S) containing h (E0) but not h(Ex). By the continuity of the homomorphism 
h the set % = [KeS : h(K) e i^} is closed-and-open in S. It contains E0 but not 
Ex. This proved the total disconnectedness of the upper cone ]H. • 

4. Proof of theorem 4 

In this section we will prove the Theorem 4. Given a Clifford compact 
topological semigroup S and a non-trivial variety <S of compact topological groups 
we should prove that S embeds into the hypersemigroup exp (G) of a topological 
group G e <S if and only if S is a topological inverse semigroup whose idempotent 
semilattice E is zero-dimensional and all maximal groups He, ee E, belong to the 
class CS. 

To prove the "if part, assume that S is a compact Clifford topological inverse 
semigroup whose idempotent semilattice E is zero-dimensional and all maximal 
groups He, ee E, belong to the class <S. For every e e E let He = Ee if H e is not 
trivial and He e <S be any non-trivial compact group if He is trivial (such a group 
He exists because the variety ^ is not trivial). Since <S is closed under taking 
Tychonov products, the compact topological group G = fke£.#e belongs to (S. 
Finally, by Theorem 3(5), the semigroup S embeds into exp(G). 

To prove the "only i f part, assume that S embeds into the hypersemigroup 
exp(G) over a topological group Ge<S. By Theorem 3(3), S is a compact 
topological inverse Clifford semigroup with zero-dimensional idempotent semilat­
tice E. It remains to show that each maximal group He, ee E, of S belongs to (S. 
The embedding of S into exp (G) induces an embedding h:He^> exp (G). The 
image H0 = h (e), being an idempotent in exp (G), is a compact subsemigroup of 
G and thus a compact subgroup of G according to Theorem 1.10 [CHK1]. The 
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same is true for the semigroup H = {JxeHeh (x). It is a compact subgroup of G. We 
claim that H0 is a normal subgroup of H. 

Indeed, for any x e H we can find a point ze He with xehe (z). It follows from 
(the proof of) Proposition 4(3) that he(z) = xH0 = H0xxH0x~l = H0, witnessing 
that the subgroup H0 is normal in H. 

Let 7i: H -> H/H0 be the quotient homomorphism. It follows from Proposition 
4(3) that the composition n O he: He -> H/H0 is a bijective continuous homomor­
phism. Because of the compactness of He9 the group He is isomorphic to H H0, 
which, being the quotient group of the closed subgroup H of the group Ge^ 
belongs to the variety <§. 
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