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SOLUTIONS OF A LINEAR SECOND ORDER EQUATION 
OF PARABOLIC TYPE DEFINED IN AN UNBOUNDED DOMAIN 

M . KRZYŽAŇSKi, K r a k ó w 

The following linear parabolic equation is considered: 
m m 

(1) F(u) = £ atj(t, X) u"XiXj + X bk(t, X) uXk + c(t, X) u - u\ = f(t, X) 
i,j=l k=l 

(X = (x l5 ..., xm); au = ajt, i,j = 1, 2 , . . . , m) , 

whose coefficients and the right hand side member f(t, X) are defined in the zone I: 
0 < t < T, X e Em; Em being the m-dimensional Euclidean space. Tmay equal infinity. 
In what follows, we shall denote the set <0, T) x Em by Z. The quadratic form 

m 

2I(/1)= £ a^UX)^, (t,X)eI, 
i,j=l 

is assumed to be positive definite. 
We shall say that a function u(t, X) is regular in a set G of the time-space Em+1 

of the variables t, xl9..., xm, if u(t, X) is continuous in the set G and has continuous 
derivatives uXi, ux.Xj, u\ (i,j = 1, ..., m) in the interior G(0 of the set G; u(t, X) is 
said to be a solution of equation (1) regular in G if the function is regular in the 
set G and satisfies equation (1) in the interior G(0. 

We shall discuss the problem of finding a solution of equation (1) regular in the zone 
£ and satisfying the initial condition 

(2) u(0, X) = cp(X) for XeEm
9 

where cp(X) is a given function continuous in Fm. This problem is often called the 
Cauchy problem but it is not the Cauchy problem in the sense which is attributed to 
this term in the general theory of equations with partial derivatives, because the initial 
conditions (Cauchy conditions) are reduced to a single one which is imposed on the 
characteristic, while for the case of a second order equation in the group of Cauchy 
conditions there are two conditions imposed on a manifold which is not a characte
ristic. 

Most of the results we will discuss are transferred for the case where the coefficients 
and the right hand side f(t, X) of equation (1) are defined on a certain domain D 
bounded by two m-dimensional domains S0 and ST lying on characteristics t = 0 and 
t = T(T > 0) and by a certain lateral surface a with the time orientation with regard 
to equation (1), the domain D being unbounded in the direction of the x raxis, i.e. 
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the function \x\2 = £ x? is unbounded on the set of points (t9 X)e D (Tmay equal 
i = l 

infinity; then we assume that the part of D situated in a certain zone (0, T") x Em is 
unbounded in the direction of the xraxis). In this case we have to do with Fourier's 
problem in which boundary conditions are imposed on the surface a in addition to 
the initial condition on S0. 

In the case when the values of the solution of equation (1) are given on surface a 
(boundary condition of Dirichlet type) we have the first Fourier problem. Further
more the boundary condition may merely be that at points of a the values of the deri
vative of the solution in a certain direction I (in general depending on situation of the 
point) entering into the domain D are given. Then we have the second Fourier pro
blem. At last, the following boundary condition may occur 

(3) a(t9 X)— + P(t9 X) u = g(t9 X) for (t9 X)ea9 

dl 
where a(t9 X)9 /?(*, X), g(t9 X) are functions defined on a9 oc(t9 X) being non-negative. 

We say that a function w(t9 X) continuous in a set G of the time-space Em+1
9 unbounded 

in the direction of the xraxis (cf. sec. 1), is of class Ea (a > 0) if there exist two non-
negative numbers M and K (generally dependent on the function w(t9 X) itself) such 
that the inequality 

(4) K'>*)| ^MexpK|X|a 

holds for (t9 X) e G. 
A. N. Tihonov (see [22]) proved that, in a particular case of the heat equation 

(5) uxx-u't = 0, 

the Cauchy problem, which has just been formulated, has at most one solution in 
class £2. On the contrary, for every s > 0 in class £2 + c there exists a solution of equa
tion (5) regular in a zone O ^ t ^ T , — oo< x <oo, vanishing for t = 0, and not 
vanishing identically in the zone. 

If the function (p(x) belongs to the class £2, then the solution of the Cauchy problem 
for equation (5) with initial condition (2) (for X = x) is determined by the formula 

(6) " ( ř > * ) = , , /, N fl»G0exP - A \dy 

(see [7], p. 300). The integral on the right hand side is the Fourier-Poisson's integral. 
Formula (6) determines the solution of the Cauchy problem for a certain zone whose 
height depends on the number K appearing in the inequality (4) (a = 2, the definition 
of class JE2). This height may be infinite. In particular, when the function (p(x) is of 
class El9 the height is infinite, that is, the solution is defined in the half-space t = 0. 
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Notice that earlier, E. Holmgren (see [9]) proved the uniqueness of the solution of 
the Cauchy problem for equation (5) in a class of functions wider than E2 as concerns 
the growth condition for x -» GO, but under stronger assumptions concerning the 
regularity of these functions. S. Taklind(see [21]) showed that in order to hold the 
uniqueness of the solution of Cauchy problem in the class of functions satisfying the 
inequality 

|«(*,*)| ^ M e x p [ K | x | % | ) ] , 

where h(z) is a positive function for z > 0, it is necessary and sufficient that the in
tegral 

•°° dz 

Ji Я(z) 

diverges, E(z) being the greatest non-decreasing minorant of h(z). 

Tihonov's result concerning the uniqueness of Cauchy problem in class E2 has 
been extended by the author of the present report (see [10] and [11]) to the general 
linear normal parabolic equation of the form (1), under the assumption that the coef
ficients of equation (1) are bounded. This result can also be immediately applied to the 
first Fourier problem in the domain unbounded in the direction of the x raxis (see 
sec. 1). To prove the uniqueness of the solution of this problem we make use of a ge
neral theorem of M. Picone (see [16]). This theorem is the following 

Theorem 1. (M. Picone.) It is assumed that there exists a functions H(t9 X) regular 

and positive in the set D = D + S0 + o (in the set Zfor the case of Cauchy problem), 

and satisfying the inequality F(H) ^ 0 in the domain D (in the zone S). Then the 

trivial solution u(t9 X) = 0 is a unique solution of equation (1) (with f(t9 X) = 0) 

regular in D (in I), vanishing on the set S = S0 + a (vanishing for t = 0), and 

satisfying the condition 

(7) lim ^11 = 0. 
7 \x\-*H(t9X) 

Because of the role of the function H(t9 X) in the theorem, we shall call it the stifling 

divisor. 

To prove the uniqueness of the solution of the first Fourier problem and, in parti

cular, of the Cauchy problem in class E2 we choose the stifling divisor of the following 

form 

(8) H(t9 X; k) = exp \- * — £ xf + v(k) t\ 
LI - li(k)t i-i J 

in which a certain parameter k and functions /i(fc) and v(k) of the parameter appear. 

One chooses the value of the parameter k > K9 K being the constant appearing in the 

definition of class E2 (see (4)). 
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The above result applies to the case of coefficients satisfying the conditions 

(9) \atj(t9 X)\ = A09 \bj(t9 X)\ = AX\X\ + Bl9 c(t9 X) = A2\X\2 + B2 . 

See [12] for the details. 
The theorem e;milar to theorem 1 concerning the second and third Fourier problems 

is also true. Applying this theorem the author of the report proved the uniqueness of 
the solution of the second and third Fourier problems in class E2 for some particular 
domains unbounded in the direction of the x raxis under the assumption of bounded-
ness for the coefficients of equation (1) and condition (3). See [13] for details. As con
cerns generalization to the case of the coefficients of equation (1) fulfilling condition 
(9), certain results have been obtained by P. Besala (see [2]) and by I. Lojczyk-
Krolikiewicz (to appear in Annales Polonici Mathematici). 

The introduction of the stifling divisor also enables one to prove the existence of the 
solution of the Cauchy problem and Fourier problems for domains unbounded in the 
direction of the x raxis under the assumption that there exist solutions of convenient 
Fourier problems for a certain sequence of bounded domains. At present we shall 
occupy ourselves with the Cauchy problem and the first Fourier problem. 

We assume the following hypothesis: 
Hypo thes i s (A). The domain D (or the zone Z) is assumed to be the sum ofamo-

notonic increasing sequence of domains Dn (Dn c Dn+1) separated from domain D by 
surfaces Sfn (n = 1, 2,. . .) of which the distance from the origin tends to infinity 
together with n; the domains Dn being regular with respect to the first Fourier problem 
for equation (l).*) 

One can prove the following 

Theorem 2. Suppose hypothesis (A) is true. Assume furthermore that 1) the coeffi
cients of equation (1) are bounded in the domain D (in the zone Z), or9 at least, they 
satisfy the conditions (9); 2) the function f(t9 X) is of class E2 in this set; 3) <P(t9 X) 
is a given function continuous and of class E2 on the set S (see theorem l) (q>(x) is 
a given function continuous and of class E2 in the space Em); 4) the height T of domain 
D (of zone Z) is equal to or less than a certain number dependent on the coefficients 
of(\) and on the functions f(t9 X) and <P(t9 X) (<p(X)). 

Under these assumptions there exists a solution u(t9 X) of equation (1) regular in 

the domain D (in the zone Z) and satisfying the boundary condition 

u(t9 X) = <P(t9 X) for (t9 X)eS 

*) A given domain is said to be regular with respect to the first Fourier problem for equation 
<1) if this problem always has a solution provided the functions appearing in the boundary and 
initial conditions are continuous. 
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'(the initial condition (2)). This solution is of class E2 in every zone <0, T'> x Em, 

where 0 < T < T, and constitutes the limit of the sequence {un(t, X)} of solutions of 

the first Fourier problem for equation (1) in the domains Dn9 with the conditions 

un(t,X) = $(t,X) for (t9X)eS0.Dn + an9 

where an are the lateral surfaces of domains Dn, and $(t, X) is a continuous exten
sion of the function <P(t, X) to the set D. 

In the proof of this theorem the stifling divisor (8) is used. For the details see [10] 
and [11]. 

A similar theorem concerning the second and third Fourier problems can also be 
proved, at least, for certain particular domains unbounded in the direction of the 
x raxis. 

The above method for proving the existence of solutions of boundary-value 
problems in the unbounded domains can also be applied to boundary problems for 
equations of the elliptic type (see [14]). A similar method was used by L. Amerio 
(see [1]). 

The uniqueness and existence theorems in class E2, about which we have spoken 

above, have recently been extended by P. Besala (see [2]; the details are inserted in 

papers which will appear in Annales Polonici Mathematici vol. XIII) to the system 

of parabolic equations of the form 

(Ю) —* = IЧ t, X, uh

 v-± , 
dt \ dxj dXj dxk 

(h, i = 1,..., n; j , k = 1, ..., m) . 

It is assumed that every function Fh (h = 1, ..., n) satisfies the following condition: 

for yh ^ yh we have 

(11) Fh(t9 X, yi9 zp zJk) - Fh(t, X, yi9 zj9 zjk) = 

m m n 

= L0 X \zjk - zjk\ + (L,\X\ + L2) S \zj - zj\ + (L3\X\2 + LH) I \yt - yt\. 
j,fe=l 1=1 * = 1 

In the methods discussed the most essential role is attributed to the properties of 
solutions of parabolic equations called the extremum principle. These methods do not 
apply immediately to parabolic equations of higher orders and parabolic systems of 
a more general form. For these other methods are applied. For the details see e.g. the 
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papers of S. EídeFman [3], [4], [5], H. Gružewska [8], O. Ladyženskaya [15]-. 
W. Pogorzelski [17], L. Slobodeckií [19], [20] and Ya. Žitomirskii [24]. 

In Eidel'man's páper [4] the nonlinear systém 

(12) ^ = FÍt,X,u, 
dt V' ' 9"m'dx**...dx* 

(u = (uu ..., w„) being the vector function) parabolic in the sense of Petrovskii has 
been considered and the uniqueness of the solution of the Cauchy problem has been 
proved in the class of functions which have bounded and Holder continuous deriva
tives up to the 4b-th order. The existence of the solution of this problem has been 
proved in the case when the functions appearing in the initial condition have deri
vatives which are Holder continuous and bounded up to the 4b-th order. On the right 
hand members one makes certain assumptions concerning the regularity which are 
not given precisely in this report. 

If system (12) is almost linear i. e. the right hand side is linear with regard to the 
derivatives of order 2b and the coefficients of these derivatives depend only on the 
independent variables, then the uniqueness theorem holds true in class Eq, where 
q = 2b/(2b — 1), provided the coefficients of the derivatives of order 2b possess 
derivatives up to the 2b-th order which are bounded and Holder continuous with 
respect to the variables xf and under other assumptions previously made concerning 
system (12). The existence theorem has also been proved under the assumption that the 
function cp(X) is of class Eq and under certain assumptions on the coefficients which 
we do not give here in detail. 

L. Slobodeckii (see [20]) has considered a linear system of the form (12) (the right 
hand members are linear with regard to the unknown functions and their derivatives), 
parabolic in the sense of Petrovskii for 0 ^ t ^ T, and he has proved the uniqueness 
of the solution of the Cauchy problem in the class Iq of functions satisfying the condi
tion: there exists a non-negative constant K such that the integral 

f dř ľ \u(t,X)\exp[-K\X\ą~\dX 
Jo J Em 

converges. The existence of the solution of this problem has also been proved under 
the assumption that the function cp(X) satisfies the following condition: there exists 
a non-negative constant K such that the integral 

Í. \<p(x)\ exp [-X[X|«] dX 
J Em 

converges.*) 

*) In Slobodeckii's paper the initial condition (2) is formulated in another form. 
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A theorem of D. Widder [23] initiated a new direction of investigations concerning 
the uniqueness of the solution of the Cauchy problem for parabolic equations. Ac
cording to the Widder's theorem the solution of heat equation (5) regular and non-
negative in a zone I (see sec. 1), vanishing for t = 0, vanish identically in this zone. 

The result of Widder has been generalized on equation (1) successively by J. Serrin 
£18] (the case of two independent variables, the coefficients depend only on the 
variable x) and by A. Friedman [6]. We quote the theorem of Friedman. 

Theorem 3. The coefficients and the right side f(t,X) of equation (1) are assumed 
to be defined in the zone I and to satisfy the following conditions 

1) there exists a positive number A0 such that the inequality 
m m 

%(*) = I «oC X) XtXj = A0\A\2 = A, E X) 
ij = l j=l 

holds for every vector A(Xl9 ..., Xm) and at every point of the zone; 

2) the functions aij9 dai}\dxr, d2aiJdxrdxs, da^jdt, bk, dbjdxr, c (i9j9k,r,s = 
= 1,. . . , m) are Holder continuous and bounded in the zone I; 

3) we have f(t, X) = 0 in Z. 

Under these assumptions let u(t, X) be a solution of equation (1) regular and non-
negative in the zone I. Ifu(0, X) = 0 /o r X e Em, then u(t, X) = 0 in I. 

It should be noted that the uniqueness of the solution of the Cauchy problem in the 
class of non-negative functions does not follow from Friedman's theorem but it can 
be deduced from the following theorems on which the proof of Friedman's theorem is 
also based. 

Theorem 4. Suppose the assumptions l) — 3) of theorem 3 hold true. If u(t, X) is 
a solution of equation (1) regular in the zone I, belonging to the class I2 (see sec. 5) 
and vanishing for t = 0, then u(t, X) = 0 in E*) 

Theorem 5. Under the assumptions 1) —3) of theorem 39 each solution of equation 
(l) regular and non-negative in the zone Z belongs to the class I2. 

Finally I should like to present a recent result, of P. Besala and the author of the 
report, which has not yet been published. 

*) Evidently from theorem 4 the uniqueness of the solution of the Cauchy problem for equation 
(1) in class I2 follows. This uniqueness has also been proved in the paper of Slobodeckii. Fried
man and Slobodeckii evidently proved it independently of each other for the parabolic systems in 
the sense of Petrovskii of the second and higher orders (in class Iq). 
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We shall say that a function w(t,X) continuous in a set G of the time-space Em+* is o f 

class Ea (of class Ea) if there exist two non-negative numbers M and K such that the 

inequality w(t, X) ^ - Mexp [K |K | a] (w(f, X) = M exp [K|K|*] respectively) holds, 

for the set G. 

Now the following theorem holds true. 

Theorem 6. We suppose that hypothesis (A) relating to equation (1) holds and 

assumptions l) and 2) of theorem 3 (of Friedman) concerning the coefficients of the 

equation are fulfilled. Furthermore we assume that the function f(t, X) is continuous-

and of class E2 in the zone S. 

Under these assumptions the Cauchy problem for equation (1) with initial condi

tion (2) possesses at most one solution in class E2 (in class E2).*) 

The proof of the theorem is based on the following lemma. 

Lemma. Under the assumption that the coefficients of equation (1) are bounded 

and hypothesis (A) is satisfied, to each solution u(t, X) of equation (1), regular in the 

zone Z and belonging to class E2, there corresponds a solution v(t, X) of the equation 

F(v)= -f(t,X), 

regular and of class E2 in a certain zone I: 0 ^ t < T' (T' ^ T) and such that the 

sum z(t, X) = u(t, X) + v(t, X) is non-negative in I. 

The proof of the lemma will be given in a paper which will appear in Atti Accad. 

Naz. Lincei Rend. CI. Sci. Fis. Mat. Nat. Ser. VIII, 33, 5. 

From the lemma and from theorem 5 it follows that if the solution u(t, X) of equa

tion (1) is of class E2, then the function z(t, X) appearing in the lemma is of class I2, 

and thus the function u(t, X) is of class I2. Now in this class the uniqueness of 

solution of Cauchy problem holds (according to theorem 4). Hence, the validity of 

theorem 6 results. 
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