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ASYMPTOTIC FORMULAS FOR THE SOLUTIONS OF LINEAR 
DIFFERENTIAL EQUATIONS OF THE SECOND ORDER 

M. RÁB, Brno 

1.1 In my paper I introduce some asymptotic formulas for the solutions of diffe
rential equation of the second order. For the simple formulation of results of non-
oscillatory and at the same time oscillatory case it will be better to consider the diffe
rential equation in the form 

(1) y»+q(X)y = 0 l'=A 

The upper sign holds for the non-oscillatory case, the lower for the oscillatory one. 
For the derivation of asymptotic formulas I have transformed equation (1) into 

(2) Y+Q(X)Y=0 r ~ ± 

(which was investigated in detail by Prof. O. Boruvka) and have used the method of 
perturbation. I worked on this problem with Prof. J. Mafik, and the results will 
appear in the near future in the Czechoslovak Mathematical Journal. 

1.2 The following notation will be used. Let m be a non-negative integer, then Cm 

denotes the system of all real functions with continuous derivatives of the m-th order 
in J = <x0, oo); in the whole paper it is assumed that q(x) e C0, Q(X) e C0. Instead of 
jlf(x) dx I shall often write simply JJjf, and provided no misunderstanding will 
appear I shall also omit x in the relations f'(x) = g(x), f(x) ^ h(x) and only write 
f = g,f = h. If co(x) G C0, lim co(x) = 1 andf(x) = co(x) g(x), we say that the func-

jc-+oo 

tionsfand g are asymptotically equal and we shall writef ~ g. The letter o denotes a 
continuous function which tends to zero as x ->oo. Equation (1) is called non-oscilla
tory or oscillatory in J according to whether or not every non-trivial solution has 
finitely many or infinitely many zeros in this interval. 

2.1 Further on we assume that equations (1) and (2) are simultaneously oscillatory 
or non-oscillatory. The supposition q,QeC0 guarantees the existence of the funda
mental systems yu y2 and Yl9 Y2 of (1) and (2) in the whole interval J. One can easily 
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prove the existence of functions F eC2 and X e C2 such that 

(3) yj{x) = F(x)Yj[X(x)], J = 1 , 2 

in the whole interval J. The functions F and X are solutions of the nonlinear system 

(4) FX" + 2F'X' = 0, 
F" + [q - X'2 Q(X)] F = 0 

and can be expressed by using the functions yJf Yj in the form 

YM - í" P ' W ' ) ] d í FM - <**) 

with 
C = (Ay2 + 2Byty2 + Cy2)*, P = (ALY2 + 2BYtY2 + CY2)* 

where A9 B and C denote suitable constants. 
Assuming knowledge of the fundamental system Yl9 Y2, it is easy to see that the 

nonlinear system (4) is equivalent to equation (1) in the sense that the solution of (4) is 
determined by that of (1) and vice versa. Now there is a question of the relationship 
between the functions in (3) and equation (1) if in (3) instead of F and X we put the 
functions 3> and 3 which are in a certain sense the approximative solutions of (4). For 
simplicity we shall deal only with the case when the equation has the form 

Y+eY=0 

with e = — 1 when (1) is non-oscillatory and e = 1 when (1) is oscillatory. Then the 
following theorem holds: 

2.2 Let $ and 3 be positive functions in J with continuous second derivatives9 

3' > 0, 3(x) ->oo for x ->oo. / / 

lew)" 

f 
J д 

f 
J x 

< 00 , 
$2E' 

|<ř<Ž>" + q<P2 - E3'2<P2\ < O O , 
1 X0 

then equation (1) has in the non-oscillatory case the fundamental system of the 
form 

(5) yj~ $ exp {c/S + o)} - $ exp {ej3} 

with et = 1, e2 = — 1; in oscillatory case yt (y2) are asymptotically equal to the 
real (imaginary) part of the function 

(6) $exp {i(3 + o)} . 

Under further suppositions we can derive similar formulas for the derivatives of yj. 
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From this theorem we can get many results by means of a suitable choice of the 
functions 3> and 3; I present the following only: 

2.3 Let q e Cl9 q > 0. Suppose that one of the four following conditions is satis
fied: 

a) There exists a JS =f= 3/2 with J~ \q~3,2q" - pq~s,2q'2\ <oo and it holds that 
either j5 > 3/2 or p < 1 or J~ q1'2 =oo. 

b) The function q"1 is bounded and there is ay e (0, 1/2) such that q"y is convex 
or concave. 

c) The functions q9 q"1 are bounded and there is ay =# 0 such that qy is convex 
or concave. 

d) f™0 q"5,2q'2 <oo and there exists a y > 0 such that qy is convex. 

Then J*0 q
1/2 =oo and equation (1) has in the non-oscillatory case the fundamen

tal system satisfying 

y/x) ~ q-V\x) expje, J V 2 } , J#*) = « J « 1 / 4 ( * ) « P { «i ( V 2 } 

and in the oscillatory case 

yi(x) ~ q-V^smfrq"2 + o\ y2(x) ~ q'^\x)cos ( T ^ 2 + o\ 

y'i(x) ~ q1/4(x) c o s ^ r ^ + oV y'2(x)~-q1'\x)fa(rq
1'2 + o\ 

2.4 On the basis of formulas (5) and (6) it might seem that every asymptotic formula 
for the solution of (1) in a non-oscillatory case has its analogy in an oscillatory case. 
But this assumption is not true. 

Let be yl9 y2 two independent solutions of (1). As the zeros of yt and y2 separate 
each other we have y1 + iy2 =# 0 in the whole interval J and we can put 

v _ y\ + jy'i 

yi + iyi 

This function satisfies the Riccati equation 

(7) V + U2 + q(x) = 0 

and if U = u + iv9 then 
u' + u2 - v2 + q = 0, 

v' + 2uv = 0. 

If q(x) = q = const, then it is easy to show that the trajectories of this system u = 
= u(x), v = v(x) lie in the u9 t;-plane on the pencil of circles which has real base-
points A[—q1,2

9 0], B[q1,2
9 0] in the non-oscillatory case. In the oscillatory case the 
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base-points are imaginary and A, B are limit points of the pencil. If q(x) ~ q, then 
always in the non-oscillatory case U ~ const. If U ~ const, in the oscillatory case, 
then from (7) it follows that U ~± q1/2. The functions u and v can be written in the 
form u = Q'IQ, V = W/Q2 where Q = (y\ + yf)1/2, w = yxy'2 — y\y2 = const. It is 
easy to see that relation U ~ ± q1/2 =# 0 is not satisfied, if Q is unbounded; this hap
pens e.g. when we consider the equation / ' + (1 + 2 sin x/x) y = 0. 

2.5 In the following we shall deal only with the non-oscillatory case. 
The solution y of equation (1) will be called principal, when there exists a ^ x0 

such that y(x) 4- 0 for all x ^ a and J " (1/y2) = oo. Without loss of generality, it can 
be assumed that x0 = a. It is easy to show that non-oscillatory equation (1) has at 
least one principal solution and that every two principal solutions are linearly depen
dent. If we let 

(8) z = 5 -^ - y 
y 

we get 

(9) bz' + z2 + Pz + Q = 0, 

where P and Q are functions of 5, y, 5', y'. 
If y is the principal solution of (l) which has no zeros, then function (8) is the smal

lest of the solutions of equation (9) which are defined in J. On the basis of this depen
dence one can derive the series of the asymptotic estimates for the solutions of (1). 
I want to present some results only. 

2.6 Let q(x) > 0, q e C2, (?~1/2)' ~ A <oo. Further let yl9 y2 be the fundamental 
system, y2 the principal solution of (1). 

Then 

J x ІXO 

for X = 0, 

<г1/2=°°> - 2 - V v ~ A 2 ; 
лr q(x) 

log \Vl(x)\ ~ log |>>i(x)| log \y2(x)\ log |^(x) | ~ [* q1'2 ; 
J xo 

for X > 0 one has 

log \yt(x)\ ~ - log |y^(x)| ~ log x*, 

log |/i(*)| ~ - log \y2(x)\ ~ log x*-1, 

with { = | [1 + -7(1 + 4A"2)]. 

If in addition j™ |d(4~1/2)'| <oo, then there exist constants Cj such that 

Уj(x) ~ cj <Г1/4(*) exp | вj Г q1'2 (í + 
^гyiг 

lбҙ3 Ï Ixo \ íy"i / 

y'j(x) ~1-[X + Bj J(X2 + 4)] q*l\x) yj(x) . 
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2.7 Let p, q be continuous functions in J. Let equation (1) be non-oscillatory, y2 the 

principal solution and y1 a solution of (1) which is independent of y2. Put W = 

= yiy2 - yiy2> / = yiy2/X F = / 2 ( q - P) and assume infxeJ F(x) > - \ . Then 

the equation 

(10) y" = py 

is also non-oscillatory. 

Assume further that J*̂  |dF| <oo and let Yu Y2 be two independent solutions and 

Y2 the principal solution of(10). Then there exist constants Cj such that 

rx (i + 4F)1/2 

YÁ*)~Cjf1,2(x)eЧ>UJ" 
2f 

Җx)Yj(x) _ f „ ч ^ ( 1 Ąғy/2 

Yj(x) JK> A } 

In concluding I would like to mention that the results of this paper are special cases 

of more general results. 
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