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ASYMPTOTIC INVARIANT SETS OF AUTONOMOUS DIFFERENTIAL EQUATIONS 

I.Bihari, Budapest 

Let us suppose that the solutions of the real autonomous system 
• • J» 

(1) x = f(x), x = (x1,...,xn), = ^ 

are, in a domain D of R^\ uniquely determined by their initial 

values and exist for all t. Then the whole D is an invariant set 

of (1), but this is of no interest. We look for nontrivial invariant 

sets forming some interesting surfaces - perhaps certain curves -

or investigate how the invariant surfaces of the linear equation 

(2) x = Ax, A = (aik) 

will be deformed into the corresponding invariant surfaces of the 

nonlinear (perturbed) equation 

(3) x = Ax + f(x), F = (flf...ffn)f t t = t±{x) . 

So we can seek asymptotically invariant surfaces, too, i.e. such in

variant surfaces of (2) to which the corresponding invariant sur

face of (3) tends as t-*oo • In a paper written jointly with A. 

Elbert [l] - restricted to n=3 and A = const - a number of such 

problems were solved. We were faced there with the problem: The 

full set of paths of (3) depends on two parameters which need not 

be specified in detail - say u and v - both of which depend on 

three parameters X , YQ , ZQ 

« - u<Xo 'Yo ' V > v = v ( Xo 'Yo ' V 

X = lim xe" A t, Y = lim (ye" At-X t), 
t-*oo t-*oo 

ZQ = lim (ze~ At-YQt - J XQt
2) . 

t-* 00 

These are the "end values" of the solutions which - conversely -

determine them uniquely by means of the corresponding integral equa

tions provided some appropriate supplementary conditions are intro

duced. - Now putting X = 0 it is plausible, however it must be 

proved, that it arises a one parameter family of paths, i.e. a sur

face. In the work referred to above this was done and the unique 

parameter (Z /Y') upon which the family depended was determined 

as well as the corresponding invariant surface. Here Y£ means the 

value of Y obtained by putting X = 0 . 

where 
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In this lecture we give an example of an asymptotically inva-

riant surface* Assume now in (2) - (3) n=3, 

.10 0 
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0 1 A 

A - Л < 0 , 

F = (f
fgf
h), |f |,|g|

f
|h|<p^(p)
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2
 , 

r<r^t r^ > 0 

where Ur(r) i s nondecreasing continuous, ur(Q) = 0 and 

/ • 

faГ(г) (log p)
4
dг < oo . 

+0 

Let us determine all the quadratic invariant surfaces j> = 0 of (2), 

where j> = x*Bx is a quadratic form with B = ( b ^ )
f
 b^, = const, 

^ik
 s b

ki *
 T l i e 8 0 l u t

i °
n s o f (2) are 
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0
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0
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Q
t
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)e

 A t 

which have to satisfy J = 0 for every t • This condition gives 

necessarily 

£ = ax 2 + b(y 2-2xz) (a 2+b 2 > 0) 

where a and b are arbitrary parameters. Thus the invariant sur
faces of (2) in question are 

S(a fb) : j> = 0 

and an easy consideration shows that these are conical surfaces 
(see Fig. 1) with the origin as vertex,symmetric with respect to 

* z 4 z 
z„ 

y Ł - 2xz= 0 

Fig. la Fig. lb 
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the plane (yz) and elliptic, hyperbolic or parabolic according to 

ab ^ 0 or a=0 • Every element of S(a,b) contains the axis z 

which i3 an invariant line itaelf. Similarly, the plane (yz) ia 

an invariant plane• Every point
 P

Q
(

X

0
 i

Y

0
 »

z

0
) of D - except the 

pointa of the axia z - ia crossed by a member of the family 

S(a,b) the parameter a/b or b/a of which can be uniquely deter

mined from 

(3») S o =a
X
2
 +
b(y2 -2x

0
z

o
) = 0 

or otherwise expressed, a and b can be uniquely determined from 

(3
9
) up to a common factor* Also we can state that every path lies 

in a single member of S(a,b). By means of the integral equations -

which we do not write here explicitly - it can be easily proved that 

the triple (X
 f
Y ,Z

Q
) and the triple 

(4) 
Лt, 

X - X
Q
e " , 

Y ж ( Y
o
 +
 V l

) e Л-*l 
(tj^ 0) 

Z - ( zo + Vi + \ Vi ) e M l 

(taken as end valued) determine the same path of (3K They have 

only a shift of parameter t-. with respect to each other. However, 

in the space (X
f
Y,Z) (4) is the parametric equation of a curve 

CT • Thus the path p of (3) and the curvea 6 are one to one. 

Since 
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aX2 + b(Y2-2XZ) = [aX2 + b(Y2-2XQZQ)] e
 1 , 

the surface 

(5) Z: ax2 • b^2 - 2XZ> = ° 
in this space is formed by the curves 6" provided b/a is deter
mined from 

(6) aX* + b(Y2 . 2X0Z0)~- 0 . 

Then the corresponding paths p of (3) form an invariant surface 
S* of (3K By (6) and the asymptotic form (not given here) of the 
solutions of (3) we have 

ax2 + b(y2-2xz) = [aX2 + b(Y2-2XQZ0) + o(l)]e
2At= 

= o ( e 2 A t ) , t-*oo 

ax2 • b(y2-2xz) = [aX2 + b(Y2-2XQZ0) + o(l)]e
2 a t= 

= o * T L r-»0 . 

Ulog r)4-T 
The last expression is a consequence of the asymptotic formula 

2 At r .~t e • The asymptotic invariant surface of (3) belonging to 
p which has the end values X^ ,Y^ ,Z^ is 
r o 9 o 9 o 
(7) ax2 + b(y2 - 2xz) = 0 

where a and b are given by (6) and S* is situated between the 
surfaces 

(8) ax2 + b(y2-2xz) = i F(x,y,z), F = o[ - r] , r-*0 

L(log r)4--
(where F is not determined in more detail) and approaches (7) as 
t->oo which is an invariant surface of (2)«, 
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