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CONTROL AND THE VAN DER POL EQUATION 

R. Conti, Firenze 

1. 

After playing a central rdle in the theory of nonlinear ordinary 

differential equations for over 50 years, Van der Pol's equation 

(E Q) x + f<-(x2- 1) x + x = 0 

recently attracted the attention also from people working in control. 

This is accounted for by the fact that a system (electronic oscilla

tor, living organism, or whatever else) governed "by (E ) cannot he 

brought to rest or to periodicity in a finite time by any change in 

the initial state x(0), x(0). For that purpose one has to replace 

(EQ) by 

(Eu) x + / ^ ( x - l ) x + x = u(t) , 

where u : tn*u(t) denotes some appropriate external force acting 

as a control. 

In 1969 E. Ya.Roitenberg L6J , as an application of a general 

theorem, proved that any solution of (E ) can be brought to rest in 

a prescribed time T , provided that arbitrarily large controls u 

are allowed. 

A more realistic approach, suggested already in Lee - Markus1 

book ([5J , p* 391) of 1967, was adopted by Eleanor M. James in her 

1972 PhD Thesis (published in a condensed version in 1974, [A] ), 

where u is assumed to be bounded by some given k > 0 and T 

is not fixed in advance, which gives rise to the minimum time pro

blem. 

The same point of view was adopted in the 1976-77 Thesis of. my 

pupil Gabriele Villari , [7] , and, still more recently (1977), 

by N. K. Alekseev, [l] . 

It should also be noted that controllability and minimum time 

problems for an equation 

x + g(x,x) = u(t) 
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are studied in the books of Lee - Markus, [5] , and Boltyanskii, [2] , 
2 

under assumptions on g which are not satisfied by g(x,x) = A<.(x -

-1) x . 

To be more specific about (E ) let us denote, as usual, by 

L. (/R) the class of measurable, locally essentially bounded func

tions u : t»-* u(t) , te/R ,_ u(t)€/K , and by U the set of "ad

missible" controls 

Uk = {u c I^ c(*) : /u(t)/$ k , a.e. te*.} 

for a given k > 0 . 

Also, denote by U' the subset of "relay" controls, i.e., the 

set of u € U, taking only the two values -k, k, with a finite num

ber of switches from one value to the other on every bounded interval. 

If we write (E ) in the equivalent form 

J x = y 

2 

y - = - x + / * y - / 4 . x y + u(t), 

we know that, for u = 0. (S ) has a limit cycle #7 . 

We shall then consider : 

Problem P.. Pind some u € U, such that the corresponding solu

tion of (S ) joins r with the rest point 0 = (0,0) in minimum 

time ; 

Problem P?. Find some u e U ' such that the corresponding solu

tion of (S ) goes from 0 to C in minimum time. 

A change of f* into -/*t transforms one problem into the other. 

However we shall keep them distinct since we shall constantly assume 

^ > 0. 

2. 

We shall deal first with problem P . 

With fixed ^ > 0 , k > 0, let us denote by V(^t,k) the set of 

points in the (xfy)-plane which can be tranferred to 0 along the 

solutions of (S ) by using u £ U . Let V^A^k) be the subset of 
U -K 

V( /*-,k) corresponding to U* . 

According to [ l ] , [ 4 ] , [ 7 J , i t can be shown that 
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(2.1) V(/*,k) = V(/*fk) 

is an open connected (not necessarily convex) set, symmetric with 
2 2 2 2 respect to 0 , containing the circle x + y £ k //o . 

2 
As a consequence of the presence of the nonlinear term /ex y in 

(Su) there are pairs ( /*fk) for which V(/*-fk) = 01 , s 0 that we 

can consider the two sets 

C = {(/<.,k) : V(/cfk) = R
2 j , 

^ = ((f-,k) : V(/*fk) ̂  R 2 } . 

When (/^fk)c7lT ,V(/c,k) is bounded by an arc of an orbit of 

(S^) (i.e., (S ) with u = k) lying in the half-plane y < 0 and by 

the symmetric arc of an orbit of (S , ) in the half-plane y > 0. A 

comparison of the vector fields defined by (S ), (S ) and (S , ) shows 
ic o —*•&. 

( t*-,k) € jf <£*> V(/*fk) interior to f̂ L 

so that problem P_ can have solutions only if (/*,k)€ C and no

thing changes if we replace U' by the larger set U, , because of 

(2.1). Therefore it is important to recognize whether a given (/*-,k) 

belongs to L or to J\T . 

Now, for every /« > 0 there exists 

(2.2) k*(/*) = max {k : (/»-fk)s ^ j 

so that 

£ = [(f*fk) : 0<A«*f k*(/*) < k }> 

/ « {(/-,*) : 0</*f k< k*(^)j, 

but , unfor tunate ly , no e x p l i c i t formula g iv ing the value of k {(*•) 

for each fi> 0 i s known. 

A l l that i s known (again accord ing to [lj , [A] , L.7J > with 

some improvements) about k can be summarized as f o l l o w s : 

k (/O ^ min{/ У , l} , 0<r- , 

]/l - 2/ŕ < k (/-.) , 2 ž ^ 
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£ k (/ч.) , 0^/--, 

where 

rS - (A*-2* 4 +/Í//C2+ 4)/2 , r-2 = (A2+ 4 -/*^JTT)/2 . 
1 

Consequently, 

lira k (yu)-= 0 , lim k*(/*) = 1 , 

i / i I J .< lim inf }Ll£l < lim sup -£i__2 < /f. 

If we define k*(0) = 0 then k turns out to be lipschitzian 

on [0,/Z] for every /*" > 0 ( [ l j ). 

In the absence of an explicit representation of k (/*-) it might 
•ji

be interesting to ascertain whether k is an increasing function 
* (1) and how much regular it is : for instance, k 6 C ( flj, ) ? 

More information about k* probably could be obtained by study

ing the behavior of the limit cycles of the systems (S ), (S v).It 

can be shown that the singular point K=(k,0) is a global at trac

tor for (S, ) if k ^ 1 , whereas for 0 ̂  k < 1 there is at least 

one limit cycle C K of (S, ) around K • To decide whether f^L/K is 

unique some ad hoc proof has to be found since the usual techniques 

fail for k > 0 because of the lack of symmetry of the orbits of 

(S, ) with respect to K . Taking the uniqueness for granted, we have 

k £ k * ( r ) <=» V(/*,k) c G(/cfk) , 

where G(/*v,k) is the intersection of the two regions interior to 

P „ and its symmetric C . with respect to 0 . 

3. 
2 2 2 

Introducing r = x + y we have 
rr s |̂ (i . x*) yx + y u(t) £ /* r + k r 

along the solutions of (S ) with u G U, , hence 
U .K 

r(t) < (k/^ +r(0)) e ^ - k / ^ , 
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i.e., there exists a uniform bound for all solutions initiating at 

(x°,y°) for a finite time duration. Consequently (Cf. E. B. Lee -

L. Markus, [52 » Th*4 » V* 259) we can go from any point (x°,y°) 

€ V(/*,k) to 0 by means of u € Uk in a minimum time T(x°,y°). 

Further, the function T : (x°,y<>) 1-* T(x°fy°) is lower semicon-

tinuous on V(^,k) so that, if (^,k) € *£ ,it takes its minimum 

value T K on the compact set ^L . 

Therefore, problem P. has solutions for every ( /*,k) 6 fe . 

To determine such solutions one can use the techniques derived 

from Pontryagin»s maximum principle (Cf. Lee- Markus1 book, Chapter 

7). In fact, if (x,y) : ti^ (x(t),y(t)) is the solution of (S ) , 

x(0)sx°, y(O) = y<>, corresponding to a minimizing control u ,then 

there exists a solution (#71»T2)
 : * ** ( 11^)» 7 ̂ t)) o f t h e li~ 

near system 

r ^ = (1 + 2f*x(t) y(t)) ^ 2 

' i 2
 = - / i i+ M * 2 ^ ) - 1)T2 

such that 4|9(t) u(t) = max *1 0(t) v , so that 

* ivia ^ 
u(t) = k sign *| 2(t) • 

Therefore, minimum time controls are of relay type. 

The maximum number V of switches depends on (/<-,k) according 

to the map shown in Pig. 1. 
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Such map is obtained by the construction of the switching locus 

by a combination of geometrical, comparison and computational meth

ods (See [4 J , [l] ) . 

Unfortunately, no explicit formulas are known to represent the 

"hyperbolas" in the O region. 

4. 

The next question i s that of locating the points of P at which 

the minimum T te i s attained. This i s a d i f f i cu l t question, becau

se no analytical representation of /"? i s presently (1977) known, so 
r 

we cannot expect to have exact solutions. On the other hand f~L can 

be enclosed within an annulus whose inner and outer boundaries have 

simple enough analytical representations and may be made satisfacto

rily close to F (Cf. R. Gomory - D. E. Richmond, [ij ). This, 

and the fact that also a good approximation of the switching locus 

can be obtained, suggest that substantial aid to the location of mi

nimizing points can be expected from numerical methods. 

The transversality condition is also of some help. In our case, 

such condition means that the vector of components ^-(0), ^ p ^ ) 

is orthogonal to the tangent vector to ^ at a minimizing point 

M * (x,y), so that 

(4.1) 11(0) y + 7 2(0) £-x +/iy -/ex2 yJ = 0 . 

Therefore the points M are among the intersections of /T with the 

cubic (4.1). Since V can be locally represented by an analytic func

tion x 1+ y(x) or y H x(y), like every other orbit of (S ), the 

number of intersections is finite. It is an open question whether 

there can be more than one pair of (symmetric) intersections. 

5. 

To deal with problem P^ one has to replace V(A^»k) by the set 

W(p-,k) of (x,y) points which can be attained from 0 along the 

solutions of (Su) by using u € U,. Correspondingly, v,(/*,k) is 

replaced by W'(^fk) and it can be shown that 

w(Г-.-0 - w(r-.k) 
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is an open connected set symmetric with respect to 0 . The effect 
p 

of the term ^ x y in (S
u
) is that W(/c,k), unlike V(/^,k), is 

bounded for all pairs (<> 0, k> 0 , whereas, in the absence of such 
2 

term, the corresponding set W(f*,K) would he = /fc, • However, 

f^C W(/<,k) , f<>0, k > 0 , 

and by the Weierstrass - Baire theorem we see that problem P^ has 

solutions for all pairs f*> 0, k > 0 . 

To determine the solutions offers the same difficulties as in 

the case of problem P.. 

The construction of the switching locus shows that, depending on 

f4- , k , either one can go from 0 to any point in W
1
 (/*-<.,k) in 

minimum time with one switch at most, or, for every positive integer 

N there are points in W'(r-,k) such that the corresponding number 

of switches is > N. 

k 

\ v 8 o 

1 1 
V жoo 

0 ŕ* 

The map in Fig. 2 shows the dependence of the mebcimum number 

V of switches on /<- , k . 

Again, no explicit representation of the "hyperbola" separating 

the two zones is known. 

The number of minimizing points, in pairs, is still finite, but 

uniqueness and their location on H~ are open questions. 
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