
EQUADIFF 4

Siegfried Dümmel
On some inverse problems for partial differential equations

In: Jiří Fábera (ed.): Equadiff IV, Czechoslovak Conference on Differential Equations and Their
Applications. Proceedings, Prague, August 22-26, 1977. Springer-Verlag, Berlin, 1979. Lecture
Notes in Mathematics, 703. pp. [93]--98.

Persistent URL: http://dml.cz/dmlcz/702208

Terms of use:
© Springer-Verlag, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/702208
http://project.dml.cz


ON SOL/IE INVERSE PROBLEMS FOR PARTIAL 

DIFFERENTIAL EQUATIONS 

S. DUmmel, Karl-Marx-Stadt 

1. Introduction 

By an inverse prohlem for a differential equation we understand 

any problem in which the coefficients or the right-hand side of the 

differential equation are to be determined from some information on 

the solutions of this equation. We confine ourselves to two special 

cases of second order linear parabolic equations. For hyperbolic 

equations we refer to the book of V. T. Romanov £15]. 

Let u be a solution of a Cauchy problem or of an initial-boun

dary value problem. We shall investigate the question what further 

information on u is sufficient for the uniqueness of the unknown 

coefficient. For the case that the right hand side of the parabolic 

equation is unknown such investigations can be found e. g. in the 

following papers: W. T. Ivanov, Q. P. Smirnov, F. W. Lubysev [?J, 

A. Fasano C4], W. M. Isakov [5] and in the book Lavrentiev, Romanov, 

Vasiliev ClO]. 

The case that the unknown function is the coefficient at u in the 

parabolic equation is considered in several papers of M. M. Lavren

tiev and K. 0. Resnizkaja ([8j> C9], Ci23f Cl3], [143). These authors 

assumed that the unknown coefficient is only a function of one 

space variable. Coefficients of several variables are considered e. 

g. by A. D. Iskenderov f6] and I. Ja. Besnooenko fll, where the un

known coefficients are functions of n-1 space variables and of the 

time and u is a function of n space variables and of the time. 

In our lecture we shall consider the question of uniqueness for 

the parabolic equations 

(1.1) Ut(x,t) - q(x)Au(x,t) = 0 

and n g 
u. (x,t) - ZZ -^r-CpkOu- (x,t)) = 0 

(1.2) i=1 i i 

with x = (x^, ±2$ •••, xn) (n = 1,2,3,...), where q(x) and p(x) are 

unknown. For the equation (1.2) there exist some papers by Q. Chavent 

(C2], C3]) who determines p by a gradient method. 

We use the following notations: Rn is the n-dimensional Euclidean 

space (n = 1,2,3,...), x = (x^, x2, ..., xn)£R
n, D a bounded region 

of Rn with a sufficiently smooth boundary 3D. For T >0 we define ZT = 

= D v(0,T), l^= DV Cb,T]. 



94 

2. Uniqueness theorems with additional conditions on u for a fixed 

time 

We consider the following initial-boundary value problem 

(2.1) ut(x,t) - q(x)Au(x,t) = 0 for (x,t)6ZT, 

(2.2) u(x,0) » V(x) f o r x € D> 

(2.3) u(x,t) =: Y(x,t)~ for (x,t)e(^ 

where qeC(D), q(x) > 0 for all x £D, u6C2(ZT), 
u6C3(ZT), |Aut(x,t)( = K for all (x,t)<EZT, 
c^£C2(B), A<fOO = 0 for all xeD, y eC (PT)) 
^ccr;), <̂ (x) « Y(*,O) for a11 xe3D. 

If q is known and u is a solution of the problem (2.1) (2.2) (2.3), 
then u is unique. Now let q be unknown. Then for the uniqueness of q 
in addition to (2.1) (2.2) (2.3) we need a further information on u. 
We demand that for a fixed t^ with 0<t^<T there is a function h 
with hsC2(D), | An(x)| « t^(0<*<£) for all x€D such that 

(2.4) u(x,t1) = h(x) for x eD. 

Then we obtain 
Theorem 1. If ̂ , y , h are given functions with the above pro

perties, if (q,u) and (q, u) are two pairs of functions satisfying 
(2.1) - (2.4) and if _j 

lZ\A \4-*« 

where K and 6< have been introduced above and Â  is the smallest 
eigenvalue of the Dirichlet problem in D for the elliptic operator 
qAu, then q « q and u = u. 

Proof. Let (q,u) and (q, u) be two pairs of functions satisfy-
ing (2.1) - (2.4). We introduoe the notation w -= u^, w = u. , w = 
w - w, q' =s q - q. Then it can be shown that 

w. - q Дw s q Aw in Zт, 
w(x,0) = 0 on D, 
w(x,t) = 0 on ГL 

By Fourier's separation method w can be represented in the form 
* ° A- 4* mm Ji ( "fr mm •T* ̂  

w(x
f
t) = -C f |q(y)Aw(y, tr)

gjc
(y)dye

 k
 dtrg

k
(y) 

where {g
k
\ is a complete orthogonal system (in L (D)) of correspond 

ding eigenfunctions and ^A^tne system of corresponding eigenvalues. 

If we denote the norm in L (D) by II * II , then we can show that 

||w(*,t,lt2 ^ Jjr 1 fo(y)Aw(y, r ))2ayďr í J U tllqll2 

* 1 0 D c/^\ 
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For t = t . we o b t a i n 
w(x,t . , ) = q ( x ) Д h ( x ) . 

Hence | |~ | |2 2 < _J lie-* J|2 < K _ +1-2«|L||2 

»/ 1 

By (2.5) we have j y ^ " <>fand thus ||q|| = 0. This completes the proof 

of the theorem. 

The method of the proof of Theorem i can also be used in the case 

of the equation (1.2) if n = 1. Thus now let n = 1. We consider 

(2.6) u
t
(x,t) - 7^:(P(X) u

x
(x,t)) = 0 for (x,t) <E,Z

T 

with the initial condition (2.2) and the boundary condition (2.3). 

u and \i/ shall satisfy the same hypotheses as before. Furthermore we 

suppose that D = (a,b), <f is constant, p6C (ra,bl), p(x)>0 for all 

x era,b] and (2.4) holds with h £ C2(Ca,b]), | h'(x)| = t* (0 <« < ±) 

for all x efe,,b]. Finally we demand that p(a) is known: 

(2.7) p(a) = c. 

Now we obtain a theorem analogous to Theorem 1, where we omit the 

exact bound for t^. 

Theorem 2. If ^ , y , h are given functions with the above pro

perties, if (p,u) and (p,u) are two pairs of functions satisfying 

(2.6), (2.2) - (2.4), (2.7) and if t̂  is sufficiently small, then 

'p = p and u = u. 

Proof. Using the analogous notation and the same method as in 

the proof of Theorem 1 we obtain 

II w(x , t ) l |* = M t ( llpll + HpMl ) 2 , 

where M i s a constant and p f = .g£ . 

For t = t^ we have 

wU,^) - §j(p(x) hf(x)) = 0. 

(2.8) p(x) - j í т-.. Ç w(|,t.,) 
and в-

(2.9) p'(x) - J ï ^ p(x) + j-тjjj w(x,t . , ) . 

Using (2.8) and (2.9) one can estimate j| p j| and \\ pf
|| by || vT(x,t

1
)ll. 

Then by an analogous conclusion as in the proof of Theorem 1 we ob

tain the assertion of Theorem 2. 

3. Uniqueness theorems for the case that u(x,t) is analytic in t 

Now we shall use another method for proving the uniqueness of 

p(x) in (2.1). This proof is due to H. P. Linke. For simplicity we 
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formulate the following considerations for the case n = 1# But it 

is also possible to treat the case of several variables in a similar 

manner. 
A 

Thus let n = 1 and Ẑ --. R v (0, &o). We consider the following 

Cauchy problem: 

(3.1) ut(x,t) - ^-(p(x) u ^ t ) ) = 0 for (x,t)eZ^ 

(3 .2) u(x,0) = <z>(x} f o r x e R 1 , 
GO I A A 

where p(x) = 2 P k
x » pOO>0 for a l l x £R and yeC'°(B.'). Let 

o >0 and 

(3 .3) p(0) = pQ = o. 

Furthermore we assume that u, u . u are representable in the form 

u(x,t) = jf uk(x) t
k, ux(x,t) . fu^(x) t

k , 

uxx(x,t)="zu»(x) t
k 

for (x,t)^Zoo, where u,£C (R ) and u£, uP are the derivatives of uk. 

Finally we suppose that there is a function g £C°*(C0, 00)) such that 

(3.4) u(0,t) = g(t) for 0 = t. 

Then the following theorem holds. 

Theorem 3. Let <-? and g be given functions and p and u unknown 

functions with the above properties and c a given positive number. 

If in addition P i P= 0 for P= 1,2,3,... and ^'(0) « 0, then there 

exists at most one p such that (3.1) - (3.4) are fulfilled. 

Proof. From (3.1) we obtain 

I 0- + 1) uk+1(x) t
k - 2 fe (P(x) uk(x)) t

k 

and , 
k u k ( x ) = S ( P ( x ) uk-1 ( x ) ) ( k = 1>2>3,...) 

with 

u0(x) = <j>(x). 

Since by (3.4) u(0,t) is known, also all uk(0) are known. Using the 

equality pk(0) 
pk = k! 

and the additional assumptions of the theorem, one can show that 

P2W-1 = Fv-(u (0)> po> Pif^P2v-2» fC0),...f ^ ( 0 ) ) , 

where the Fp are known functions and P = 1,2,3,... . Thus all p, are 

uniquely determined by the given conditions and the theorem is proved. 

It is also possible to prove an analogous theorem for the case 

that P2v>_-| = 0 for all y> = 1,2,3,... . 
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4. Reduction of a one-dimensional problem to an inverse Sturm-Liou-
ville problem 

At last we consider the following one-dimensional problem: 
r\ 

(4.1) ut(x,t) - —(p(x) u^xjt)) = 0 for a<x<b, 0 < tJ 

(4.2) u(x,0) = & (x - a) for a = x = b, 

(4.3) u ^ t ) - h u(a,t) = 0 for Q < t 

ux(b,t) - H u(b,t) = 0 

where O is the Dirao delta function, h and H are real numbers, p(x) 
>0 for all x e fa,b}, p eC ( a,b ) and u is a (generalized) solu
tion of (4.1) - (4.3). Furthermore we suppose that 

(4.4) p(a) = Cj, p'(a) = c2, 

where c^, Cp are real numbers. Then we obtain the following theorem. 
Theorem 4. Let h, H, ĉ , c2 be given real numbers. If in addition 

u(a,t) is known for all t with 0<t, then there exists at most one 
function p with the above properties such that (4.1) - (4.4) are 
fulfilled. 

The proof of this theorem can be given by reduction of the sta
ted problem to an inverse Sturm-Liouvilie problem (comp. H. P. Linke 

DO). 
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