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BEHAVIOUR OF SOLUTIONS. TO THE DIRICHLET PROBLEM
FOR THE BIHARMONIC OPERATOR AT A BOUNDARY POINT

VoGo Maz’ya, Leningrad

1°. Introduction. According to the classical result by Wiener
[1] ’ [2] the regularity of a boundary point O for the Laplace equa=-
tion in a domain QcRn, n>2 1is_equivalent to the divergence of the
series

©co
Z Zk(n-z)cap(c -k\Q)
k=1 2
where C, = {xeRn: 9/2 < xl fg)} and cap is the harmonic capa-

citye. Wiener’s theorem was extended (sometimes only with respect to
sufficiency) to different classes of linear and quasilinear second
order partial differential equations ([3] - [11] and others). However,
results of this type for higher order equations seem to be unknowne.

In the present paper we study the behaviour near a boundary point
of solutions to the Dirichlet problem with zero boundary data for the
equation A2y = f, fe Co°°(Q ), §2 ¢ R®. The proof covers only di=-
mensions n = 4,5,6,7 (the case n<4 is not interesting). We show
in particular that the condition

oo
gl 2k(n.4)cap2(c2'k\0') =7, n = 5,6,7,

where cap, is the so called biharmonic capacity, guarantees the
continuity of the solution at the point O. This result follows
from an estimate of the modulus of continuitye. Such estimates, for-
mulated in terms of the rate of divergence of Wiener’s series were
known only for second order equations ([12], [7], [9], [13]).

In the last section we obtain some pointwise estimates for the
Green function G(x,y) of the Dirichlet problem for A2 yalig
without any restrictions on the boundary 2 . 1In particular it is
proved that [G(x,y)| = clx-y1*™® where n = 5,6,7 and c¢ is a
positive constant depending only on n.

The author takes pleasure in thanking E.M. Landis for stimulating
discussionse

2%, Preliminaries and definitions. Let K2 denote an open subset
of Fuclidean space R® with a compact closure Q and a boundary
20 . Let 0 beapointon and Bs., ={,x:|x|<so}, Cp =
Bg,\B /2° We denote by c, c,,e00 positive constants depending
only on n and write Vp= {3‘5/’3 xf’l eoe ?x:n}, Vl =V. We
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consider only real functions.
o O®, .
Let W%(Q) be the closure of the space CO(Q) in the norm
We introduce the biharmonic capacity of a compact e with res-
pect to an open domain G, GDe:

cap2(e;G) = inf{flvzulz dx: ueCG’(G),
G

u =1 in a neighbourhood of e }.

We write capz(e) instead of cap2(e;Rn).
Let [ denote the fundemental solution for the biharmonic
operator, i.ee.

4_
(1) Mx) = )70 if n >4,
2(n—4)(n—2)wn

-1 [¢] .
(4104) log 737 if n =4,

r'(x)

where @ _ = mes AB, and d is a constante.

o n . n-1 1 - A2

3« "Weighted" positivity of o

Lemma 1. Let ueﬁlg(ﬂ)nc"’(ﬂ) and 4 = n £ 7. Then for every
point pef (and in the case n =4 for any d satisfying 4 =
2 diam (supp u)) we have

2
(2) u(p)? + <=f[(v2u(x>>2 v ‘IV“a-—Sl‘I’—lz—] [(x-p) ax =
Q p=x

<2 J Au(x)eAu(x) ["(x-p)) ax.
Q

Proof. Let (r,) be the spherical coordinates with the center
p and let G denote the image of £ under the mapping x — (t,)
where t = - log r. Since

r?Au = r*(r3/3 1) [P %(r2/2 riu] + dpu

where (fw is the Beltrami operator on the unit sphere so-1

get for the function v(t,w) = u(x)

we

Ay = Vip = (0=2)vy + O, v = L.

Consider first the case n>4. By a simple computation

(3) c(n)JAu(x).A(u(x) M(x-p)) ax = f e(4'n)tLv.L(ve(n'4)t)dtd¢a =
Q : G
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= f(vtt-(n—2)vt+ 5,0 v)(vtt+(n-6)vt—2(n-4)v+ J'w v) dtdw
G
where c¢(n) = 2(n—2)(n—4)(.)n. We remark that

(4) 2 ‘Ivtv dt do = / v(oo,aJ)‘? dw = wnu(p)z.
G Sn--l
The following identities are alsp obvious:

(5) jthwv dt dw =0, /vtvtt dt dw = O.
Thus the last integral in (3) becomes

(6) j[vtt—(n 2)(n-6)v -2(n=4) vy v+2v, . duw v+(5w v)2-
- 2(n-4)vdv] at dw + c—(l‘-z- u(p)?.

After integrating by parts we rewrite (6) as

(M) f{vtt+( e M242vy (= vp)2(n-0)v(=F , v) +
+ [5—(n—5)2]v }dt dow + ﬂ%l u(p)2

Using the former variables (r,w) we obtain

2, 2 2,, D~ 2, (7=n)(n=3) .27 _dx c(n 2
[[“rr+ 2 (Voup)™+2 7,“ (Vipu) ™+ 2 upd ez * T2 ule)”
Q

This completes the proof of (2) for n = 5,6. In the case n =17
one can use the inequality

f 2 ax 2z [ 2 _ax
rr _n-4 T n-?
a r a T

which is a corollary of the one-dimensional inequality

oo oo

fw(r)zr dr 5f w’(r)2r(3) dre
0 0
Now let n = 4. We have

‘J; 40, Au(x)eA(ulx) M(x-p)) dx = ‘_I;Au(x)A(u(x)log TEE_P—I) dx =

= [ w.n((f +t)v) at aw
G
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where ,6 = log de The last integral is equal to

(8) f(l +£)(Lv)2 dt de + 2 f(vt-v)Lv at dw .
G G
Applying (4) and (5) we rewrite (8) in the form

(9) /(l +£)(Lv)2 dt dw + 2 f[(Va,v)z-v%]dt da + 2¢J4u(p)2.
G G '
For the first integral in (9) we have

f (£+£)(Lv)2 at dw = f[v§t+4v12;+(50 V2L +t) dt dw +
G G
+ 2 f(vtté;, v-ZVthv-thtvt)(,ﬂ +t) dt dw,
G

and integrating by parts, we get

Jidror@n? at aw = [ [v2+4v2+(8,m22(V, v)%] (£+4) at aw-
G G

-2 J[ (V«,v)z- vi] dtdw .
G
Therefore

4404[ Au.A(ul") ax =f [v€t+4v§+(5w 2 +
a G
+ 2(Vyv )] (£ +1) at dw + 2w,u(p)?,

This identity together with the following easily checked one

J (4,v?% sw Z (a-1) f (Vo2 dw
Sn--l sn-l
implies

2 fAu.A(u M ax 2 ¢ f[(vzv)2 + (V2] (L +t) at dw +
Q G

2
+ u(p)2 z c‘{ !'_(V2u)2 + fZT‘;ILg] log lXEPI dx + u(P)z.

The proof .is complete.
Lemna 1 fails for n Z 8. Indeed, let the function ueC§ (Q\p)
depend only on r =!x-pl o Then (see [7])



254

+ o= + oo

c(n)/Au(x) Atato Plaep) ax = wy [vy at - e [¥F
- 0o - 00
where v(t) = u(e t). Therefore rhe estimate (2) is impossible.
4°, Local estimates. In the next lemma and henceforth we use the
notation:

Mf(u) =§7'n- / u? dx,
ancy,
2 SVu!‘?
W = J [(V,we + 5] Max
¥ 9 NB | x-pl
2

where [ = P(x-p) and we set 4 = 3§> for the case n =4 in
the definition of [.

Lemma 2. Let 7 € C""(B2 )y 7 =1 in a neighbourhood of the
ball Bf ,uewz(ﬂ )nc“’(ﬂ). Then for any point per /2

(10) fA("z ) Alm 2u) ax ffAu.A(/Z ul" dx +
Q a )

+c Mf (u)l/2 N,(vlzu)l/2 +cM 4 (ue

£

Proof. Since
A (m 2u)A(oZ 2uMm -A u.A(ﬂLJ'u M =
= [A,”lz]u.A(”z 2l - Auo[A,"Z 2]0L2u M=
=[A,7%u[8,2T] - Au [[A,7 Yo 2M'u

(the square brackets denote the commutator of operators), we must
estimate the difference of the integrals

il =J[A 1012]u'[A”’L2P]u dx, i2 =‘{A“°[[As’-'1‘-2]”'12 r‘]u dxe

We begin with the estimate of i2. Clearly
[[2,7,21,m %M ]u = 20V 2V (9 2T = 4uq 22 P(Ve )24 V9 V).

Hence

(11) i, = ‘[uA(tfznlzu) dx,

where ¢, = 4(2 F(Vﬂz) +m Vm eV e In general, we denote
further by ‘fi the functions from Co (Bzf\Bf ) satisfying
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1V gl = cpTE, k20,1, .00

The inequality

. 2

|12| e M ¢ (w2y ¢ (’72‘1}/ +OM50 (u)
is a straightforward consequence of (11l). Now we pass to the estimate
of il. Since

[A’"l2]u°[A)f'L2|_'Ju =
= (4”L quoVu + uAﬂl?)(2Vro(0[2r') + UA(/}ZZ r‘)),

we have
(12) i, = Bf(Vu.an Ym (V (7 21V u) dx +f(f0u2 dx,

where ¢, -A"]_ Alm 2m - div(Am .v(vlzl")) -
- 2d1v(A("L MenV 7). The first term on the right hand side of
(12) cean be written in the form

i = 8J(Vuovnz)(2r'v'7 +qv M) Vg 20) ax +
+ afu div {(Ve .V 2"V } ax =

= fu div((sz(OZ 2u)) ax + f uztfo dxe
Q Q
Hence

. 1/2 1/2
|1i|fcMg,(u) ('Q 2u) +cMs,(u),

which completes the proof.

Using Lemmas 1 and 2 we get

Corollary l. Let 4 =n =7, ue’ﬁlS(Q), A2 =0 in QnB2 °
Then for all points pEBg /2 e

(13) u(p)®+ f (7 02+l x=pl "2 (VW) I (x-p) ax T ¢ ug (w)e
Q.nB?

Corollary 2. Let 4 € n £ 7 and let the function ue W2(Q)
satisfy the equation Azu =0 in Q\BQ o« Then for all pomts
p€ O\B

2;7 !

(14) lu(p)] = ¢ ( ,—fﬁ yn-4 My (w2,

Proof. Let G be the image of €} wunder the inversion
p = plpl~2. We make use of the Kelvin transform U(q)=1q1*Pulqlql™?)
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which maps u into a biharmonic function in GNB _;. One can

easily see that the Kelvin transform preserves the class \7!2. By
the inequality (13) for all points qe GNB

2p)7t
U(q)? = cgvn [ u(y)? ay
’32?-1\B 1
or which is the same,
la P4 Mutalal®? $co® [ 1324 ugly 72 oy
32?_1\3?_1

Setting here p = qlql"g, X = ylyl-2 we obtain the estimate (14).
5° Local estimates in terms of capacitye.
Lemma 3. Let 4=n=7 and let the function ueW2 satisfy the

2

- 2 . .

equation Au =0 in Q NB, . Then for all points peB
29 SO/ 2

15)  u(p)? + f (V)2 + | x-p|"2(Vw?) M(x-p) ax <
Q. NB

f
< < J ((Vzl-l)2 +| x-p|™2(vw)?) [ (x-p) ax
rie) anzy

where Jr(’o) =§>4_ncap2(02\_Q) for n»4 and (Sp) =
= cap,(C, N §23B, ) for n’= 4; in the case n =4 we set d = 3¢
in the definition’of the fundamental solutione.

Proofe. The results of [14] ) [15] imply

[ ﬁL, | «vm? g 2vw? e

fo) nc, Qn02
2¢

Noting that P Z ¢ x-p| ’ r'(x-p) = ce 4=n  fpor x€C, , D€ Bf’/2
and using Corollary 1 we complete the proof, #
Lemma 4. Under the conditions of Lemma 3 for 2r ¢ 4 it holds

3
(16) f [(Vzu)2+|x|'2(Vu)2] In"4 ¢ Mf (u)exp(-c jr(’c ) d?'”’-).-
QnB, T

Proof. By (15), for sufficiently small £ >0 and r = e

] (w2 + a2V ) M (xep) ax =
QnN(BN\B;)
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F =t f (Vw2 + | x-p|™2(Vw)?) [ (z-p) ax.
r Qnc,,

Taking limits with p — O and then with £ — + 0 we get

/ (Vw2 +1xI72(Tw ) x|+ ax =
QnB,

¢
= —T}Ty ] (Vw?2 +1x1"2(Vw) ) [ x4 ax.
r Qf'\C

We denote the left hand side of this inequality by Y (r) and set

r =2"%,  Then

(a7 (Lrcy g2y (27 S y@179).

Since r is a bounded function, the estimate (17) is equivalent to

1//(2-k) = exp[-c3r(2'k)] y/(2l'k).
So for m > /4

A-1
(18) Y(z'm) £ exp[-c, ZT(Z H] y (27 £y,
Let numbers m and [ satisfy the inequalities ool 2 = ,m

and 274 = e = 21'1 o Then (18) and (13) yield

1//(1‘) € ¢ exp [- & 3“(2 ]M (u).

Using simple properties of the biharmonic capacity (see for example
[15] ) we obtain (16) from the last estimate.

6%, Regularity of a boundary pointe. We say that a point 0€3Q)
is regular for the blharmonlc operator if the solution ue W2(Q)
of the equation A u = £ with an arbitrary right hand side from
Co 22(L) is continuous at O.

Theorem l. Let 4 £ n< 7 and

(19) f&”"” 9 -

where r is the function introduced in Lemma 3. Then the point O
is regular for Az. Moreover if uewg(ﬂ) and A2u =0 in
.Q«'\B2 for some e > 0 then there exists a constant ¢ such
that
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\g

(20) lim exp(c fr('r) az ) suplu(p)! = 0.

r—0 T pj<r
r

(L

Proof. According to (15) we have for all pe Br/2 with r

@) ue? F ey [ v el xR w?) x4 ex.
finc,,, -

Let S(r) = sup{u(p)z: Pe Br/Z}' From (21) it follows that
r/2 r
Oj s(z)p(z) 4T = c{ s [ (vw2ix"2(Vw?)lxl4Rax =

anzr
r/2 2T
=c [ & [& [ (v wEAE2(ve?) e
T -1 2
0 T st
which by the change of integration order becomes

r/2 ‘
[ serpzr &z [ (7w Ixl"2(Vw2)IxI*P ax.

- T 2
(] QnBr

Using this estimate and Lemma 4 we obtain
¥/2 daT ¢ aT
‘ N
(22) oj Stz (¥) == o Mg (exp(-c [ p(z) ).
T

Let
9

f('r)=f 7 .
T .
The inequality (22) assumes the form
f s(tT (f )) df £c¢ Mg (wexp(=c f(r)).
f(r/2) f f f

Since the function f - st (f )) decreases and f(r) 2z f (r/2) -
- ¢, ¢>0 we conclude
2§(r)
f(r/2)S(f-l(2f(r/2))) £ f S('z:'(f ))df Scu (u)exp(-—cf(r/Z)),
£(r/2) P
)

where -1 is the inverse function to f('c'). We set R =
= § M2 f(x/2)). Then

f(R)exp( %f(R))S(R) < 2¢ M?(u)
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for all R = f-l(2f(g>/4)). Therefore

lim  exp( %f(msm) =
R—>0
The result followse.
An immediate consequence of Theorem 1 is
Corollary 3. If 4<n<17 and

lim /r(t’)——)O
r—)Olog

then the solution ue Wz(Q) of the equation A%y = £ with
feCé”(Q.) satisfies the inequality |u(x)| = cIx|® , o« >0 in
a neighbourhood of O.

7°. Examples of regular points for A2o The proof of the fol-
lowing assertions can be performed in the same way as the proofs of
analogous facts for (p,l)-capacity in [9] y Do 53=55.

If n =4 and the point O belongs to a continuum which is a
part of RN\Q  then T('t) Z const >0 and consequently the condi-
tion of Corollary 3 holds.

Let the exterior of ) in a neighbourhood of the point 0
contain the domain {x: 0< x < 1, xi + oees + X121-1< f(xn)z}, where
f£(t) 1is an increasing positive continuous function on (0,1) such
that £(0) = £?(0) = 0. Then () 2 cliog f(’r)l'l for n=5
and  p(T) % e[ ez )]™> for n>s.

Hence the point O is regular for A2, if

f llog £(z)|tv ™t az =  for n =5,
0

] [ztez)]? %2t g7 = o for n = 6,7,
0

8% Estimates for the Green function. Let G(x,y) Dbe the Green
function of the Dirichlet problem for the biharmonic operator.

Theorem 2. Let 5 < n <7 and dy = dist(y,3Q). Then

4=-n
dy

clx=y14-0 if |x=yl>a

1A

(23) la(x,y) - M(x-y)| c ir |xyl<a

y,

[1,)

la(x,y)1 y?

and consequently |G(x,y)| = clx=y!*™ for all xeQ, ye .
Proof. Let B(y) ={x: | x-yl<dy} and aB(y) ={x:|x—yl< ady}.
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We denote by 7 e function from Co°°[0,1) equal to unity on the
segment [0,1/2) and set

H(x,y) = G(x,y) - 7 ( |—x§y|— )r'(x—y).
y

Obviously the function x — H(x,y) belongs to the class
[
Wg(ﬂ)ﬂc""(ﬂ), the support o‘f the function x — Ai}{(x,y) lies
in B(y)\ %B(y) and IAiH(x,y)I = d;n. Applying Lemma 1 to the
function x — H(x,y) we get

H(p,y)2 =2 f AiH(x,y).H(x,y) M(x-p) dxe

B(y)nQ
Therefore
(24) sup H(p,y)? €
peBHINQ
s sup IH(x,y)l sup f |Af{H(x,y)| [M(x-p) dx,
x € B(y)nQ p € 2B(y)NQ B(y)NQ
and hence

[ [(x=p) ax € ¢ d;‘n .

(25) sup |H(P,Y)| ¢
Q B(y)nQ

a®  sup
pe2B(yIN Y pe2B(y)NQ

Since ASH(p,y) = 0 for peB(y) we obtain from (25) and Corollary
2 (in which O must be substituted by p) for peg 2B(y)

d
H,| S ¢ (s ™ sup IHGx¥I = elp-y I
v x € 2B(y)nQ

The result follows.
Theorem 3. Let n = 4, dy = dist(y,?82), let £ be a domain
with a diemeter & and

Mx-y) = (4«)4)'1103 ﬁg?-,- .

Then
) .
| Gx,y) = Mx=y)| = c;log 'd; +cy if | x=yl| = dy,
< p) .
la(x,y) | = cylog a; +cy if | x-y| > dye

Proof. Proceeding in the same way as in the proof of Theorem 2
we come to (24). Hence



p € 2B(y)NQ2
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sup |H(p,y)| = cd;4 sup Q _[ Mx-p) ax =
pe 2B(y)N B(y)NQ :

< )
- cllog a; + ¢,

which together with Corollary 2 gives for pe€ 2B(y)

Since

(2]
(2]
B3]
(4]

[5]
[e]

(7]
(]

(9]
(1o
[11]
[12]
[13]

lu(p,y)| = - lH(p,y)| = c(cqlog & .
P,¥y c xe2BlZy)ﬁQ (p,y c(cl og 3; + 02)

G(p,y) = H(p,y) for 'pe€2B(y) the result follows.
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