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GLOBAL PROPERTIES OF THE nTH ORDER LINEAR DIFFERENTIAL 

EQUATIONS 

F. Neuman, Brno 

In my lecture I should like to describe an approach to problems 

concerning global properties of linear homogeneous differential equa

tions (LDEs) of the nth order, n ̂  2, and some basic facts of the 

theory. 

Let me start with a few historical remarks. Investigations con

cerning LDEs of the nth order began in the middle of the last centu

ry and were connected with the names of E. E. Kummer [5] , E. Laguerre 

[?], F. Brioschi, G. H. Halphen, A. R. Forsyth, P. Stackel [19] , S. 

Lie, E. J. Wilczynski [20], and others. Between the main objects of 

their study were transformations, canonical forms and invariants of 

LDEs. Their investigations were of local character,which was already 

noticed by George D. Birkhoff [l] in 1910. He pointed out that not 

every 3rd order LDE can be reduced to its Laguerre-Forsyth canonical 

form on its whole interval of definition. 

Of course, the local character of results is not suitable for 

global problems, like questions concerning boundedness of solutions, 

solutions of the classes L and lPt periodic solutions, solutions 

converging to zero, oscillatory behavior of solutions: conjugate 

points, disconjugate equations etc. 

Except that G.Birkhoff [l] introduced a geometrical interpreta

tion of solutions of the 3rd order LDEs using curves in the projec

tive plane, and except for some isolated results of a global charac

ter, there was no theory describing global properties of LDEs; not 

even in the simplest cases n=2 and 3* 

As a simple illustration that any question of a global character 

was difficult to solve let me mention the following one. There was 

a conviction that some properties of LDEs with variable coefficients 

might be modifications of properties of LDEs with constant coeffi

cients. E.g., the 3rd order LDE with real constant coefficients has 

always at least one nonvanishing solution; one might expect that 

in the case of variable coefficients at least one solution of any 

LDE of the 3rd order would have only finite number of zeros. That 

this is not the case was discovered by G. Sansone [l8J in 1948. 
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In the last twenty years 0. Boruvka [2] developed the theory of 

global properties of LDEs of the 2nd order as you have heard in his 

plenar lecture at the conference. 

For the nth order LDEs there are now results of N. V. Azbelev 

and Z. B. Caljuk, J. H. Barrett, T. A. Burton and W. T. Patula, W. A. 

Coppel, W. N. Everitt, M. Cregus, H. Guggenheimer, G. B. G-ustafson, 

M. Hanan, M. K. Kwong, V. A. Kondrat'jev, A. C Lazer, A. Ju. Levin, 

M. R£b, G. Sansone, C A. Swanson, M. Svec and others having global 

character but mainly devoted to oscillatory behavior of solutions, 

conjugate points and disconjugacy. However there was still no theory 

of global properties of LDEs of the nth order enabling us to fore

tell the possible behavior of solutions, to exclude the impossible 

cases, to enable us to see globally the whole situation. 

Global structure of linear differential equations 

All our considerations will be in the real domain. Consider a LDE 

of the nth order, n =* 2: 

y ( n ) • Pnr,1(x)7
Cn"1) +'...• P0(x)y = 0 

on an open (bounded or unbounded) interval IC fR that will be shortly 

denoted by P (together with its interval of definition, that is impor

tant when studying situation globally). The coefficients are supposed 

to be real and continuous. Let £ be another LDE of the same order, say 

z ( n ) + Qa.xCt)-*^11"15 + ... • q0(t)z = 0 on J C 1R. 
T 

Let ;jr = (y1,...,yn) be a column vector of n linearly independent 

solutions of P considered again on the whole interval I; similarly 

z is defined for £. 

We say that P is globally transformable into £ if there exist 

1. a bisection h of J onto I of the class C11 with dh(t)/dt / 0 on J, 

2. a nonvanishing scalar function f: J «• IR of the class C11, and 

3. an n by n regular constant matrix A such that 

(06) z(t) = A.f(t).£(h(t)) on J 

for some (then every) 2 and z of P and (J , resp# 

Due to Stackel, (oc) is the most general pointwise transformation 

that for n ^ 2 keeps the kind of our differential equations (i.e., 

the order and the linearity) unchanged. 

The h and f in (06 ) will be called transformator and multiplica-

tor of the transformation (oc), resp. We shall also simply write 
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ocP = 2 

to express the fact that P is globally transformed into g by oc . 

The relation of global transformability is an equivalence and we 

often call the P and £ globally equivalent equations. We come to a de

composition of all LDEs of all orders n £ 2 into classes of globally 

equivalent equations. 

Let D be one of the classes, Pf D, Q€ D, and o&P = §. For R€ D 

and/3£ = R we may define (/4o6)p := /3(o6P) = R. It is easy to check 

that we have introduced a structure of Brandt groupoid into each 

class of globally equivalent equations. From the theory of categoiiv 

ies it is known that each Brandt groupoid essentially depends 

on the stationary group of its arbitrary element, e.g. on the group 

B(P) of all morphisms (or transformations) of the equation P into it

self. This stationary group B(P) for n = 2 coincides with the group 

of dispersions of P introduced by 0. Boruvka. 

If we consider transformations that not only globally transform 

P into itself but, moreover, that transform each solution of the 

equation P into itself (i.e. A is the unit matrix in (06)), then we 

get a subgroup C(P) of B(P). 

When studying global properties of solutions then transformations 

with increasing transformators h, h* > 0, are extremely important. 

Let B+(P) and C+(P) be the subgroups of B(P) and C(P) with increas

ing transformators. 

The fundamental results of that part of the theory are the fol

lowing ones. 

Theorem 1. B+(P) is not trivial if and only if D contains an 

equation with periodic coefficients. 

Theorem 2. C+(P) is not trivial if and only if there is an equa

tion in D having only periodic solutions with the same period. 

Theorem ?. l^ofcP^g it holds B(£) = 0GB(P)od"' , and similarly 

forB+(2), C(£) and C+(Q). 

Theorem 4. All transformations of P into £ form the set 

ocB(P) x B(£)06 = B(£)o:B(P). 

Proofs of the theorems are essentially based on methods of the 

theory of categories and can be seen from the following picture. 
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To each class D of globally equivalent LDEs we may assign a (can

onical) equation E(D). Then for each equation P € D there exists a 

transformation oo (not necessarily unique, it depends on B(P)) that 
transforms E(D) into P. The transformator h and the multiplicator f 

of the 06 are called phase and amplitude of P (with respect to the 

canonical E(D)). Hence we have introduced "polar coordinates" in each 

class of globally equivalent LDEs, 

The just mentioned categorial description of global structure of 

LDEs of arbitrary order n , n _ 2 , has its geometrical aspects that 

enable us to understand the sense of analytic construction in the 

theoiy of global transformations, to solve open problems, and, some

times, to find occasional inaccuracies in the mathematical literature 

occurring in complicated and lengthy analytic processes without ne

cessity of a tiresome calculation. 

The essence of our geometrical approach is the following obser

vation first introduced in [lOj and [ll] . 

Theorem 5* Consider LDE P and its n linearly independent solu

tions y^,... fyn forming the coordinates of the vector function jr, now 

considered_a__a^c___e_i__n_di^ is a 1-1 

correapondence,between^ 

ne9 pa33ing through origin> in_which parametera of intersection of 

the curve jr with a particular hyperplane are zeros of the correspond-
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ing solution and vice versa, counting multiplicities that occur as 

the order of contacts. 

This result is essentially used in recent literature, see e.g. 

M • 
Moreover, see again [llj f if jr is considered in n-dimensional 

euclidean space, the central projection of the curve £ onto the unit 

sphere S -̂  has the same property. But now all intersections are on 

the unit sphere, and if instead of hyperplanes main circles are under 

consideration we have all the situation in a compact space, where 

strong tools of topology are to our disposal. Some open problems were 

already solved by the method ([l3J). 

Furthermore, having the central projection of the curve jr on the 

unit sphere in n-dimensional euclidean space we introduce a new par-

ametrization as the length of the projection. We could see that, 

firstly, by the projection the multiplicator was eliminated, and 

secondly, by specifying the parametrization we unify the transforma-

tor. Hence we get a special curve u on the sphere. LDEs which con

versely correspond to these special curves are called canonical. The 

explicit forms of the canonical equations are obtained using Frenet 

formulae of the special curves. 

I should like to stress that these special equations are canoni

cal in the global sense, that means, each LDE can be transformed on 

its whole interval of definition into its canonical form without any 

restrictions on the smoothness of its coefficients. 

E.g. 
y" + y = 0 on I 

are all canonical differential equations for n = 2 (there are still 

several equivalent classes depending on the length of I); 

y"1- f y " • (1 + a2)y*- f'y = 0 on I, 

a 6 C1, a > 0, are all canonical forms for n = 3 (they depend on a 

function a and an interval I), etc. 

Examples 

Let me demonstrate the above few facts from the groundwork of the 

theory of global properties of LDEs on special problems. 

Let us see the following picture of "a prolonged cycloid" £ in

finitely many times surrounding the equator of the unit sphere in 
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3-dimensional space: 

If a curve jr is three times differentiate and without points 

of inflexion (that corresponds to nonvanishing Wronskian of its 

coordinates), then its coordinates may be considered as 3 linearly 

independent solutions of a LDE of the 3rd order. Since each plane 

going through the origin intersects £ infinitely many times, each 

solution of the LDE has infinitely many zeros. We have Sansone's 

interesting result using our approach* 

Considering again LDEs of the 3rd order with only constant coef

ficients we can observe that if one oscillatory solution occurs, 

then necessarily there must "be two linearly independent oscillatory 

solutions. One may ask whether for general LDEs of the 3rd order 

(with variable coefficients) the same situation holds. Using our 

method, we want to know whether a curve of the class Or without 

points of inflexion on the unit sphere S2 of 3-dimensional space 

exists such that it is intersected infinitely many times just by 

one plane passing through origin, whereas any other plane passing 

through origin has only finite number of intersections with our curve-
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The above picture gives the answer: there exists such an equa

tion; there is again no analogy to the case of constant coefficients. 

One may ask, why is the situation for n = 3 different from the ca

se n = 2, where there are so many analogies. The answer follows from 

our results: because for n = 2 each class of globally equivalent 

equations has a global representation (e.g. its canonical equation) 

with constant coefficients (i.e. y" + y = 0), however this is not the 

case for n > 2. 

Let me come to other type of applications of our approach. Many 

recent problems and results concern LDE of the 2nd order in the form 

(1) utf + q(t)u = 0 on I 

having all solutions square integrable. There was a problem whether 

in this case all solutions of (1) are also bounded, see [17] and [6j. 

Using our method we may proceed as follows. 

(2) yff + y = 0 on J 

is a canonical form of (1). The curve £ = (f™ *) corresponds to (2), 

hence the curve u(t) = ( f^ ^in £<£)), f, h € C2, f.hf / 0 on I, 

corresponds to LDE of the second order. Since the coefficient by uf 

in (1) is zero, we have f(t) = const. *| hf (t)| ~1'2 (cf. 0. Boruvka's 

lecture). Hence f 6 C2 implies h g C5 and | hf (t)| ~1/2.sin h(t), 

J hf (t)| ' »cos h(t) are two linearly independent solutions of (1). 

It is easy to derive the following succession of implications: 

Each solution of (1) is square integrable iff 

Two linearly independent solutions of (1) are square integrable iff 

J j ^ ' (t)| ""^sin2 h(t)dt<oo and ^ h 1 (t)| "^cos2 h(t)dt<-oo i f f 

Jjlh1 (t)|"1dt< 00 . 

Analogously 

Each solution of (1) is bounded iff 

Two linearly independent solutions of (1) are bounded iff 

Both I hf (t)| ""^sin2 h(t) and | hf (t)| ̂ •cos 2 h(t) are bounded on I 

iff 

I hf (t)| ~1 is bounded on I, 

where hf 4 0 and h€ C^. 

And we ask whether (1) with all square integrable solutions has 

only" bounded solutions. In our model it is equivalent to the ques-
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tion, whether 

Ijjh1 (t)]""^ => | hf| " 1 is bounded on I 

for h € C5, h1 4 0; see [8] and [9]. 

Of course, the implication is not true. Taking suitable h1 we 

can explicitly construct an example of such an equation if it is 

necessary. Similarly we may construct explicitly examples of LDEs 

with certain properties using coordinates of the corresponding 

curves and making some boring computation. 

I should like to conclude my lecture by the following remark. 

The above sketched method and results are suitable for reviewing 

globally the whole situation, to see what can and what cannot happen, 

they are applicable in cases when problems concern behaviour of solu

tions, distribution of their zeros and other properties of this kind. 

On the other hand, within the reach of our approach there are only 

few results for both second and higher order equations which make 

use of conditions on coefficients. 

References 

[l] G. D. Birkhoff, On the solutions of ordinary linear homogeneous 
differential equations of the third order. Annals of Math. 12 
(1910/11), 103-127. ~ 

[2] 0. Boruvka, Linear differential transformations of the second 
order. The English Univ. Press, London 1971. 

[3] 0. Bor&vka, Teorija global 'nych svcjstv obyknovennych linegnych 
differencial 'nych uravnenij vtorogo porjadka. Differencial nyje 
uravnenija 12 (1976), 134-7-1383. 

[4l H. Guggenheimer, Distribution of zeros and limit behavior of 
solutions of differential equations. Proc. AMS 61 (1976), 275-279. 

[5] E. E. Kummer, De generali quadam aequatione differential! tertii 
ordinis. Progr. Evang. Royal & State Gymnasium Liegnitz 1834, 
reprinted in J. Reine Angew. Math. (Crelle Journal) 100 (1887), 
JL—J.U. 

[6] M. K. Kwong, On boundedness of solutions of second order diffe
rential equations in the limit circle case. Proc. AMS 52 (1975), 
242-246. 

|7] M._Laguerre, Sur les equations differentielles lineaires du troi-
si&me ordre. Comptes rendus 88 (1879)> 116-119. 

18] E. Neuman, Relation between the distribution of the zeros of the 
solutions of a 2nd order linear differential equation and the 
boundedness of these solutions. Acta Math. (Hung.) 1$ (1968), 1-6. 

[9] P. Heuman, L -solutions of y" « q(t)y and a functional equation. 
' Aequationes Math. 6 (197D, 66-70. 



317 

[10! P. Neuman, Some results on geometrical approach to linear dif
ferential equations of the n-th order, Comm. Math. Univ. Carol. 
12 (1971), 307-315. 

[ill P. Neuman, Geometrical approach to linear differential equations 
of the n-th order. Rend. Mat. £ (1972), 579-602. 

[12J P. Neuman, On n-dimensional closed curves and periodic solutions 
of linear differential equations of the n-th order. Demonstratio 
Math. 6 (1973), 329-337. 

[13! P. Neuman, On two problems about oscillation of linear differen
tial equations of the third order, J. Diff. Equations 15 (1974), 
589-596. -* 

[l4] F. Neuman, Global transformations of linear differential equa
tions of the n-th order. Kniznice odb. a ved. spisu VUT Brno, 
B-56 (1975), 165-171. 

[15] F. Neuman, On solutions of the vector functional equation 
£(f(x)) = f (x).A.jr(x). To appear in Aequationes Math, in 1977. 

[16] P. Neuman, Categorial approach to global transformations of the 
n-th order linear differential equations, Casopis Pest. Mat. 102 
(1977), 350-355. 

I"l7l W. T. Patula, J. S. W. Wong, An ^-analogue of the Weyl alter-
" " native. Math. Ann. 127 (1972), 9-28. 
L18] G. Sansone, Studi sulle equazioni differenziali linear! omogenee 

di terzo ordine nel campo reale. Revista Mat. Pis. Teor. Tucuman 
6 (1948), 195-253. 

|"19] P. Stackel, tlber Transformation en von Differentialgleichungen. 
J. Reine Angew. Math. (Crelle Journal) 111 (1893), 290-302. 

[201 E. J. Wilczynski, Projective differential geometry of curves and 
ruled surfaces. Teubner - Leipzig 1906. 

Author's address: Mathematical Institute of the Czechoslovak Academy 
of Sciences, Branch Brno, 

662 95 Brno, Janáčkovo nám. 2a, 
Czechoslovakia 


		webmaster@dml.cz
	2012-09-12T22:08:10+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




