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ENERGETIC ESTIMATES ANALOGOUS TO THE SAINT-VENANT PRINCIPLE 

AND THEIR APPLICATIONS 

O.A. Oleinik, Moscow 

In 1855 Saint-Venant [lj formulated a principle which is of an 

exceptional importance in the theory of elasticity as well as in its 

applications in the-construction mechanics. During the last hundred 

years numerous studies have been devoted to the Saint-Venant prin­

ciple and to the clarification of conditions of its applicability. 

A strict mathematical formulation of the Saint-Venant principle 

together with its -justification -->0^ cylindrical bodies was given by 

Toupin [2J in 1965 and for arbitrary twodimensional bodies by Knowles 

£3] • A survey of investigations concerning this problem is found in 

Gurtin's paper [4] . 

The Saint-Venant principle can be expressed in the form of an 

a priori energetic estimate of the solution of the system of equa­

tions of the elasticity theory. It was found that estimates of this 

type can be established for wide classes of partial differential 

equations and systems. Theorems of the Phragmen-Lindelof type, exi­

stence and uniqueness theorems for solutions of boundary value pro­

blems in both bounded and unbounded domains in the class of functions 

with unbounded energy integrals, theorem on the behavior of solutions 

in the neighborhood of non-regular points of the boundary (in the 

neighborhood of angles, ribs etc.) and in the neighborhood of infi­

nity can be obtained as consequences of the energetic estimates which 

express the Saint-Venant principle. A number of such results was 

obtained in [5] - 0lj . 

As the simplest example let us consider the Saint-Venant prin­

ciple for the Laplace equation in a domain _TL of a special shape. 

Theorem 1. Let a bounded domain XL from the class C coincide 

for |xn| <C T with a cylinder {x: x'£ _fL', -T <̂  x n < T } where 

x = (x1,...,xn), x' = (x..,.. . , x n - 1 ) , T = const., Slf is a dc 

in the space R£7 1 • Assume that u € C2(X1) O C1(il), 

n 
(1) Au = f in H-, - | r l B V « A U = ! X _ > 

^ hsi 3=1^jx3 
where f = 0 in il.p , f= 0 on _̂Q_ O 3 TL^ and, moreover, 

(2) J fdx - J Yds = 0 , / fdx - J yds = 0 , 

n + 2si n 3n+ si" VSL ran-
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where SLV = _fl CI {x: |xnl <<£"], r = const > 0, Z < T, il+ = 

= il r) i x : x
n > -

1 j , ft = (x: xn < -T } , Dil is the boundary 
of _TL , v is the direction of the unit outer normal to dfl . Then 

(3) J |Vu|2 dx <exp [-2 ,l2( r r rQ)J J |Vu|2 dx , 

where |2 ^ „ 2 (Vur = ^u£ , rQ, q = const > o, r0 < ^ < i , 
D=1 0 

-1 

(4) A-inf { / S v2 dx' [/v2dx] J , 
v e M il' ;i=1 d il' 

M is the family of all functions v(x') continuously differen-
tiable on Slf which satisfy the condition 

(5) /~v(x')dx' = 0 . 

Proof. With regard to (1) we obtain for -T < a < T 

J fdx = / Audx = / fds + / û . dx7. 

Jl+ iin{x:xn<aj Sjind-fz"1" xn=a 

This together with the conditions (2) implies 

(6) / u dx' = 0 , -T < a < T . 
u xn xn=a 

Let S"̂  = (x: x n=rj, S~ = (x: xn= -2r}, S^ = S+ U S"̂  . Accor­

ding to the Green formula, we have for arbitrary positive Z < T 

0 = j uAudx « - J lvu|2dx + / uux dx' - I uux dx' . 

Stz SLV S+ S^ 

Taking into account the relation (6), we conclude that for any con­

stants ci and CZ-
"r 

J\Vu]2ůx = / (u+C+ )u dx' - J (u+C~ )u x dx ' . 

il r S+ 
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Conзequently 

(7) J (Vul2dx Í k [/(u+C^)2dx']2 [ f u | ( 

flт sí 4- U 

si 

+ [J (u+C^ >>]* [j^f^t. 
s ř -Ç 

Let us choose the constants C^ and C^- so that 

J (u + C^ )dx' = 0 , J (u + C^ )dx' = 0 . 

4 sr 
Then the inequality (7) and the relation (8) imply that 

(8) / V u | 2 d x < X 2 l~ / S u2 dx] 2 [ J u 2 d x ' ] 2 + 
z. J a=i i i n 

J i r S C s?r 

s r s^ 

1 ÍC&Š + u 2 )dx' = 1 ^ 2 í | V u | 2 d x ' . 
J -j=1 D n J 

Í * A г 

' 3 = 1 " 3 
s r s r 

Set F ( r ) = / |Vu l 2 dx , 0 ^ f ^ T . We obtain from (8) t h a t 

л r 

ғ(r) š Ь Л 2 d ? 

1 1 
Multiplying this inequality by exp {- 2 /i £ j • 2 /i and integra­

ting from T to tl we obtain the inequality (3)« The theorem 

is proved. 

The conditions (2) for a membrane correspond in the Saint-Venant 

principle for an elastic body to the condition that the forces ac­

ting at the ends are statically equivalent to zero. The number 4/ 

defined by the conditions (4), (5) equals to the first non-zero 

eigenvalue of the Neumann boundary value problem 
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n-1 

It is easily seen that \ = %2/l2 for n = 2 , where 1 is the 

length of the interval S+ . The following theorem of the Phragmen-

-Lindelof type (a uniqueness theorem) for the solution of the Neumann 

problem in an infinite cylinder £L is a consequence of the esti­

mate (3). 

X L = { x : x ' e j f L / , - o o < x n < + o o j , £ u = 0 Theorem 2. Let 

in il , - ~ | = 0 , u e C2(_Q) O C1 (_0_) and let for a constant 

ъ 

V dx = 0. 

Then u = const in si provided there is a sequence R_.—> °° with 
J 

(Ю) J !vu|
2
dx < Є(RA) exp {2 І2

 R. ( , 

•
R
5 

where £(R.)->0 for R.—> 00 . 
J J 

This theorem is an immediate consequence of Theorem 1. 
1 
2 

The constant 2 X? which appears in the exponential function 
in the inequalities (3) and (10) is the best possible, i.e. it 

cannot be replaced by a greater constant. This is demonstrated by 

the following example. Let v(x') be a non-trivial solution of the 

problem (9) corresponding to the first non-zero eigenvalue ^ . Then 

J v(x')dx' = 0 . 
n! 
1 

Put u(x) = v(x') exp {/I2 x n ) . The function u(x) satisfies all 

assumptions of Theorem 2 except the condition (10). The inequality 

(10) holds for u(x) provided C (R.) = const > 0 and hence u = 

s const. Indeed, for any R > 0 we have 

C R 1 7 
J.S7ul2dx = C1 /exp{2 $ *Jten 4 C2 exp{2 I2 RJ, C^ C2 = const. 
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Analogously to the proof of Theorem 1 we can prove an estimate 
of the type (3) and a Phragmen-Lindelof theorem for solutions of 
the Dirichlet problem for the Laplace equation. The following asser­
tion holds. 

Theorem 3» Let SI. be the domain defined in Theorem 1, Au = 
= f in _Q , u| n = y with f = 0 in Sim $ y = 0 on 

3X7 O ^J1 T , u"e C
2(<7) OC1(.Q) . Then u(x) satisfies the 

inequality (3) with 

(ID i = inf I J s : v2 dx; r v2toJ\^\, 

M-| being the family of all functions v(x') continuously diffe-
rentiable in Si! and such that vL . = 0 . 

laji' 
Let us notice that no conditions are put on f in _f_ ̂  Sim 

and on V in !>S1 N'Jilm in Theorem 3 in contradistinction 
to Theorem 1. 

Theorem 4« Let SI = [x: x' £ _Q', -co < T x n < + o o j , _\u = 

= 0 in SI 9 uL f t - - 0 , u 6 C
2LQ) O C1 (H) f 3 H € C1 . 

Then u = 0 in _fl provided there is a sequence R.—> °° satis­
fying the inequality (10) with X defined by the relation (11) and 
£ (R.) -» 0 for R. —> oo . 

Similarly as in the case of the Neumann problem the constant 
1 
2 

2 X in the inequality (10) is the best possible which is demon-

strated by the example of the solution u(x) = w(x') exp {X x j 

of the equation Au = 0 where w(x') is the eigenfunction corre­
sponding to the first eigenvalue of the Dirichlet problem 

n-1 
/ w + Aw = 0 in il', wi = 0 . 

pi i i ^ 
Theorem 5. Let _Q_ be a subset of the half-space xn > 0 and 

let S,~ = _Q n {x: xn = %, j be a domain in the plane xn = t . Let 

Au = f in xi , u|^a = y vát 

^ T , u € C2(n) H C1CQ.) . Then 

Au = f in XI , u| = y with f = 0 and f = 0 for xn< 
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5 1 
(12) J {Vxx\ 2dx á exp | - J 2 ^ 2 ( ^ ) ď č j j | v u | 2 d x , 

where 
n r o i l O {x: x n < zr], ^ < ^ <T , 

^r)=inf {/Xv^dx'[/v^rj, 
v^Vs^ 3 = 1 J S ^ 

IT.-£ is thejfamily of all functions v(x') continuously differen-

tiable in S ^ satisfying v = 0 on 3 Q f) S^ . 

In this way the exponential factor occuring in the inequality 

(12) analogous to the Saint-Venant principle, can have an arbitrary 

character of decrease depending on the metric properties of the do­

main. Generalizations of Theorems 1 to 5 to the case of elliptic 

and parabolic equations of the second order in domains SI of 

general shapes are given in [52 " [7] • 

Let us now consider the Saint-Venant principle for the bihar-

monic equation which results from plane problems of the linear 

elasticity theory. Let _Q. be a bounded domain in the plane 

(x-, Xp) from the class C such that SI C {x: Xp > 0 } and the 

intersection of the domain _fL with the straight line Xp = 'ZT 

is a set Ŝ - which consists of a finite number of intervals. Let 

1(C) equal the length of the largest interval from S-- , '£' = 

= const > 0 . In the domain SL let us consider the equation 

(13) A A u = f , A A u = ̂ , x x x
 + 2 u

X x x x + u x x x x ' 

with boundary conditions 

" « -I.J1 - Y< • T ? U - ** • 
assuming that f = 0 in H T , If- = 0 , V 2 s 0 on 3/10 

^ 3 f l T where il^ = SI O {x: x 2 < r J , ^ is the direction 

of the outer normal to 3_Q , T = const > 0 . In the domain SI 

we obtain an estimate for u(x) which expresses the Saint-Venant 

principle for a two-dimensional elastic body. Special cases of this 

estimate are established in [3], D 2] i n a different way. 

Theorem 6. Let u(x) be a solution of the problem (13), (14) 
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in a domain _fl ,_ f « 0 in f l T » ^ « y 2 s 0 on 3i} DBX1 T , 
u e C4(£l) O C3(H) . !Ehen an estimate 

(15) J E(x)dx <fy( r0> r ^ ] " 1 J E(x)dx 

holds, where E(x) « u£ x + 2u£ x + u£ , ^ < ^ ^ T , the 

function ({)(x2, ^) satisfies the identity 

<16> • % - W * -o 
for ^ ^ x2 4 ^ and the initial conditions 

(17) $( ^, ^j) - 1 , (f)x ( ̂ , ̂ ) « 0 , 

where ^( f) is an arbitrary continuous function satisfying 

(18) 0 </uu(v) úl{V) « inf í Ete1 |]K-^2x2
+vx1) toll]"1} ' 

l s r SГ

 2 ^ 2 1 

K is the family of functions v(x
1
,Xp) twice continuously diffe-

rentiable in a neighborhood of L and such that v « 0, v
v
 « 0, 

v « 0 at the endpoints of the intervals from S~ • 
Xp (-" 

Proof* Integrating by parts we obtain 

0 - / <J)u ,4 A udx - J E <|>dx - J (u^-uu^+u
2
..) ̂ g

4 1 + 

+ 

S 

"1 

+ 

S 

J ^г^г^г 2*2 2 1
X
2 1

 1 

i> ->-

J (UŽ2 -
 ttv2

 + ^ Л - .^ • 

This implies 

(19) J E4>dx - J (u|
2
 - u u ^ • - ^ X ^ « - " 

л^ л. 
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" j
 (
VЛ

U
 " V2Ч " V г V ^ ' 

r
i 

-J Ą - « s ň * ^ 1 > Ф l «-, • 
•«-, 

Taking here (J) = 1 we conclude 

(20) í E(x)dx - - / ( - W X T « - U _ , Ï I , " u, x ", )dx. . j j x2x2x2 x : ^ x 2 ^c.x2 ï 1 1 

n ri 

Let us introduce a function ([) « Cp(x2, ^ ) defined for ^Q = 
^ x 2 < r.- by the equation (16) and initial conditions (17) and 
continued linearly for 0 ̂  x2 ̂  rQ so that for Xg » f Q the 
function (|) is continuous and has a continuous derivative (t) • 

Taking into account (18) we obtain from (19)» (20) 

J E^dx 4 J Er-
1(x2)<b d x + / Edx . 

nr n^n^ ^2 nr 
c\ \ co r1 

Hence with regard to (16) 
(21) / E(x)<f>(x2, r^dx 1= j E(x)dx . 

Sir Slrr 
0 1 

Let us now study the function fteg* C,) . We shall show that 
([) > 0, (|) < 0 for 0 £ x2 •< E, . Integrating the equation 

<j>X2X2 " r^^Xf " ° 
from x 2 to £j we obtain 

5 
(22) (|)x (x2, «,) - - J ^(x 2) <J)(x2, ri)dx2 , r0 <= x 2 < £, . 

2 X2 

If the inequality (p(x2, C,) > 0 is not valid for ^ ^ x 2 i ^ 

then there exists a point x 2 » cC such that (f)(c6, r p s 0 , 

(f>(x2, r p > 0 for x 2 > 06 . Obviously (j)x («*, r,) > 0 . On the 

other hand, the relation (22) implies that <PX (<^, *zp < 0 . 
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The contradiction just obtained proves that ^Pfep* ^j) > 0 t 
*2 =

 ri . The identity (22) implies that tyx (x2> r.-) < 0 for 

TQ £ *2 < ri • Consequently, the inequality (21) implies the esti­
mate (15)« The theorem is proved. 

Let us now assume that ^(x2) 2 /us a const > 0 • Then for 
r 0 ^ x 2 **1 

1 1 
<t>(x2, *-,) » J [exp {(*?{ ^-x 2)} + exp {-r

?( ^-x 2)j] • 

In this case the estimate (15) implies the inequality 
1 

(23) J E(x)dx £ 2 exp j - ^ ^ - rQ)) j E(x)dx . 

Lo n 
Let us now estimate ^ • It is known that if v ( x . . , x 2 ) is such 

V 
from S^ then 

that v « 0, vx » 0, vy « 0 at the endpoints of the intervals 

2 
t 

sr s
т 

Jv^dz. ś A ^ m J ^ d x , . Л з - ^ 

s
r
 s^ 

-ГCП 

Here l(^) is the length of the largest interval from S^. Let 

1 a sup 1 ( C) • With .regard to the above inequalities we obtain 
0 ̂ r ^T 

s
r

 8гr s
^ 

1 1 

where 0 a const > 0 • Let us choose 6 so that r?Q * ^3 + 

+ 2f( ̂ 2 ' * ̂
 a n e a s y

 computation we have *r ̂ 7 > /Lo + 

+ £ ( 0 4 2 r
1 « -|- . Therefore ^ ( r ) £ 2 ̂ ( r ) g 2 - ^ « ̂ y . The 

estimate (23) implies the inequality 
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J E(x)dx -4 2 exp[-2 -JL-( r.- rQ)j J E(x)dx . 

nr
 1Y2 n^ 

This estimate is better than the corresponding ones obtained in [2], 
\\ 2\. The following theorem is analogous to the Phragmen-Lindelof 
theorem for the biharmonic equation. 

Theorem 7* Let _Q_ Q {x: xg > 0 j f let the set S r =» SL 0 
0{x: x 2 » £ ) be nonempty for all 2r > 0 , f » 0 in SL , 
t1 » 0, V 2 a 0 on 3f_. . Let u(x) be a solution of the problem 
(13), (14) and u £ C4(_CL) O C3(l5). Then u « 0 in _Q provided 
there is a sequence of numbers R. -? oo for j —> °° and a cons­
tant d > 0 such that 

(24) J E(x)dx __ £(Rj) [^(d.Rj)]" f 

where £ (R. ) -> ©o for R. —•> <*> • 

Proof, JSy virtue of Theorem 6 and the condition (24) we have 

/ E(x)dx £ [f>(dfRa)]~ / E(x)dx < £(R..) 

for any R. • Hence 

-í-d -n.-

JE(_ )dx - 0 
л d 

and consequently, u s 0 in il^ since u « 0, ^ *
 0
> "x ** ° 

on d£L • It is known that a solution of the equation /_ A u -* 0 

is an analytic function in _Q_ • Hence u s 0 in SL • 
Given an unbounded domain _0_ such that <i ( V ) _. ̂  « const > 

> 0 f the condition (24) can be written in the form 

(25) J E(x)dx __ £(R.j) exp [ ^ R.. J • 

3 J 
The problem whether the constant ^ in the condition (25) is 
the best possible remains open* Theorems analogous to Theorem 6 
and 7 can be established in the same way also for more complicated 
domains _TL 9 in particular, for the case of a domain _TL which 
has several branches which stretch to infinity along various direc­
tions* Such domains are studied for elliptic equations of the second 
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order in [_5~], [6] • The method used here for investigating the prob­
lems (13), (14) was former used in [jo] to study the behavior of 
solutions of the system of equations of the elasticity theory at 
non-regular points of the boundary. Analogous results may be esta­
blished also for solutions of the problem (13), (14)» In particular, 
the following theorem holds. 

Theorem 8. Let a bounded domain Jl belong to the halfplane 
{x: x 2 > 0 } , ^ » 7 0 . O {x: x 2

 a 0 ) being nonempty. Let u(x) be 
a solution of the problem (13), (14), u e H2(_fL) O C4(l7) C\ 

f}Cr(Q ^ 6) and let the curve 3_fl̂ > <S belong to the class 
C1, f = 0, ^ ? 0, f 2 - ° i n a c e r t a i n neighborhood of the 
set (T • Then 

jE(x) (j) (x2)dx < oo , 

n 
where 9 (x2) satisfies the equation (t) x^ - j f ( x 2 ^ s ° a n d 

the initial conditions ty(oc) = 1, ^ (cO) « 0, 0 < x 2 < cC 
where *o is a constant, the function r^(x2) is defined by the 
relation (18) and by the assumption ^ ( x 2 ) — ^ <*> for x2-> 0 . 

It is possible to establish estimates for the function y(x2) 
which characterize the growth of (j)(x2)

 f o r xp~^ ° i n d e P e n d e n c e 

on the geometric properties of the domain _0_ in a neighborhood 
of the set C • 

Let us remark that estimates analogous to the Saint-Venant prin­
ciple for solutions of the Dirichlet problem for the system of equa­
tions of the elasticity theory are established in (joj while for 
the mixed problem they are given in jj \\ • Inequalities analogous to 
the Saint-Venant principle as well as theorems of Phragmen-Lindelof 
type which are their consequences, hold under certain conditions for 
solutions of general boundary value problems for both elliptic and 
parabolic equations. These estimates are given in ]j3] - 05] • In 
these papers an approach is used which is connected with a study of 
analytic continuation of solutions in a domain of variation of one 
of the independent variables of some specially constructed auxiliary 
systems • 
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