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ENERGETIC ESTILATES ANALOGOUS TO THE SAINT-VENANT PRINCIPLE
AND THEIR APPLICATIONS

0.A. Oleinik, loscow

In 1855 Saint-Venant D] formulated a principle which is of an
exceptional importance in the theory of elasticity as well as in its
applications in the-construction mechanics. During the last hundred
years numerous studies have been devoted to the Saint-Venant prin-
ciple and to the clarification of conditions of its applicability.

A strict mathematical formulation of the Saint-Venant principle
together with its justification for cylindrical bodies was given by
Toupin [é] in 1965 and for arbitrary twodimensional bodies by Knowles

3]. A survey of investigations concerning this problem is found in
Gurtin’s paper Eﬂ.

The Saint-Venant principle can be expressed in the form of an
a priori energetic estimate of the solution of the system of equa-
tions of the elasticity theory. It was found that estimates of this
type can be established for wide classes of partial differential
equations and systems. Theorems of the Phragmen-Lindelof type, exi-
stence and uniqueness theorems for solutions of boundary value pro-
blems in both bounded and unbounded domains in the class of functions
with unbounded energy integrals, theorem on the behavior of solutions
in the neighborhood of non-regular points of the boundary (in the
neighborhood of angles, ribs etc.) and in the neighborhood of infi-
nity can be obtained as consequences of the energetic estimates which
express the Saint-Venant principle. A number of such results was
obtained in [5] - [:11:1 o

As the simplest example let us consider the Saint-Venant prin-
ciple for the laplace equation in a domain () of a special shape.

Theorem 1. Let & bounded domain () from. the class C1 coincide
for |x | <T with & cylinder {x: x'€ Qf, -r <z, T} where
X = (x1,...,xn), x/ = (x1,...,xn_1), T = const., )’ is a domain

in the space R§71 . Assume that u € C2(£2)N ¢' (L),

i 2u = =3
(1) Au=f in QO >y VD_Q_—‘W’ Au:jéuxjxj’

where f=0 in g, ¥=0 on 200N 9N, end, moreover,

(2) ]fdx- / Yds = 0 , /fdx-— f yds = 0,

nt 2.0 N3Nt - 2.0 NaN-



329

where _{7_2,=_Qf\{x: lxn|<?;}, T =const >0, 7 <1, 0=

=N {xtx, >T), = {x: X, < -1}, 90 is the boundary
of N, Yy 1s the direction of the unit outer normel to 9.2 . Then

) f 7 ul? ax <exp {- 242(?: )}j 1Vul? ax
_Q_Zo

2 & ~
where [Vu]| 2152{ , ?6, 2\1 = const > 0O, G <TG s

(4) 2 =anr { ni1 v2 ax’ [fvzdx/] -1} ,
N

M is the family of all functions v(x’) continuously differen-
tiable on ()’ which satisfy the condition

(5) fv(x’)dx' =0.

o

Proof. With regard to (1) we obtain for =T < a < T

ffdx: / Audx = f?ds+u/15{dx.

nt an{x:x,<a} ’r)_QnB_Q

This together with the conditions (2) implies

(6) fu ix’ =0, -T<a<T.
xn
Xn=8.
Let st = {x: x=%f, S7 ={x:x=-2}, S;=5p USy . Accor-

ding to the Green formula, we have for arbitrary positive < £ T

0=quudx=—f|vu|2dx+juuxdx’-fuuxd.x’.
n n

+
-‘7-7,« 'Q't- S S~

Taking into account the relation (6), we conclude that for any con-
stants and CL

/IVulzdx /(u+C+ )uxndx / (u+C )u ax’ .
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Consequently

M /fVu|2dx E{ (utCh )zdx] l_—_/uxndx:l
U oz 2ot [f
Sz S

Let us choose the constants C'?": and C,} so that

I\)I—‘

f(u+c;)dx’=o,
+
S’C

0.

2]

QI —
~~
i+
+
Q
q
Nt
o
]
1}

Then the inequality (7) and the relation (8) imply that

(8) /]Vuledxéﬂx-%[qu dx:] [fu dx:l +
n,. s"t', |
_a _ L .l
[ gt [
T T
<

;
<12 (>l o+
G FF O R
s’U

IIN

=

/

1
ddx =°2—/?/

f{Vulzdx' .
Sz

Set P(7) = /IVulzdx , 0 £ 7 =T ., VWe obtain from (8) that

-

Mz) €34 ° & .

aT
1 1

Multiplying this inequality by exp t- 212 ’E} 2 /?,E and integra-
ting from ’C’o to ’(‘,‘1 we obtain the inequality (3). The theorem
is proved.

The conditions (2) for a membrane correspond in the Saint-Venant
principle for an elastic body to the condition that the forces ac-
ting at the ends are statically equivalent to zero. The number A

defined by the conditions (4), (5) equals to the first non-zero
eigenvalue of the Neumann boundary value problem
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Z v + v = i ' hA = .

(9) 22 Vg Av=0 in 0, 3 lag’ 0

It is easily seen that ; = 32’2/12 for n =2, where 1 is the
length of the interval S’;_ . The following theorem of the Phragmen-
-Lindelof type (a uniqueness theorem) for the solution of the Neumann
problem in an infinite cylinder () is a consequence of the esti-
mate (3).

Theorem 2. ILet a={xzx"e ', -0 <X <+ oo}, Au=0

in 0, % =0, u€c’N)Nc'(l) and let for a constant
2N
b
/
f u, dx = 0.
x_=b n
n
Then u = const in _) provided there is a sequence Rj—) o  with
1
(10) f v ulzdx < é(Rj) exp {2 1° Rj} ,
‘QR.
J

where £(Rj)60 for Rj——)w .

This theorem is an immediate consequence of Theorem 1.

The constant 2 412 which appears in the exponential function
in the inequalities (3) and (10) is the best possible, i.e. it
cannot be replaced by a greater constant. This is demonstrated by
the following example. Let v(x’) be a non-trivial solution of the
problem (9) corresponding to the first non-zero eigenvalue A . Then

Jv(x’)dx' =0,

nl

1
Put u(x) = v(x') exp {/1,2 xn} . The function u(x) satisfies all
assumptions of Theorem 2 except the condition (10). The inequality
(10) holds for u(x) provided £ (Rj) = const > 0 and hence u =
= const. Indeed, for any R > 0 we have

R 1 1
fqulzdx - ¢, [exp{2 A xylax, £ ¢, exp(2 A7 R}, ©y, €, = const.
Dy -R
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Analogously to the proof of Theorem 1 we can prove an estimate
of the type (3) and a Phragmen-Lindelof theorem for solutions of
the Dirichlet problem for the Laplace equation. The following asser-
tion holds.

Theorem 3. Let . be the domain defined in Theorem 1, Au =
=f in ‘Q’ula()_:W with £ =0 inn_T, Yy =0 on

2NN 3.,0.,1. , uze 02(_(2) ﬂc1((_2) . Then u(x) satisfies the
inequality (3) with

(1) A = {/Zvdx[/zdx]}

vEM

M1 being the family of all functions v(x’) continuously diffe-
rentiable in (' and such that iy =0 -

Let us notice that no conditions are put on £ in N~ Qo

and on V¥ in 2.0 \’aQT in Theorem 3 in contradistinction
to Theorem 1.

Theorem 4. Let O = {x: %' € Qy, - < x <+ 0}, Aus=
=0 in O, u, =0, weck@Nc'(D), nec.

Then u =0 in () provided there is a sequence R,—> o° satis-
fying the inequality (10) with A1 defined by the relation (11) and
E(Rj)—)O for R;—> o0 .

Similarly as in the case of the Neumann problem the constant
1
2 A,é- in the inequality (10) is the best possible which is demon-
1

strated by the example of the solution wu(x) = w(x’) exp {/],2 xn}

of the equation Au = 0 where w(x’') is the eigenfunction corre-
sponding to the first eigenvalue of the Dirichlet problem
n-1

W, + Aw=0 in QO w =0 .
; =553 * Tha

Theorem 5. Let (). be a subset of the half-space xn> 0 and
let Sz=0 N tx: X, = 'z:} be a domain in the plane X, =T Let
Au =T in_n_,u|3Q=1y with £f=0 and Vv =0 for xné
<17, uecd(Q)Nc'(Q)) . Then
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(12) f [Vulzdx exp{ J2 ,’1,2( c)d’C} j |Vu|2dx ,

where

0

z ﬂﬂ{x=xn<2‘}, ’ZEJ< é ’

{f%vdx[f de]j

vENZ S

A(T)

N is the_fa.mily of all functions v(x’') continuously differen-
tiable in S, satisfying v=0 on 30O NSg .

In this way the exponential factor occuring in the inequality
(12) analogous to the Saint-Venant principle, can have an arbitrary
character of decrease depending on the metric properties of the do-
main. Generalizations of Theorems 1 to 5 to the case of elliptic
and parabolic equations of the second order in domains ()L of
general shapes are given in [5] - [7] .

Let us now consider the Saint-Venant principle for the bihar-
monic equation which results from plane problems of the linear
elasticity theory. Let () be a bounded domain in the plane
(=4, x2) from the class C' such that Q C {=x: x, > 0} and the
intersection of the domain ) with the straight line x, = T
is a set Sz which consists of a finite number of intervals. Ilet
1(ZT) equal the length of the largest interval from S’C , T =
= const > 0 . In the domain 2 1let us consider the equation

(13)  AAu=f, AAu=1up gy *+ 2N

- +
X X X% 0 uxzxzxzxz ’
with boundary conditions
du
(14) ula_o- = ?1 ’ 2y l'B_Q = ’4[2 ’
assuming that £ =0 in Qg , V¥;,=0, Y¥Y,=0 on 20N

/\’a_ﬂ_T where Q,.=0N{x:x, <z}, v is the direction
of the outer normal to 20 , T = const >0 . In the domain ()
we obtain an estimate for u(x) which expresses the Saint-Venant
principle for a two-dimensional elastic body. Special cases of this
estimate are established in [3], ]:12] in a different way.

Theorem 6. Let u(x) be a solution of the problem (13), (14)
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in a domain _()_,_fgo in _QT, vy = 1/2!0 on a_Qna_o_T,
u € 04(0_) N 03(_0_) . Then an estimate

(15) [ rmax 2[00 7, 7] ] E(x)dx
Qo Qo

2 2 2
holds, where E(x) = “x1x1 + 21&112 + 1&2;2 , 7{) < ?51 £7T, the

function ((x,, 7,) satisfies the identity
(16) - w(x,)P =0

9 X ¢
for ’lb < x, < ’l] and the initial conditions
an dcg, a1, Gx (% ) =0,

where {w( T) is an arbitrary continuous function setisfying

-1
(18) 0 <udz) SA(%) = dnt | [Bax, [[for2 v, wv2 )ax,l] b,
vel (S 5,2 ¥z .

C C

N is the family of functions v(x,,xz) twice continuously diffe-

rentiable in a neighborhood of S, and such that v = 0, v, =0,
1
Ve = 0 at the endpoints of the intervals from S
2

Proof. Integrating by parts we obtain

0= f Qu 4 A udx = JEt?d.x- J (1§2-uuxax2+1§1)q>x2xadx+
g g 9

* sfr (u"zxzxzu - u‘z‘z“‘z - 1&122%1)(1)&1 *
;

+ J (“12:2 - u“&zxz + L‘§1)O?xzd‘x1 *

S
g

This implies

(19) a 2 . 2 -
_({:‘de nfT (uxz Wapx, ¥ ux1)<p‘2‘2dx
1
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= s{, (u“xzxzxzu = ux,l_,xzux2 = “x1x2“x1)q)dx1 =

>

-

- 2 _ 2
IR
1

Teking here () = 1 we conclude

(20) E(x)dx = - ( u - - Jax, .
J R e R AR
Lo z.
1 1
Let us introduce a function @ = (D(xz, T,) defined for ;=

£ X, £ T, by the equation (16) and initiel conditions (17) and

continued linearly for 0 < X, £ 7y 8o that for X, = ’C’O the

function q) is continuous and has a continuous derivative (Px .
2

Taking into account (18) we obtain from (19), (20)

j Ebax £ f E{t/'1(xz)¢x2x2dx+j Edx .

0 Q.. >~ 0. a
4 T T 2
Hence with regard to (16)
@) [ B@ 0y T £ B@ex .
_Q/Zb ﬂ,r1

Let us now study the function O(x,, ;) . We shall show that
(P >0, (Px <0 for 0% X, 47 . Integrating the equation
2
chzxz - /"(xz)q) =0
from x, to ’5] we obtain

4

(22) q)xz(xe, '2:1) = - j (u/(xz) Sb(xa, ?71)d:°:2 ’ '&6 £ x, 2’2‘1 .
X,
2

If the inequality Q(x,, 7;) > 0 is not valid for 7j <x, £ 7
then there exists a point X, = o such that ((«, 73) =0,
dP(xz, 7,) >0 for x, > « . Obviously (Px (<, 73) 20 . On the
other hand, the relation (22) implies that 12( oL, '2’1) <0.
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The contradiction just obtained proves that (D(xa, ’Li) >0,
x, £ %, . The identity (22) implies that (sz(xz, %) <0 for
7o £ X, < 7; « Consequently, the inequality (21) implies the esti-
mate (15). The theorem is proved.

Let us now assume that l(xz) 2 ( = const > 0 . Then for

’Z'ngz g’q

1 1
O (xpy 7)) = & [oxp {2( 7))} + exp {02 7, x)]]
In this case the estimate (15) implies the inequality

) 1
(23) | BGax 42 exp {-p2(7- 7} [ E@ax
O 0

% ’CI
Let us now estimate w1t is known that if v(x1,x2) is such
that v = 0, Vg = o, Ve = 0 at the endpoints of the intervals
from 8§, then 2

2 -1, ~ 2

vaa“% 24,(T) va2x1d'x1 N T
S?: S,

4
[vRax, <23 () fvx1x1d.x1 . 42,,54_1_7&1 L,

T

2
2 -1, 2 12
vx1<1x1 ‘=</'],3 &) éf11'2{1]:1<i.x1 ’ /?,3=—3— .
T

1°(7)

t
N

[4:]
q

Here 1(7) is the length of the largest interval from S, . Let
1= sup 1(7) . With regard to the above inequalities we obtain
0=

TET

2 2 <z 1 -1
| Vs =-wv + v )ax, | £ a4 / 2v dx. +
j x, XX, x, 1l 2 Y XXy 17

v
1] 2 0 ’151 v2
+ A3 | v dx, + f dx, + dx
34 F% x %, 20 § X% 17
T Sy T

where O = const >0 . Let us choose 6 8o that -156 = ,],;1 +
+ %( 9'12)"l . :Zy an easy computation we have %1'1'1 > /1,3
+%(912)-1=T.Therefore A(T) 222,(7) 2 2—2-;:(44/ The

estimate (23) implies the inequality
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J E(x)dx £ 2 exp{-z —( T)- o)} J E(x)dx .

a, V2 Q.
(*] 1

This estimate is better than the corresponding ones obtained in [2],

[12:] « The following theorem is analogous to the Phragmen-Lindelof

theorem for the biharmonic equation.

Theorem 7. Let (. C {x: X, >0}, let the set Sy = QN
N{x: x2-’1:} be nonempty forall 2 >0, f£f=0 in (O,
¥, =0, Yo = 0 on 20 . Let u(x) be a solution of the problem
(13), (14) and w e c* (1) N ¢3(). Then u=0 in O provided

there is a sequence of numbers RJ — o0 for §J —> °° and a cons-
tant d > 0 such that

IA

(24) j E(x)dx

ey [P@r)])”
Qg

3
where b(Rj)—>oo for RJ-—>00 .

Proof. By virtue of Theorem 6 and the condition (24) we have

-1
Jr@ax s [parp]l” [ E@ex £ ey

Nq4 ﬂnj
for any R‘_j . Hence
j E(x)ax = 0
_Qd
and conmsequently, u=0 in ‘Qd since u =0, ux1= o, uxzu 0

on 0. . It is known that a solution of the equation A Au =10
is an analytic function in () . Hence u=0 in O .
Given an unbounded domain (O such that A(T) 2 (W = const >
>0 , the condition (24) can be wr:%tten in the form

(25) [ BE@ax 2 () ew {{W’"nj }.

.O.Rj .
The problem whether the constant (UE in the condition (25) is
the best possible remains open. Theorems analogous to Theorem 6
and 7 can be established in the same way also for more complicated
domains ) , in particular, for the case of a domain () which
has several branches which stretch to infinity along various direc-
tions. Such domains are studied for elliptic equations of the second
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order in [5], [6]. The method used here for investigating the prob-
lems (13), (14) was former used in BOJ to study the behavior of
solutions of the system of equations of the elasticity theory at
non-regular points of the boundary. Analogous results may be esta-
blished also for solutions of the problem (13), (14). In particular,
the following theorem holds.

Theorem 8. Let a bounded domain Q2 belong to the halfplane
{x: x, >0}, 6= o N {x:x X, = 0} being nonempty. Let u(x) be
a solution of the problem (13), (14), u € Hy(Q) Net()n
Ne3(0 ~ ) and let the curve 20~ G belong to the class
01, £ =0, ¥, = o, 1{/2 0 in a certain neighborhood of the
set G . Then

fE(x) O (xy)ax < o0,

where (P(xz) satisfies the equation (j)x Xy 12-(‘-'(::2)4) =0 and
the initial conditions (P(o(,) =1, ¢) («£) =0, 0<x, £«
)

where « is a constant, the function ,u/(xz) is defined by the
relation (18) and by the assumption ,w(xz) —> @ for x,30.

It is possible to establish estimates for the function CP(xz)
which characterize the growth of q>(x2) for x2—) 0 in dependence
on the geometric properties of the domain () in a neighborhood
of the set G .

Let us remark that estimates analogous to the Saint-Venant prin-
ciple for solutions of the Dirichlet problem for the system of equa-
tions of the elasticity theory are established in [:10] while for
the mixed problem they are given in [:11] . Inequalities analogous to
the Saint-Venant principle as well as theorems of Phragmen-Lindelof
type which are their consequences, hold under certain conditions for
solutions of general boundary value problems for both elliptic and
parabolic equations. These estimates are given in [13] - [i15]. In
these papers an approach is used which is connected with a study of
analytic continuation of solutions in a domain of variation of one
of the independent variables of some specially constructed auxiliary
gsystems.
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