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APPLICATION OF BOUNDED OPERATORS AND LYAPUNOV'S MAJORIZING 
EQUATIONS TO THE ANALYSIS OF DIFFERENTIAL EQUATIONS 

WITH A SMALL PARAMETER 

Yu. Ryabov, Moscow 

1. Introduction 
Given a system of ordinary differential equations with a small 

parameter e, ( &. — 0) 

(1) z = F(z,t,f- ) , f = d/dt) , 

let us consider the problems of existence, of estimating the domain 
of existence and of the construction of solutions of a certain class, 
for example, periodic or satisfying some initial conditions. Follow­
ing the usual methods of small parameter we assume that the solution 
z°(t) of the system (1) for £, = 0 is known and that the solution 
z(t, t ) is continuous at & = 0 • Moreover we assume that the func­
tion F(z,t, £.) is continuous in t, £. and differentiable with res­
pect to z in a neighborhood of z°(t). 

A well known method of investigating the problem of existence 
and uniqueness of a solution consists in proving the possibility of 
transforming the system (1) into an operator system of the form 
x = Sx where S is the corresponding operator and x is a new va­
riable, and further in an application of the contractive mapping 
principle. Our approach which develops further the Lyapunov methods 
[l], [2] consi3ts in aa3ociating the system x = Sx with finite (as 
a rule, algebraic) equations which will be called Lyapunov*s majori­
zing equations. Constructing these equations, we write the given 
operator system equivalent to the system (1) on the corresponding 
3et of functions % in the form 

(2) x = LW(x,t, i) 

where L is a linear bounded matrix operator in -̂  while 
W(x,tt t) is a function continuous in t,V and differentiable in 
x in a domain D(||x||<R, 0-^t^T, 0 < V < t*). The variable x is 
such that 

(3) W(0,t,0) = 0 , 2W(0,t,0)/2x = 0 . 

Then in the general case, the sy9tem of majorizing equations is 

(4) u = A0(u, t) = 0 

where A is a constant matrix such that the following vector con-
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dition of boundedness of the operator L ia satisfied: 

(5) (||L</J(t)||)<A(||y(t)||) , y>(t)G3t 

while (j)(u, ir ) is the so called Lyapunov's majorant with respect 

to W(x,t, £.); all components W^ , fi^ satiafy the inequalities 

(6) ||wi(x,t, ^ ) | | -̂ (^(u, g.) , H^W.^t, eJ/flxJ < 

* ^ ( u , fc)/^Uj , 

provided x,t,£ED , ||u||-2R , 'xj|-uj i j=l,2,...,n • 

By means of the majorizing system (4) it is not only possible 

to e3tabliah the convergence of the iterative process 

(7) xk = L W t x ^ ,t, t) , k=l,2,..., xQ = 0 

in a certain domain of variation of £. to a unique solution but also 

to obtain estimates of this domain as well as of the error of the 

approximative solutions constructed on the basis of (7)* 

Various modifications of the sy3tem (2) and of the majorizing 

equations (4) may be studied. A number of results based on this ap­

proach are given in [3] " [1C[| • 

Notation used throughout the paper: (i) The symbol ||'/(t)|| 

means the usual norm sup |^(t)| of a scalar function in the apa­

ce C°; (ii) The symbol ||y(t)|| staya for the so called trigono­

metric norm in the space of functions which are expressed by absolu­

tely convergent Fourier serie3: 

Il/<*1- E W\ 
|k|>0 

where a, are the coefficients of the complex Fourier series (or 

polynomial) for <i>(t); (iii) By (||x(t)||) we denote the vector 

whose components are j|x, (t)||, ...,||xn(t)||; (iv) A vector inequality 

x<y is considered equivalent to the same inequalities for all the 

components of the vectors x,y • Vectors which satiafy the inequality 

x > 0 or x^O are called positive or nonnegative, respectively. 

The other notation is standard. 

2. Fundamental theorems for the systems (2) and (4) 

Generally, the function fl_(f>(u, &) is continuous in t> , con­
tinuously differentiable in u and belongs to the class of nonli­

near vector functions which are positive for £ > 0, u>0, none of 

the elements of the matrix A9<p/9u ia negative and there is at 

least one element which is an increasing function of at least one 
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component of the vector u • Moreover, 
$(0,0) = 0 , #(/>(0,0)/2u = 0 . 

Further we assume that the system (4) is non singular, i.e., it nei­
ther splits into separate subsystems nor has a solution for t>0 
with some components of the vector u equal to zero and the others 
positive. Then we have the following 

Theorem 1. 
I. The system (4) has a positive solution u = u ( t ) in and only 

in the domain [o, £ J whose upper limit t+ and the corresponding 
vector u^= u(£̂ .) satisfy simultaneously the relation (4) and the 
relation 

(8) det [E - A^$(u, t )/2u] = 0 

where E is the unit matrix. 
II. For £ E [0, gj the system (4) has a unique solution 

u = u( t )EC°[0, 6.J such that u ( a ) > 0 for £, > 0 and u(0) = 0; 
for £.€(0t£^) and the corresponding u(&) the determinant (8) 
as well as all its principal minors are positive* 

III. For £-£[0,£j the iterations 

(9) uk = A(f)(uk-1 , £) , k=l,2,..., uQ=0 

form a nondecreasing sequence and converge to u(t ) • 
Theorem 2. 
For a given system (2) and the corresponding system of inequali­

ties 
(10) v <A(j>(v, £.) 

l e t u = u(£ ) be the solution of the system (2) from Theorem 1, 
and l e t v = v( £ ) GC° [ o , f J sat i s fy (10), v ( £ . ) > 0 for £ > 0 
and v(0) = 0 . 

Then v( £ ) < u( fc ) , £ £ [0, fcj . 
The proof of the above assertions is first carried out for the 

case when (2) is a scalar equation (u = f(u, £_))• Simple geometric 
arguments are used (graphs of the curves y = f (u, £ ) for L<£ .$ 
£ = £*» L>L¥r

 on t n e surface (u,y) and the graph of the 
straight line y=u are considered) together with the monotonicity 
of f(u, t )» - û̂

u> L ) for increasing u, t a nd with the bounded-
ness of u, t from above which is a consequence of an equation analo­
gous to (8). The method of induction allows us to extend the results 
to systems of arbitrary orders (see [6j » b-^J)# At the same time 
it is proved that (2), (8) together form a system of equations with 
respect to u,L possessing a unique positive solution u=u^, t- t^. 
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Hence to find £^ is an algebraic problem and it is known that its 
solution exists and is unique. 

The fundamental result concerning the system (2) is the following 
Theorem 3. 

Let us consider the system (2) in the domain D(||x||<-Rf 0<-t^Tf 

0 <• 6 < £ ) and let (4) be the corresponding majorizing system in 
the domain* Let u = u( t ) be the solution of the sy3tem (4) and 
[0f £j the domain ( t^< t°) from Theorem lf ||u(e.)||<R for 

eG[0,^] . 
Then for a€[of£.~| (i) the sequence (u^ £ )} defined accor­

ding to (9) is majorizing with respect to the sequence {-^(t, £.)} 

defined according to (7); (ii) the sequence x. (tf£.) converges on 

the segment 0^t<T to the solution x(t,e) of the system (2) 

and this solution is unique in the class of functions belonging to 

C°[0f 6.J and equal to zero for t- = 0 . 

The proof is based on comparing the expressions (7), (9) for 

x^(tf £.), uJc( e) with regard to the inequalities (5)f (6). We obtain 

(11) (||xk(t,£ )||)<uk(e.) , (ll-v^t,* )-xk(t,£)||)< 

- w ^ - uk(e) 

and this implies in virtue of Theorem 1 the uniform convergence of 

the sequence {-^Ui^)} t° t n e solution x(tf 6.) of the sy3tem 

(2) on the 3egment [O,T] for £.£[of£.J and moreover, x(tf £.)E 

EC°[o f£j f x(tfO) = 0 • The uniqueneas of 9olution i3 eetablished 

via Theorem 2. Assuming the existence of a solution x(t, £. )EC°[of*Q 

(x(tfO) = 0) of the sy3tem (2) we obtain that the vector v(t) = 

= (||x(tf ̂ )||) sati9fies the eystem of inequalitiea (10). In virtue 

of Theorem 2 we have v( £. )<-u( £) • Further we eatabliah the in­

equalities 

(||x(tf ̂ - x ^ t , fcj||)<5( a) - u-^ 6.) , k=lf2f ••• • 

Hence we conclude that for £E[o,£,J the sy3tem (2) has no solu­

tion different from the limit of the sequence {-^(t, £-)} which 

belongs to the clas3 C°[of£.J and equal to zero for g_ = 0 • 

Remark 1. Theorem 3 offers directions how to construct the num­

ber £.# which gives a lower eatimate of the values £- for which the 

desired solution x(t, £_ ) of the sy3tem (2) exist3 and is unique. 

Furthermore, we obtain an estimate for'the solution itself and for 

the error of the k-th approximation -^(t, £ ) since 

(12) (|]x(tf £)||)<u(6 ), (||x(t,£. )-xk(t, £.)||)< u(£. ) - xi^ie )• 

Remark 2. The majorizing equations (4) may be simplified by re-
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placing them in the simplest case by a single equation. At the same 

time these equations and consequently, also the established estima­

tes may be improved by immediate estimation of a certain number of 

approximations -^(t, £,)• In the case of periodic solutions and ana­

lytic in x right hand aides of (2) this improvement can be achieved 

by taking into account the structure of the desired solution and u-

sing the norm || • || in the conditions (5), as well as owing to the 

possibility of distinguishing the main harmonica in the solution 

(cf. [l0]). 

3. .Analytic case 

If the function W(x,t,£) in (2) is an analytic function of 

x, £, in the domain D and if an analytic with respect to W(x,t, £,) 

majorant of Lyapunov is used in the construction of the system (4), 

then the number &# from Theorem 3 gives an estimate of the domain 
of convergence of the power series in £, , in the form of which the 

solution of the 3ystem (2) can be sought. This series alwaya conver-

ges for | £ | < £.x • Thi9 follows from the fact that in this case all 

xk(t,£ ) are expressed by series (polynomials) in £. and they are 

majorized by the corresponding seriee (polynomials) for u, (e ) 

with nonnegative coefficients; the sequence (uv(^)} converges 

for 0 — £ < £^ to a function which can be expressed by a series of 

the same character. 

4. Connection with the condition of contractivity of the mapping 

The system (2) being written in the form x = Sx , Theorem 3 may 

be viewed as a theorem on existence and uniqueness of a fixed point 

of the operator (mapping) S on the segment 0<t---.T for £, € 

^ L°*£*] *n t h e c l a 8 S °f functions C°[o, £ .J equal to zero for 

£. = 0 • Nonetheless the proof of Theorem 3 proceeds without using 

the notion of contractivity of the operator. 

Dealing with (2), let us choose arbitrary consistent norms of 

vectors and matrices, formulate the conditions (5) of boundedness of 

the operator L and construct the system (4)* Let the latter be 

written in the form 

(13) u = Qu , (Qu = VL0(u, £.)) 

where Q is a finite functional operator. This operator majorizes 

the operator S so that the contractivity of Q is a sufficient 

condition of contractivity of S . However, it may happen that the 

operator Q does not satisfy the condition of contractivity on the 
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whole segment [0, g.J from Theorem 1, if the above chosen norm is 

considered. It is not difficult to find examples of such systems of 

the form (4) (see [lOJ). In these cases it cannot be guaranteed that 

the operator S fulfils the condition of contractivity in the given 

norm for all 0 < £ < c.K . In other words, the requirement of contract­
ivity of the operator with respect to the given norm may prove more 

restrictive than that which follows from the analysis of the majori­

zing system* 

At the same time there exists such a vector norm that the condi­

tion of contractivity of the operator Q is fulfilled for all 

0 < I <£.*• Indeed, let us consider the matrix Q* (u) = A#0(u, £.)/ 
/ du and its spectral radius P(£) for a fixed u = u>0 . The 

matrix Q* (u) is nonnegative and the assumptions of Theorem 1 imply 

that for 0 <g. < e^ and u = u( £ ), o remains less than one, while 

y = 1 for £. = £K. According to [llj there is a vector norm such 

that the corresponding norm || Q' (u) || is greater than ?(£) hy an 

arbitrarily small number. Hence for every £. from the interior of 

the segment JO, £.J there is a vector norm such that || Qf (u)|| < <5"< 1. 

This is sufficient for the validity of the assertion on contractivity 

of the operator Q , and hence also of the majorizing operator S • 

However, for t s £-* none of the norms || Q9 (u)|| can be less than 

one so that the operator Q fails to be contractive. Consequently, 

for £ = £ x the operator S can also be non contractive. However, 

this does not influence our proof of Theorem 3# 

5. Examples 

1. Let us consider the periodic solution of the equation 

2 "\ 2 
(14) z • ctr z = £z • sin t , or = 5 . 

We have z° = q sin t , q = 7 and putting z = z°+ x we obtain 

the equation 
(15) x + ^x = e>f(x,t) = 

= i [q3 sin3 t + 3q2 sin2 tx • 3q sin tx + x3 J . 

The equivalent operator equation is x = £Lf(x,t), where L is 

considered in the class of functions representable by trigonometric 

polynomials and 

(16) Leimt = eimt/( u/ - m2) . 

All approximations x^t, g. ) are Fourier polynomials which include 

only odd harmonics. An estimate for L on the family of such func­

tions with to-2 - 5 with respect to the norm ||. ||x is 
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(17) ||Ly(t)||^< ||y(t)||x/(^
2-l) "jll/(t)HA 

while the majorizing Lyapunov's equation (being scalar) has the form 

(18) u = ̂ (q3 + 3q2u + 3qu2 + u3) , q = J . 

This equation yields £.* = 9.48 , u^= 0.12 (with an error not greater 
than 0.01) 30 that the convergence of the sequence {-̂ ("t, £,)} to 
the unique solution is guaranteed for rather great £. • The solution 
u(£ ) of the equation (18) yields an estimate with respect to the 
norm || • || of the deviation of the periodic solution z(t, & ) of the 
equation (14) from the generating solution z (t) • The quantity 
<T^ = u(£ ) - u-^a.) = u( £ ) -- -r£,q represents an estimate of the 
first approximation z^(t, £_ ) = z°(t) + x-^t.e. ) • For example, for 
£- = 8 we obtain (with an error not greater than 0.001): 
u(£) = 0.059 , ̂  = 0*031 , (5̂  = 0.028. 

2. Let us consider the Mathieu equation 

(19) z + (a + e. cos 2t)z = 0 . 

The Mathieu functions as well as the corresponding eigenvalues a , 
en a«« can be found in the form of power series in £ • The literature sn 

offers only few facts concerning the radii of convergence of these 
series* 

Let us discuss e.g. the case ce,(t) , setting a = 1 + £.h , 
z = ce,(t) = cos t + x • The equation obtained for x is 

(20) x + x = £f(x,t,h) = 
= £-[-(h + ̂ )cos t - \ cos 3t - (h + cos 2t)xJ • 

We seek for the approximations x^tt, t ) > h^f£ ) » k=l,2,... from 
the equations 
(21) xk + xk = eftx^-L ,t,hk) , xQ = 0 

having determined h* from the periodicity conditions for -*-̂ (t, e ). 
The operator equations corresponding to the given iteration process 
have the form 

(22) x = El^lr ^ C08 3t - (h + cos 2t)x J , 

h = - -| - L2(x cos 2t) • 

Since all -^(t, £ ) are expressed in the form of Fourier polynomials 
in cosines jt , j = 3,5>7,..., L^ and L2 are considered to be 
in the same class of functions and hence 

(23) K y C O l l ^ i l l y U ) ^ , ||L2^(t)||^- |L2y?(t)| < J U i / X t ) ^ . 
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Using these estimates we write the majorizing equation 

(24) u = J £ l \ + (in-l)u] , v = \ • \ u 

where u and v majorize x(t, s ) and h(£_), respectively. For 

these equations we obtain u* = 1 , v^ = 1 , £K= 0.2 . Since the 

analytic case is considered, the convergence of the sequence 

{-^(t,^)} to a function x(t, f. ) analytic in £ is guaranteed 

for U | < 0.2 . 

Let us note that the majorizing equations (24) can be improved 

so that an estimate | E- | < 0.35 is obtained [lo] . Further, let us 

mention that the given algorithm for the construction of ce-jU) 

was used for machine computation. Practical convergence occurs for 

0 < L <0.50 . For £, = 0.55 the process proved to be divergent. 

3. Let us consider a system with an additional small parameter 

/Us> 0 at the derivative 

MX = Ax + £ F(x,t) 
and its solution which vanishes for t- = /^= 0 . The matrix A is 

assumed to be constant and to satisfy the so called stability condi­

tion: the real parts of all its eigenvalues are negative. The func­

tion F(x,t) is assumed to be continuous in t and differentiable 

in x in a domain. The equivalent operator system reads 

(25) 

x = eL.F(x.t) , L^yҶt) = i J expП£(t-з)] y?(s)ds . 

In virtue of the stability condition we have 

||exp (At)|| < c exp (-at) , c > 0 , & > 0 

so that L^ is a bounded operator on the whole half-axis t^O for 

any fju> 0 and the estimate sup ||L^(t)|| < £ sup || t^(t) || , j) = | 

is independent of /Uy Hence the system (25) has the same character 
as the system (2). Its solution may be constructed by an iterative 

process of the form (7) whose convergence is guaranteed on a segment 

R), £ ] and for all /u/>0 . For example, for the scalar equation 

/Us* = - 2x + £ (cos t + 2x + x ) 
we have an estimate of the operator ||Ly?(t)|| ^ ̂  || L̂ (t)|| and the 

majorizing equation u = \ £-(1 • 2u • u2) for which u=l , ̂ = ^ . 
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