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MAPPING PROPERTIES OF REGULAR AND STRONGLY DEGENERATE ELLIPTIC 

^ A£l)* THE CASE 0<p<*o 
P»P 

H. Triebel, Jena 

1. Main Results 

Let SX be a bounded C°° -domain in the Euclidean n-space R . 
n 

Let A, 
(Af)(x) = 21 ajx) D*f(x), aoL(x)eC°°(ii) 

be a properly elliptic differential operator of order 2m. Here m 

1,2,3,... Let B., 

(B.f) (x) = Z. h. ^ (x) D^f (x) , b . ^ (x) e C°° ( 7)Sl), 

j = 1,,.., m, be m differential operators defined on the boundary 

^SL of SI . All functions in this paper, in particular the coeffi

cients of the above differential operators, are complex-valued. As 

usual, -[A, B.|, ..., BmJ.is said to be a regular elliptic problem if 

0 4m1 <m 2<... <mm^2m-1 and if {B. ̂  . m is a normal system satis

fying the complementing condition with respect to A. For details 

concerning these well-known definitions we refer to Cl] (cf. also 

[4] , pp. 361 - 363). It is convenient for our purpose to assume 

that the following additional assumption is satisfied. 

Hypothesis. If f(x)eC°°(5i) such that (Af)(x) = 0 for xell and 

(B.f)C'x) = 0 for xe^-Ii and j = 1,...,m, then f(x) = 0 in SL . 

Remark 1. In other words, it is assumed that the origin belongs to 

the resolvent set if {A, B..,..., B m^ is considered as a mapping 

between appropriate function spaces. 

Definition 1. (i) If 

( either 1 < p < 00 and 0 < s < 15 

I or 0 < p £1 and n( * -1) < s < 1 

then B^ ̂ (12) is the completion of C°° (SI) in the quasi-norm (norm 
P»P 

if pi 1) 

(2) »<WÜ-ЧЧi^~І 
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(ii) If p and s satisfy (1) and if m = 1,2,3,..., then 

(3) B s + 2 m ( . n ) * {f I D*f eB^pdl) for all *L with K( ± 2m \. 

Remark 2. B8+2in(-Q.) is equipped in the usual way with a quasi-norm. ———^—— p, p 

Remark 3. These are the underlying Besov spaces. The theory des

cribed below can be extended to an essentially larger class of Besov 

spaces B8 (SI) and probably also to spaces of Hardy - Sobolev type 

defined on domains, cf. [8] . However the definitions are more com

plicated, cf. also Section 2. Furthermore, one can also include the 

case p = ©o , which yields as a special case the famous Agmon-Doug-

lis-Nirenberg theory in the Holder - Zygmund spaces <28(J2) = B̂ Ĉ-fi.), 

where s> 0, cf. [8] • 

Definition 2. Let V be the (outer) normal with respect to'"d-Q. . If 

p, s, and m have the meaning of Definition 1(ii) and if k = 0,..., 

2m-1, then B8+2m~k~ % (^Sl ) is the set of all distributions f on 
P >P 

the compact C°° - manifold dSl for which there exists a function 

g«B£f C-tt) with f ^ U - - . 
Remark 4* The spaces B8

 n(R ) (and more gene ra l B8 _(R_)) can be 
p,p n p,q n 

defined for all values of s, p (and q) with - °o <s < <* , 0 <. p €• «o 

(and 0 < q 4 <-o ). Using the standard method of local coordinates 

one can give a direct definition of the corresponding spaces on^.n; 
cf. [83 . In particular, the spaces in Definition 2 depend only on 

the difference 2m-k and not on the special choice of m and k. If 

1 < p <- °o , then one has a well-known assertion, cf. e. g. [4] , 

p. 330f (cf. also Step 4 in Section 2, where further comments, also 

concerning the correctness of Definition 2, are given). 

Theorem 1. Let £A, B.., • •., B X be regular elliptic, and let the 
Hypothesis be satisfied. If p and s are given by (1) then 

{A, B-, ..., BmJ yields an isomorphic mapping from 

(4) B^(S1) onto B* (SI)* fc B{*?nwn* " * (SSI). 
P»P Pl»P . ' P * P 

Remark 5. The proof of this theorem is long and complicated. However 

in Section 2 we shall try to describe some of the main ideas and 

key-assertions of the proof. A more detailed version, including 

also more general spaces, will be published elsewhere, cf. [8], 

In [4] 9 Chapter 6, we considered a rather general class of 

strongly degenerate elliptic differential operators in the frame

work of an L - theory, where 1 < p -< ©o . On the one hand, we want to 
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extend this theory to the spaces B^ in the sense of Definition 

1(i), on the other hand, in order to avoid technical difficulties, 

we restrict ourselves to a model case. Again, -Q. is a bounded C -

domain in R . The distance of x^-Q. from ^-Q is denoted by d(x). 

Definition 3« If (1) is satisfied, m = 1,2,3,... and v > 2m, then 

B8* m(J2 , d"pv (x)) is the completion of C°° (H) in the quasi-norm p,p o 
(norm i f p > 1) 

(5) | f | | B B + 2 m ( i l ) + « d - * f | | s ( n ) • 
p,p va*' p,pv Lt 

Theorem 2. If all the parameters have the same meaning as in Defini

tion 3 and if X is a complex number with sufficiently large real 

part, then the operator A + X E . 

(6) (Af)(x) = (- £>)mf + d~V(x) f(x), E identity, 

yields an isomorphic mapping from B8*1" m(-Q , d~p (x)) onto Bs (XI). 
P*P P*P 

Remark 6. In Section 3 we sketch some main ideas of the proof. Theo

rem 2 can be extended essentially to more general operators and also 

to a wider class of underlying spaces. Detailed proofs and a precise 

description of the mentioned extensions will be published elsewhere, 

cf. [73 . 

2. Outline of the Proof of Theorem 1 

Step 1. ( Extension). If p and s satisfy (1) and if SI in (2) and 

(3) is replaced by R , then one obtains corresponding spaces 

B 8 +p m(R n). First of all we need properties of the spaces Bf
1"^ JQ. ) 

and B ^ ^ R ). It can be shown that B8+^m(i2) is the restriction of p,p n/ p,p 

B 8 + m(rV) to -Q. (factor space) and that there exists a linear and p,p n 

bounded extension operator from B^+ m(il) into BD
+
T)

m(-0 • 

Step 2. (Fourier decomposition and Fourier multiplier). By Step 1 

it is clear that properties of the spaces B_f (R ) (in our case d 
p,q n 

= s+ 2m and p = q with the above restrictions) are of interest. 

Peetre' s definition of the Besov spaces B-^a(-0 with - <-o < t?< <-o , 

0 <p £ 00 , and 0<q i -o is the following. Let S(R ) be the 

Schwartz space and let S'(R ) be the space of tempered distributions-
Let (f = { ^(-Oj -i_n ^ s(Rn) b e a smooth dyadic resolution of JJ j-u n ^ 

unity in Rn, i. e. 0 4 <f-j(x) ̂  1» Z.o Cp^(x) = 1 for xeR n, 

supp (fQ cz \j[ (y[ i 2^ , supp cfA <z{j \ 23~1 i (yU 2 3 + 1 ] 

if j = 1,2,...; for any multi-index jj- there exists a constant Co-

such that 
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W* ft(«)| * c* . 2 - J ' lìl ) X 6 V 3 = 0 , 1 , 2 , * « * 

I f - oo < é < «Vo , 0 < p i oo 1 , and O-cq i oo , then 

p> q ( V = (ŕ | f c S' <V 9 B p . q ( V = 

[i 2 ; lA-/ 5 [ғ- Г f i p f l C * > | f*Л* 1 
1 

<v < 
- » -

 v
 î  * '

 J 

for all systems y ̂  . 

(usual modification if p or q equals <x> )
#
 Here P and F are the 

Fourier transform and its inverse on R , respectively. It can be 

shown that
 B

D Q
(R

n
)

 i s a
 quasi-Banach space, where all the quasi-

norms [If |L ^ (T> \ f
 o r
 different choices of y are mutually equiva-

p,q^ n
;
 ^ 

lent. Furthermore, B^ _(R„) coincides with the above spaces B
s
 (R ) 

p,q n p,p n 

if o = s+2m and p =q (under the above restrictions of the para

meters s, p and m). All the spaces Bjf (R ) satisfy the following 
p, q n 

weak Michlin - Hbrmander Fourier multiplier property. There exists 

a natural number M and a positive number c (depending on <? , p and 

q) such that for all infinitely differentiable functions m(x) on R 

and all fe B* (R) 
[|F"1[m(-)Ff3|L^ ,R > £c(sup (1+(x|V [D^m(x)l) (IfL^ ,R . • 

I3p,qvnn; |*UM P,qv ir 
if 

(We omit the index if in |( • \\l<f /R x because all these quasi-norms 
p»q n 

are mutually equivalent). Proofs of the assertions in this step may 

be found in £3] and [5]. 

Step 3. (Properties of the spaces B D a(
R
n))*

 T n e goal is to extend 

Arkeryd's proof (cf. [2] or [4] , Chapter 5) for boundary value 

problems of {A, B..,..., Bm\ in the framework of an L -theory with 

1 <p < 00 to the spaces BfJ in the sense of Definition 1(i). For 

this purpose, beside the extension property and the Fourier multi

plier property described in the preceding steps, some other proper

ties of the corresponding spaces on R are indispensable, (i) (Diffe-

omorphic mappings, cf. [8] ). If y = ^(x) is an infinitely differ

entiable one-to-one mapping from R onto itself such that y(x) = x 

for large values of lx| , then f(x) —> f(tf(-0) yields an isomor

phic mapping from B* Q(Rn) onto itself. Here -Qo<^
7<e-oj 0 <• p ±<x> , 

and 0<q < 00 . (ii) (Multiplication property, cf. [5] ). If g(x) e 
Co° ̂ Rn^ "fcnen f(x) """•* g(x) f(x) yields a linear and bounded mapping 

from B ^ (R ) into itself. Again -«o<rf<«-*}0<.p 400 and 0 * q = °* . 
p , q 
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Step 4. (Spaces on domains and manifolds). The two properties de
scribed in Step 3 (diffeomorphic mappings and multiplication prop
erty) are the basis for the well-known method of local coordinates. 
This gives the possibility to define the spaces B_ Co\fl), where 

P»4 
-oo<.6-c«-o , 0 <p 4°<> and 0<q ioo by standard arguments, cf. 
C4] 9 PP- 280/81 for the usual Besov spaces. The next step shows 
that these spaces coincide with the corresponding spaces in Defini
tion 2 (under the restrictions of the parameters in the sense of 
Definition 2). Finally, by restriction of Bjf _(R„) to Jl one can 

5* P>4 n 

define spaces B* „(I2) for all values -<-o<.6'<- «o , 0 < p ^ <=*> and 
P*4 

0 < q i co . All these spaces have the extension property described 
in Step 1, cf. [8] . 
Step 5. (Traces). Let :>> be the (outer) normal on ~dfl and le t r = 
0 , 1 , 2 , . . . By the above properties and the assertion in [5l , 2.4.2, 
i t follows that R, 

R f = if^si ' I v L s i > - ' § f * U . a 5 , 

i s a linear and bounded mapping from B*f (Si) onto 

' L B p , q r &^> 
i=° 

if 0 < p i oo , 0 < q _ o o , and s> r+ £ + max(0, (n-1 )(i -1)). 
Now it follows that Definition 2 is meaningful and that the spaces 
defined there coincide with the corresponding spaces in the sense 
of the preceding step. 
Step 6. (A-priori estimate). If p and s satisfy (1) then there 
exist two positive constants c. and Cp such that for all f€C°° (SI) 

c1 ttfllB^m(il) 4 |Uf , lBj>p(_Q) + Kf|lB*>p(Jl) + 

(7) ~ ' 
+ Z llBjfllBS+aii-mj-i ( ^ n ) £ c2 l|fllBs+2m(J2) • 

^ A P,P P,P 
Here (A, B^, ..., B m ] is regular elliptic. For the proof of (7) it 
is not necessary that the above Hypothesis is true. The idea is to 
carry over Arkeryd's proof, cf. [2] , of a corresponding a-priori 
estimate in the framework of an L -theory with 1 < p < oo , to the 
above basic spaces B^ _(H) instead of L (-Q). We use the version 

P»P r _ P 
of Arkeryd s proof given in \4J 9 PP« 364 - 378. An examination of 
that proof shows that many arguments can be carried over from L 

s to B_ if one uses the 5 main assertions for general Besov spaces 
P>P 

mentioned above: extension properties (Step 1 and Step 4), Fourier 
multiplier properties (Step 2), diffeomorphic mappings (Step 3), 
multiplication properties (Step 3)» and traces (Step 5)* However 
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there remain essentially two points which are trivial for L -spaces 

but non-trivial for B
8
 -spaces, (i) If p and s satisfy (1) then S, 

P»P 
( f(x) if x e Л 

(Sf)(x) = j
Q x б R л 

l n 

is a linear and bounded operator from B
8

 D
(J2) into B

8

 D
(R

n
)« This 

assertion follows from the method of local coordinates and the con

siderations in [5] , 2.6.4. Cf. also [8] , Proposition 3.5. (ii) 

Let a,(x) be the coefficients of A and let K be a ball in R^ with 

the centre x° and the radius IT , where we assume 0 «* ^ < 1. If p 
and s satisfy (1), then there exists a constant c, which is inde

pendent of x° and f such that for all ̂  fc C^°(K) and all f e 

i j ( . 4 w- a . (x« . . f i v f l i B ; i p W ) < 
c T [[ Yfll

B
s+2m/^) + c \ Yf II

 B
s+2m-1

( i l )
 • 

P»P P»P 

Using the method of local coordinates then this estimate follows 

from 

M*Jx) - a(x
0
)) Y-" II B

S
 (R ) -

 c r
 l^flls

8
 (R ) ' 

*• PiP n
y
 p,p

v
 n' 

where again c is independent of tT
 #

 This inequality coincides 

essentially with formula (52) in £6 ] . If one uses the special prop
erties (i) and (ii) and the above-mentioned general properties for 
the spaces B s then one obtains (7) in the same way as in [4] , pp. 

P»P a 
364 - 378, where L^ is replaced by B° . 

P P-P 
Step 7. (Proof of Theorem 1). If the Hypothesis is satisfied then 
the term |(f|| Bs / p \ in (7) can be omitted (standard arguments). 

P,P^ L) < 
Now, Theorem 1 is a consequence of the classical theory for ^A, B<., 
..., B m$ and (7). 
3. Outline of the Proof of Theorem 2 
Step 1. (Mappings in the nuclear space C°°(J1)). If 

C*(Ji) = {f [f ̂ C ~ ( R n ) , supp f c-5 I } 

then A + X E with a sufficiently large real part of X yields an 
isomorphic mapping from c£° (SI) onto itself. This is a special case 
of Theorem 1 in ftl » P- 420. 
Step 2. (Decomposition). Next we need some properties of the spaces 
B 8 (II), where s and p satisfy (1). There exists a constant c such 
that for all f e G^ (Si) 
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(8) U- 8 p (x) | f (x) l p dx * c([ lf(x)|pdx + f | f ( x ) " ! S ) | P dx dy)*\ 
J J j fx-vl p 

SI SL Sl«Sl [JL y i 

This is a fractional Hardy inequality. A Proof of (8) for 1 < P < <-o 

may be found in [4] , P. 259. Using this result, Qne can extend (8) 

with 1 < P < oo to all couPles (s,P) satisfying (1). In Particular, 

(9) (U-sP(x)(f(x)lP cbc + \ l f U ) 'jy1 P dxdy)^ 

is an equivalent quasi-norm in B8 (il). Now we have a situation 

which is similar to that one in [4] - Subsection 3.2.3 and Subsec

tion 6.3.1. The decomposition methods developed there can be aPPlied 

( however some non-trivial additional considerations are necessary, 

for details we refer to [7] ). Let K, -_ = |x | lx-x. 1 \ < ^ 2"^ J b e 

balls such that x. -_€ { y ( y e . Q , 2~j*"1 4 d(y) t. 2~*] if D = 1,2, 

3,..., with a sufficiently small *£" . It is assumed that -Q. = 

[J \J K. -, (modification for j = 0 or for small values of j if 
-j = o <L-< J,J-

necessary). Let Cf= { tp. i}-j=o 1 2 be a smooth resolution of 

1=1!.!.|N*# 

unity with resPect to the balls K. ,, i. e. if x € -Q. then 

°o wi 
0 4 ^ . i ( x ) ' £ , ^ ya.i ( x ) = 1 ' 8Upp yj.i C Kj,l • 

Furthermore, for any multi-index V- there exists a number Cy_ such 

that 

l - ) ^ ,]_(*) [ 4 c^ 23,)rl if 0 = 0,1,2,... and 1 = *1 ,... ,Nj . 

Now it can be Proved that for any system LP with the indicated ProP-

erties 

(10) ( £ 2.* I V1 -. f|(Ps . )* 

is an equivalent quasi-norm in B*j D(-fi-) (here s and p satisfy (1)). 

Similarly one obtains that for the sPaces B
8+2m(i2, d" *p(x)) de

scribed in Definition 3 and formula (5) 

(,,) (1.1!»ti.̂  o v *2i "p' ft.if,P*;,P«/ 
is an equivalent quasi-norm. 

SteP 3. (A-Priori estimate). Now we have a situation which is simi-
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lar as in [4] , Section 6.3. The proofs given there can be extended 

to the above case, where (10) and (11) play a decisive role. Again 

some non-trivial modifications are necessary, cf. [7] - where details 

are given. One obtains the following a-priori estimate. If p and s 

satisfy (1) then there exists a real number \ and two positive 

numbers c. and Cp such that for all complex numbers X with Re A e 

\
0
 and for all f e Ĉ ° (Si) 

C 1
 K(A+XB)fll

B
B

 ( J 1 )
 - » f H

B
^ m

( i l f d
- v

P ( x ) )
 +IM lfl

B
B

 ( J i ) 

^ c
2
 I (A +\E)f |l

 B
s (Sl) • 
P,P

V ; 

Step 4* (Proof of Theorem 2). Since C ~ (SI) is dense in B^
 p
(-ft) 

and dense in B^ _
m
(J2, d"

 p
(x)), Theorem 2 is an easy consequence 

P»P 
of Step 1 and the a-priori estimate of the preceding step. 
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